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ABSTRACT
This paper describes a technique that allows mobile robots
to explore an unknown graph-like environment and con-
struct a topological map of it. The robots explore in a
“lazy” fashion in which identified “hard” tasks are put off
to later steps taking advantage of the fact that certain tasks
often become easier as more of the world is known. Ex-
perimental validation shows that multiple robots exploring
in a lazy fashion can produce a reduction in exploration
effort over multiple robots exploring without prioritizing
tasks based on expected effort.
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1 Introduction

Consider the problem of having a team of robots explore an
unknown environment. Solving such a task involves deal-
ing with issues related to the coordination of the actions
of elements of the team, dealing with uncertainty in terms
of locations in the environment, and prioritizing those por-
tions of the environment that should be explored next. Here
we examine a particular issue related to multiple robot ex-
ploration – the problem of how to prioritize certain tasks
within the exploration process: can the cost of environ-
mental exploration be reduced by putting off certain “hard”
tasks until later in the exploration process? That is, can it
be good to be lazy?

Robotic mapping is commonly referred to as SLAM,
Simultaneous Localization and Mapping [1, 2]. In the ma-
jority of SLAM approaches the environment is represented
through a metric map that captures the geometric prop-
erties of the environment (e.g. [3]). An alternative to a
metric-based representation is a representation based on
a topological or graph-like formalism (e.g. [4, 5, 6]). A
graph-like world represents the minimal information that
a robot must be able to represent in order to distinguish
one place from another, and provides a useful theoretical
model within which to explore fundamental limits to ex-
ploration and mapping. In [6] Dudek et al. sketched how
their single robot exploration algorithm of [4, 5] might be
applied to the problem of multiple robot exploration. This

sketch suggested how multiple mobile agents might exploit
the abilities developed in [4, 5] in order to explore in a coor-
dinated fashion. [7] formally develops the sketch provided
in [6] to the problem of multiple robot graph exploration.
This extension assumes the same formalism as described in
[4, 5] and populates the world with two or more robots each
of which is equipped with its own unique marker (pebble).
Similar to [4, 5], the marker is used to disambiguate po-
tentially confusing locations, solving the “have I been here
before” problem, i.e., the loop-closing problem.

This paper investigates how the multiple robot explo-
ration task can be conducted in a more intelligent way, tak-
ing advantage of the fact that exploration often becomes
easier as more of the world is explored. We extend the
multiple robot exploration strategy described in [6, 7] by
allowing the robots to explore in a lazy fashion in which
harder tasks are delayed until easier tasks are completed.
Empirical validation shows that multiple robots exploring
in a lazy fashion can provide a reduction in exploration ef-
fort over the original algorithm, in terms of the number of
mechanical steps required for multiple robot teams.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the world model and exploration algorithms
given in the above work. The model is adopted in the lazy
exploration technique described in this paper. Related work
is also reviewed. Section 3 presents the lazy exploration
technique. Section 4 presents evaluations of incorporating
lazy exploration in the original algorithm. Section 5 con-
cludes the work and suggests directions for future research.

2 The world model and exploration algo-
rithm

2.1 Basic model

The World Following [4] the world to be explored is mod-
eled as an embedding of a finite undirected graph G =
(V, E) with set of vertices V = {v1, ..., vn} and set of
edges E = {(vi, vj)}. The definition of an edge is ex-
tended to allow for the explicit specification of the order of
edges incident upon each vertex of the graph embedding.
This ordering is obtained by enumerating the edges in a
systematic (e.g. clockwise) manner from some standard
starting direction. No spatial metric such as distance or ori-
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entation is assumed. The algorithm therefore operates on
a topological representation devoid of metric information,
and can be viewed as assuming worst case performance
bounds for environments with noisy metric observations.
Perception The robot can identify when it arrives at a ver-
tex. The sensory information that the robot acquires at a
vertex consists of the edge-related perception and marker-
related perception. With edge-related perception, a robot
can, by following the ordering convention, determine the
relative positions of edges incident on the current vertex v i

in a consistent manner (e.g. clockwise enumeration). As a
result, the robot can sense the number of incident edges (i.e.
degree) of current vertex, identify the edge through which
it entered the vertex and assign a label (index) to each edge
in the vertex representing its current local ordering of the
edges. This local edge ordering is not, in general, equal to
the unknown ordering specified by the embedding, but is a
rotation of it. marker-related perception enables a robot to
sense whether its marker is present at the current vertex.
Movement and marker operation A robot can move from
one vertex to another by traversing an edge (a move). At a
vertex a robot can put down its marker and it can also pick
up its marker if dropped (a marker operation).
Inter-robot communication The robots can communicate
with each other (only) when they are at the same physical
location (vertex of the graph).
Parallelism and synchronization All of the robots operate
in parallel. The parallelism does not assume a global clock,
or that distance or velocity information is available. The
only “clock” robots have access to is the number of edges
that they themselves have traversed. To simplify issues
related to synchronization it is assumed that each robot’s
combination of sensing and motion is an atomic operation.

2.2 Exploring a graph with single robot

The goal is to build an augmented undirected graph that
is isomorphic to the finite world it has been assigned to
explore. The robot’s inputs are its sensations and it can
interact with the world only through its actions. The al-
gorithm proceeds by incrementally building a map out of
the known subgraph S. As new vertices are encountered
they are added to the explored subgraph and their outgoing
edges are added to U , which is the set of edges that lead to
unknown places and therefore must be explored.

One step of the algorithm consists of selecting an un-
explored edge e = (v1, v2) from U , and disambiguating
the unexplored end vertex v2 against the known vertices
– carried out by placing the marker at v2 and visiting all
potential confusing vertices of S, looking for the marker.
A vertex in S is potentially confusing if it has unexplored
edge(s) and has the same degree (number of incident edges)
as v2. (Vertices in the graph-like world model are feature-
less except degree.) If the marker is not found at one of the
potential confusing vertices of S, then vertex v2 is not in
S and therefore v2 is added to S as a new vertex, together
with the previously unexplored edge e. Other (unexplored)

edges incident on v2 are added to the unexplored edge set
U . If the marker is found at a potential confusing vertex
vi of S, then vertex v2 (where the marker was dropped) is
identical to the already known vi (where the marker was
found). In this case, (only) the edge is added to S and re-
moved from U . The algorithm terminates when the set of
unexplored edges U is empty.

2.3 Exploring a graph with multiple robots

[6] and [7] considered using two or more robots to solve the
exploration problem in graph-like worlds. Each individ-
ual robot is equipped with its own marker and the robots
can only communicate with each other when they are in
the same node. Joint exploration is achieved through alter-
nating phases of independent exploration by the individual
robots and coordinated merging of the independently ac-
quired partial world representations. At any time the robots
retain a common representation of some part of the world
(the commonly known subgraph) Sm that evolves over time
as well as independent information regarding other parts of
the world. As successive iterations of the independent ex-
ploration and merging phase take place, Sm grows mono-
tonically until it is isomorphic to the entire world map. The
algorithm proceeds by having all of the robots start at a sin-
gle location with a common local edge ordering (the initial
definition of Sm), and then partitioning the unknown edges
leaving the known world Sm between the robots. With their
assigned edges each robot explores independently using the
exploration algorithm described in [4]. After exploring for
a previously agreed-upon interval defined in terms of the
number of edge-traversals, the robots return to a commonly
known and agreed-upon location to merge their individ-
ually acquired partial world representations. The merged
map (augmented Sm) is then shared between the robots be-
coming the new commonly known representation Sm and
the remaining unknown edges of Sm are re-partitioned be-
tween the robots for the next phase of independent explo-
ration. The entire algorithm repeats until the environment
is fully explored, that is, when there are no unexplored
edges in the (merged) known map.

The challenging task of multiple robot exploration is
the task of merging the partially explored environments ob-
tained by the robots. The merging process takes two par-
tial maps and involves disambiguating possible confusions
between the two partial maps. One of the partial maps is
chosen as the base map which is augmented with informa-
tion in the other map. Similar to the strategy for single
robot exploration the disambiguation of possible locations
involves choosing an unmerged location in the other partial
map, dropping a marker at the location and searching the
base map for the marker. If the marker is found in the base
map, then this location corresponds to an known place in
the base map. If the marker is not found, the location is
new and should be added to the base map. In either case,
additional information has been added and more of the base
map has been augmented.
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3 Lazy exploration

3.1 Disambiguation tasks in multi-robot exploration

In the original multiple robot exploration algorithm de-
scribed above the core exploration task is the task of dis-
ambiguating possible locations, which involves choosing
an ambiguous place and visiting all potentially confusing
locations in the known subgraph to solve the “have I been
here before” problem. As more and more of the environ-
ment becomes known to the robots, the robots can make
much more informed decisions as to which parts of the
world are ambiguous and they can also plan much more ef-
ficient motions within their environments. Given this, here
we explore the potential advantages associated with putting
off more complex tasks until more of the world is known
and thus the tasks become easier. That is, having the robots
explore in a lazy fashion.

There are two stages of the original multiple robot
exploration algorithm where disambiguation tasks are al-
located and therefore the robots can be lazy: first, each of
the robots can be lazy in terms of their efforts during the in-
dividual exploration phase, and second, the team of robots
can be lazy during the merging phase.

In the independent exploration phase of the original
multiple robot exploration algorithm, for each ambiguous
place selected (the unknown end of an unexplored edge),
the robot goes to the place, drops the marker and senses the
degree of the place, identifies potential confusing vertices
in the known map (based on the degree information), and
then visits the potential confusing vertices for the marker.
A known vertex is potentially confusing if it has unexplored
edge(s) and has the same degree as the unknown place.
This search is conducted in a closest-first order, and ends
when either the marker is found or the search is exhausted.

In the merging phase of the original multiple robot al-
gorithm, for each ambiguous place selected (the unmerged
end vertex of an unmerged edge in the other partial map),
when mechanical motion is needed, one of the robots drops
the marker at the unmerged vertex and then searches po-
tential confusing vertices in the base map for the marker.
A vertex in the base map is potentially confusing if it has
not been merged and has the same degree as the unmerged
vertex. Note that unlike the situation in the independent ex-
ploration phase where the unexplored vertex is unknown,
here the unmerged vertex is a known vertex in the other
partial map and thus its degree information is known. As
a result, the potential confusing vertices can be identified
before traversing to the vertex. Both the disambiguation
processes are summarized below:

while there are unexplored / unmerged vertices
- choose one (closest) unexplored / unmerged vertex
- traverse to the vertex, drop marker (sense degree)
- identify potential confusing vertices based on degree
- search known map / base map for the marker
- augment known map / base map due to search result

end while

(a) Disambiguating vertex
X requires long path

(b) Disambiguating vertex X
enjoys shorter path

Figure 1. Growth of known graph produces different search
tour length.

3.2 Delay opportunities

The main mechanical cost associated with the disambigua-
tion task arises from the steps spent on visiting potential
confusing vertices. In the original exploration algorithm
each incoming disambiguation task (for an unexplored or
unmerged vertex) is performed regardless of how “costly”
the task is. It may be possible to reduce the overall disam-
biguation cost by delaying certain disambiguation task to
later steps. A new vertex or edge can often be approached
and eventually validated via different routes with differ-
ent disambiguation costs, and as the map grows the disam-
biguation task may become easier. An illustrative example
is shown in Figure 1, in which the solid graph represents
the explored subgraph (during exploration) or the base map
(during merging), and the dotted portions are unexplored
vertices and edges (during exploration) or unmerged other
partial map (during merging). As the known (solid) graph
grows (Figure 1(b) versus Figure 1(a)), disambiguating the
unknown (unmerged) vertex H requires a reduced disam-
biguation (search) cost, i.e., the search tour to potential
confusing vertices (vertex I and K – same degree three as
H) is reduced due to the newly validated “shortcut” edge
(B,H). (Here as in the original work a constant mechanical
cost is assumed for the traversal of each edge.)

3.3 Exploring in a lazy fashion

In the lazy approach the order of choosing ambiguous
places is the same as that in the original exploration algo-
rithm (e.g. closest-first) but the disambiguation tasks are
prioritized, according to the expected difficulty of the task.
Each chosen task is first evaluated. If it is judged easy it
will be processed, otherwise it will be put off to later steps.
Here the difficulty of the disambiguation task for an am-
biguous place is evaluated based on the “length” (number
of edge-traversals) of the search tour required to visit all
potentially confusing vertices of the ambiguous place. The
length l of a search tour is measured by the number of edges
in the search tour. In Figure 1(a) the length of the search
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(a) 7×7 lattice with 10%
nodes removed (4 holes)

(b) 7×7 lattice with 20%
nodes removed (9 holes)

Figure 2. Lattice graph with different fractions of holes.

tour for H is 10 (starting from A) whereas in Figure 1(b)
the length is shortened to 5.

3.4 Deterministic and probabilistic lazy exploration

Here we present two lazy techniques. The first technique
is a deterministic approach, in which the decision is made
based on the direct comparison of the evaluated search tour
length l of the task and a pre-defined threshold Lmax, i.e.,
a disambiguation task that requires a search length that is
below the threshold (l < Lmax) is accepted and the task
is rejected otherwise. In the deterministic approach once a
task is delayed, the robot tries other tasks and the delayed
task will not be considered until some other task is accepted
and processed.

The second technique is a probabilistic approach in
which the delay decision for a task is made probabilistically
based on its search tour length l. In this approach each task
is mapped into a value in the range of [0:1] according to the
function

p = ε + (1 − ε)e−kl

where k > 0 and ε > 0 are tuning parameters. The robot
chooses random numbers in the range of [0:1] and selects
the first task for which a random number r has the property
r ≤ p. Assuming the fairness of the random number gen-
erator, the shorter the search tour length the larger value of
p and the more likely that the task will be performed.

4 Lazy exploration and its effects in multiple
robot graph exploration

Lattice hole graphs As in [7], the evaluation is conducted
on two-dimensional square lattices with small numbers of
holes – a type of random graph that represents the environ-
ment often encountered in the interior of modern buildings.
Examples are shown in Figure 2. The graphs were gener-
ated by starting with a complete two-dimensional lattice (a
grid) and deleting a specified fraction of randomly selected
nodes such that the graph remains connected. Vertices in
the graphs represent distinctive locations (e.g. rooms) in

buildings and edges represent paths between the locations
(e.g. corridors).
Evaluation Metric As in the original algorithm, here me-
chanical cost (amount of edge-traversals) by the robots is
the main performance concern. As in the original algo-
rithm, a unit cost is assigned for the traversal of each edge,
and in the exploration phase in which robots explore in par-
allel, we take the larger mechanical cost required by the
individual robots in the exploration phase (the mechani-
cal steps by the robot that made more traversals) which
represents the limiting cost of the exploration phase. For
the merging phase in which one robot performs the task,
the cost is the mechanical cost associated with the moving
robot. The total task cost is the sum of the cost of each
exploration and merging phase.

4.1 Lazy exploration in exploration phase

We first evaluate incorporating lazy exploration in the in-
dependent exploration phase of the algorithm. During in-
dependent exploration, the robot chooses a (closest) unex-
plored location, traverses to the location and senses the de-
gree there, identify the potential confusing vertices based
on the sensed degree, and then computes the search tour
length l. Then it decides to accept or delay the chosen task
based on the deterministic or probabilities criteria. If it de-
cides to delay the task, it proceeds to choose another task
(unknown location). This is outlined below:

while there are unexplored vertices
- choose one (closest) undelayed such vertex
- traverse to the location and sense the degree there
- identify potential confusing vertices based on degree
- compute the search tour length l
- decide (deterministically or probabilistically)
- if decide to accept

. drop the marker and search for the marker

. augment the known map accordingly
- else

. delay the task until some other task is accepted
end while

Experiments were conducted in which two robots ex-
plore a set of sample two-dimensional square lattices of
size 30×30 with 20% holes. 50 input graphs were gen-
erated (each with randomly located holes) for each condi-
tion. Each input graph was explored using both the de-
terministic and the probabilistic lazy approaches, as well
as the original exploration strategy described in [6, 7]. In
all cases the robots start at a randomly chosen location in
the graph and use a fixed rendezvous interval of 400 edge
traversals (see [7] for discussion of the effects of differ-
ent rendezvous intervals). For the deterministic approach,
each input graph was explored with different sample length
thresholds Lmax. For the probabilistic approach, each in-
put graph was explored with different values of the tuning
parameter k (ε = 0 is used for these tests). Performance
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Figure 3. Lazy exploration in the independent exploration phase. Error bars show the standard errors.

of the deterministic lazy approach versus the original ap-
proach is shown in Figure 3(a), which shows the average
cost of the lazy approach at each sample threshold Lmax,
together with standard errors. Average cost and standard
errors of the original approach on the same set of input
graph are also shown. Note that for the deterministic lazy
approach when the threshold Lmax is sufficiently large,
all disambiguation tasks are accepted and the lazy explo-
ration produces the same performance as the original strat-
egy. Performance of the probabilistic lazy approach versus
the original approach is shown in Figure 3(b). The average
cost of the lazy approach at each sample k, together with
standard errors are plotted. Performance of the original ap-
proach on the same set of input graph is also shown. Note
that when k is sufficiently small, p approaches 1 and all
tasks are accepted and therefore the lazy exploration pro-
duces the same performance as the original strategy.

Results show that in most cases the original algorithm
outperforms the lazy exploration algorithm. This should
not be of particular surprise as determining the value of ex-
pected search tour length can involve traveling to a chosen
unexplored vertex (to sense the degree information of the
vertex – before potential confusing vertices can be identi-
fied and search tour length computation and decision mak-
ing can be done). In the lazy algorithms this cost is often
wasted (i.e. when the task is delayed).

4.2 Lazy exploration in the merging phase

Unlike the situation in the independent exploration phase,
in the merging phase for each ambiguous (unmerged) place
– the known place in the other partial map – the robot re-
trieves degree information and hence an estimate of the
task (search) cost by examining the other partial map. The
robots keeps on selecting unmerged places without me-
chanical motion until some task is accepted.

while there are unmerged vertices
- choose one (closest) undelayed such vertex
- identify potential confusing vertices based on degree

- compute the search tour length l

- decide (deterministically or probabilistically)

- if decide to accept

. traverse to the location

. drop the marker and search for the marker

. augment the base map accordingly

- else

delay the task until some other task is accepted

end while

A similar set of experiments to those described above were
conducted, i.e., using both lazy approaches and original
strategy, two robots explored a set of 50 input graphs each
of which is a 30×30 two-dimensional lattice with 20% of
the vertices randomly removed. Results are shown in Fig-
ure 4(a)–(b). Both the deterministic and the probabilistic
approaches produce reduced average cost over the origi-
nal algorithm for many values of the tuning parameters k
and Lmax. For the deterministic algorithm the majority of
the threshold values give rise to better performance. For
the probabilistic algorithm the majority of the tuning pa-
rameter values produce better performance. This improved
performance is due to the fact that no mechanical cost is
required before accepting a task.

In the above experiments a fixed rendezvous intervals
was used for the robots. To further evaluate the effects of
lazy exploration in the merging process, another set of ex-
periments was conducted in which the ‘best’ threshold and
tuning parameter from the above experiments (Lmax = 50
and k = 0.01) were used and the same set of lattice hole
graphs were explored using both algorithms with varying
rendezvous intervals. Similar to the above experiments,
each condition (rendezvous interval) was repeated on 50 in-
put graphs. The results are shown in Figure 4(c)–(d). From
the results we can see that for the particular threshold Lmax

and parameter k, there is an improvement in performance
for the majority of the rendezvous intervals.
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6400

6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

400 500 600 700 800 900 1000 1100 1200

M
ec

ha
ni

ca
l C

os
t (

av
er

ag
e)

Rendezvous Intervals

Probabilistic Lazy Exploration
Original Exploration

(d) Probabilistic lazy exploration

Figure 4. Lazy exploration in the merging phase. Error bars plot standard errors.

5 Conclusion and future work

This paper describes a technique whereby mobile robot(s)
explore a graph-like world in a lazy fashion in which spe-
cific “hard” exploration tasks are put off to later steps, tak-
ing advantage of the fact that certain tasks can become eas-
ier as the known graph grows. Empirical results show that
the mechanical cost required in estimating the difficulty
of the disambiguation tasks has great impact on the per-
formance of lazy exploration.When incorporated into the
merging phase of the multiple robot algorithm in which the
estimate of task cost and hence the decision to accept or de-
lay the tasks can be made without mechanical motion, and
both the deterministic and probabilistic approach present
in this paper produce reduction in the cost over the origi-
nal algorithm for most of the cases. The same is not true
in the independent exploration phase where the mechanical
cost associated with estimating the task cost outweighs any
improvement associated with lazy exploration.

The lazy exploration technique in this paper repre-
sents our preliminary efforts towards intelligent computa-
tion in robotic topological exploration and mapping, and
suggests a number of possible directions for future re-
search. Current research includes further evaluation of lazy
strategy in the merging phase, conducted on more environ-
ments (graphs), and with larger groups of robots. Plan for
future work also includes developing heuristics to improve
the unsatisfactory performance of lazy strategy in the inde-
pendent exploration phase.
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