Why Mobile Databases?

- Number of smartphones in use around the world passed 1 billion in 2012.

- Next billion devices could be reached within less than three years.

- More businesses move toward employees mobility.

- Powerful lightweight computing devices and low cost mobile connectivity paved the way for data-driven applications.
Why Mobile Databases?

- Mobile data-driven applications enable us to access any data from **anywhere, anytime**.

- **Examples:**
 - Salespersons can update sales records on the move.
 - Reporters can update news database anytime.
 - Doctors can retrieve patient’s medical history from anywhere.

- **Mobile DBMSs** are needed to support these applications data processing capabilities.
Mobile Database:

- A mobile database is a database that can be connected to by a mobile computing device over a wireless mobile network.

- Mobile databases:
 - Physically separate from the central database server.
 - Resided on mobile devices.
 - Capable of communicating with a central database server or other mobile clients from remote sites.
 - Handle local queries without connectivity.
Client-Server Mobile Databases:

- Central Database
- Central DBMS
- Mobile DBMS
- Mobile DB
- Laptop
- Smartphone

Diagram showing the relationship between central database, central DBMS, mobile DBMS, mobile DB, laptop, and smartphone in a client-server mobile database setup.
Client-Server Mobile Databases:

- Client-server model is the traditional model of information systems.
- It is the dominant model for existing mobile databases.
- The server can become a single point of failure and performance bottleneck.
- Even storing data on a cluster of machines to backup central database might cause performance bottleneck and data inconsistency.
Peer-to-Peer Mobile Databases:

- Tablet
- Mobile DBMS
- Mobile DB
- Mobile DBMS
- Smartphone
- Laptop
- Mobile DB
- Mobile DBMS
Peer-to-Peer Mobile Databases:

- In P2P mobile databases, the database maintenance activities are distributed among clients.

- Every process plays part of the role of the server, besides its client role.

- A client that wants to access a piece of data, sends a request to other peer clients and they forward the request until the data is found.

- The major problem in this model is ensuring the availability of data.
Characteristics of Mobile Environments:

Why not use an appropriate existing model of databases in a mobile environment?

- Characteristics of mobile environments:
 - Restricted bandwidth of wireless networks.
 - Limited power supply.
 - Limited resources.
 - Mobility.
 - Disconnections.
Current Approach:

- Currently most mobile application developers use “flat files” to store application data.

- A “flat file” is a file containing records that have no structured interrelationship.

- Advantages:
 - ✔ Smaller and easier to manage.

- Disadvantages:
 - ✗ Applications need to know the organization of the records within the file.
 - ✗ Developers have to implement the required database functionalities.
Requirements of Mobile DBMSs:

- Mobile DBMSs should satisfy the following requirements:
 - Small memory footprint.
 - Flash-optimized storage system.
 - Data synchronization.
 - Security.
 - Low power consumption.
 - Self-management.
 - Embeddable in applications.
Small Memory Footprint:

- Memory footprint is amount of main memory that an application uses while running.

- Mobile devices have limited memory, so the mobile database application should have a small footprint.

- The size of mobile database affects the overall application footprint.

- Mobile DBMSs should be customizable to include only the required database functionalities.
Flash-Optimized Storage System:

- Flash memories are dominant storage devices for portable devices.

- They have feature such as:
 - Small size.
 - Better shock resistance.
 - Low power consumption.
 - Fast access time.
 - No mechanical seek and rotational latency.

- Mobile DBMSs need to be optimized to exploit the advantages of the new storage devices.
Data Synchronization:

- Portable devices cannot stay connected all the time.
- Users can access and manipulate data on their devices.
- They are also unable to store a large amount of data due to lack of storage capacity.
- Mobile DBMSs should have the synchronize functionality to integrate different versions of data into a consistent version.
Security:

- Security is very important for data-centric mobile applications.

- It is more important when the application works with critical data that its disclosure results in potential loss or damage.

- Data that are transmitted over a wireless network are more prone to security issues.

- Mobile DBMSs should implement a complete end-to-end security to ensures the secure transfer of data.
Low Power Consumption:

- Portable devices have limited power supplies.
- Battery life of mobile phones is expected to increase only 20% over the next 10 years.
- Processor, display and network connectivity are the main power consumers in a mobile device.
- Mobile DBMSs need to be optimized for efficient power consumption.
Self-Management:

- In traditional databases, the database administrator (DBA) is responsible for databases maintenance.

- In mobile DBMSs there can be no DBA to manage the database.

- Mobile DBMSs need to support self-management and automatically perform the DBA tasks.

- Some mobile DBMSs allow remote management that enables a DBA to manage the mobile databases from a remote location.
Embeddable in applications:

- Administrators does not have direct access to mobile devices.

- Mobile DBMSs should be an integral part of the application that can be delivered as a part of the applications.

- The database must be embeddable as a DLL file in the applications.

- It must be also possible to deploy the database as a stand-alone DBMS with support of multiple transaction.
Existing Mobile Databases:

- **Mobile databases:**
 - Sybase SQL Anywhere
 - Oracle Lite
 - Microsoft SQL Server Compact
 - SQLite
 - IBM DB2 Everyplace (DB2e)

- **Embedded database:**
 - TinyDB
 - PicoDBMS
Sybase SQL Anywhere:

- Initially created by Watcom as Watcom SQL.
- SQL Anywhere was launched in 1995.
- It dominates the mobile-database field, with about 68% of the mobile database market.
- Database files are independent of the operating system and transferable between supported platforms.
- Strong encryption is supported for both database files and client-server communication.
Oracle Lite:

- Omniscience Object Technology, Inc. was acquired by Oracle Corporation in November 1996.

- Their product (Omniscience ORDBMS) became the first version of Oracle Lite.

- Oracle Lite runs in under 1 MB of memory, and can be installed in 3 MB of hard disk space.

- Personal Oracle Lite (POL) is a lightweight, single-user relational database that runs on desktops, laptops, down to the smallest hand help devices.
Microsoft SQL Server Compact:

- Formerly known as SQL Server Mobile Edition.
- SQL Server Compact is free to download and redistribute.
- It is optimized for an architecture where all applications share the same memory pool.
- SQL CE runs in-process with the application which is hosting it.
- It has a memory footprint of approximately 5 MB and disk footprint of less than 2 MB.
SQLite:

- SQLite is an open source mobile database engine.
- It is a server-less database engine that needs zero-configuration.
- SQLite is a popular choice as mobile database for local storage in mobile applications.
- SQLite engine has no standalone processes with which the application program communicates.
- SQLite implements most of the SQL-92 standard.
IBM DB2 Everyplace:

- DB2e has been discontinued and April 2013 is the end of support date.
- It had the biggest market share after SQL Anywhere.
- It had the smallest memory footprint (350 KB) in compare to other commercial mobile databases.
- IBM has replaced DB2e with IBM solidDB family.
- SolidDB is a in-memory MDBMS with robust data catching features.
Embedded Databases:

- Embedded database systems are tightly integrated with an application that requires access to stored data.
- They are hidden from the application’s end-user and requires little or no ongoing maintenance.
- Embedded databases need less resources in compare with mobile databases.
- They are optimized for specific devices such as smartcards and sensors.
- They support limited and specified functionalities of the standard SQL.
PicoDBMS:

- PicoDBMS only supports sufficient functionalities for smartcard applications.
- Smartcard applications are used for data management such as insert, delete, update and search.
- PicoDBMS supports a part of SQL:
 - INSERT, UPDATE, DELETE, SELECT
 - CREATE/DROP TABLE/VIEW
 - GRANT/REVOKE
- Footprint size of PicoDBMS is about 30KBytes.
TinyDB:

- TinyDB has been developed at University of Berkeley.
- It supports only essential functionalities for sensor applications.
- Most of the sensor applications are used to filter out some data so they just need to select data with given conditions.
- TinyDB supports only SELECT operation of the standard SQL.
- Its memory footprint is only 3KBytes.
Comparison:

<table>
<thead>
<tr>
<th>Target Devices</th>
<th>Mobile DBMSs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Small Devices with Low Computing Power</td>
<td>Sensors</td>
</tr>
<tr>
<td></td>
<td>Smartcards</td>
</tr>
<tr>
<td>Small Devices with High Computing Power</td>
<td>Cell Phones, PDAs, Car Navigators, Ultra Books</td>
</tr>
</tbody>
</table>
Functionalities:

<table>
<thead>
<tr>
<th></th>
<th>TinyDB</th>
<th>PicoDBMS</th>
<th>Oracle Lite</th>
<th>IBM DB2e</th>
<th>MS SQL Server Compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Footprint Size</td>
<td>3 KB</td>
<td>30 KB</td>
<td>970 KB</td>
<td>320 KB</td>
<td>2 MB</td>
</tr>
<tr>
<td>SQL</td>
<td>SELECT only</td>
<td>a part of SQL99</td>
<td>a part of SQL99</td>
<td>a part of SQL99</td>
<td>a part of SQL99</td>
</tr>
<tr>
<td>Views</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Integrity Constraints</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Concurrency</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Indexing</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Encryption</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Access Control</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Supportability of MDBMS Requirements:

<table>
<thead>
<tr>
<th></th>
<th>TinyDB</th>
<th>PicoDBMS</th>
<th>Oracle Lite</th>
<th>IBM DB2e</th>
<th>MS SQL Server Compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Footprint</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Flash-Optimized Storage System</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Data Synchronization</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Self-Management</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>Low Power Consumption</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Security</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
References:

Thank You