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Tree-Based Covariance Modeling
of Hidden Markov Models
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Abstract—In this paper, we present a tree-based, full covariance
hidden Markov modeling technique for automatic speech recogni-
tion applications. A multilayered tree is built first to organize all co-
variance matrices into a hierarchical structure. Kullback–Leibler
divergence is used in the tree-building to measure inter-Gaussian
distortion and successive splitting is used to construct the multi-
layer covariance tree. To cope with the data sparseness problem in
estimating a full covariance matrix, we interpolate the diagonal co-
variance matrix of a leaf-node at the bottom of the tree with the full
covariance of its parent and ancestors along the path up to the root
node. The interpolation coefficients are estimated in the maximum
likelihood sense via the EM algorithm. The interpolation is per-
formed in three different parametric forms: 1) inverse covariance
matrix, 2) covariance matrix, and 3) off-diagonal terms of the full
covariance matrix. The proposed algorithm is tested in three dif-
ferent databases: 1) the DARPA Resource Management (RM), 2)
the Switchboard, and 3) a Chinese dictation. In all three databases,
we show that the proposed tree-based full covariance modeling
consistently performs better than the baseline diagonal covariance
modeling. The algorithm outperforms other covariance modeling
techniques, including: 1) the semi-tied covariance modeling (STC),
2) heteroscedastic linear discriminant analysis (HLDA), 3) mix-
tures of inverse covariance (MIC), and 4) direct full covariance
modeling.

Index Terms—Automatic speech recognition, covariance mod-
eling, Gaussian mixture models, tree modeling.

I. INTRODUCTION

GAUSSIAN mixture continuous density hidden Markov
model (CDHMM) has become the predominant modeling

technique for large-vocabulary continuous speech recognition
(LVCSR) in the last decade or two. In CDHMM, typically
a large set of Gaussian kernels which are parameterized by
the corresponding means and covariance matrices need to
be estimated from the available training data. Normally, two
choices are taken for the covariance matrix in its parameteri-
zation: full or diagonal covariance matrix. The former choice,
by all means, is more correct than the latter one because it
does not assume null correlations between different feature
components as in the diagonal covariance [1]. However, due
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to the sparseness of training data, most off-diagonal elements
in the full covariance matrices cannot be estimated reliably. If
full covariance matrices must be used, we may have to greatly
limit the total number of Gaussian components in the system.
But when a smaller number of Gaussian components is used,
the resultant model may not be able to characterize the true
data distributions at an acceptable level of precision. On the
other hand, the obvious incorrect assumption of uncorrelated
components in the diagonal covariance modeling hampers the
recognition performance. Obviously, either approach has its
own limitation.

To improve the LVCSR performance, different approaches
have been proposed to cope with the above-mentioned prob-
lems. Essentially, they can be put into two categories: 1) to
de-correlate the features, or 2) to model the full covariance in
a more data efficient manner. In the first approach, linear trans-
formations has been extensively used to transform the original
speech features into new coordinates which are less correlated
than the original ones. For example, discrete cosine transfor-
mation (DCT) [2], linear discriminant analysis (LDA) [3]–[5],
Karhunen–Loeve transform (KLT) [3], heteroscedastic discrim-
inant analysis (HDA) [6], or more recently, maximum likelihood
linear transform (MLLT) [7], heteroscedastic linear discrimi-
nant analysis (HLDA) [8], [9], etc. Different criterions have
been adopted in finding the corresponding linear transformation,
including the following:

1) principal component analysis for DCT or KLT;
2) class discrimination maximization for LDA and HDA;
3) maximum likelihood criterion for MLLT and HLDA.

Also, since a single linear transformation is in general not ad-
equate to decorrelate the feature components in every HMM
state, multisubspace transformations are used in the semitied co-
variance (STC) modeling [12] and multiple HLDA (MHLDA)
[13] to alleviate this problem.

In the second category, where more data efficient covariance
modeling techniques are derived, typical schemes include the
block-diagonal covariance models [10], sparse inverse covari-
ance matrices [11], mixtures of inverse covariance (MIC) [14],
extended MLLT (EMLLT) [15], and the SPAM models (models
with a Subspace constraint on the Precisions And Means) [16].
In MIC, SPAM, and EMLLT, the full inverse covariance, or the
precision matrix, is represented as a linear combination of a set
of prototype precision matrices. Both the prototype precision
matrices and corresponding weights are estimated in the max-
imum likelihood sense.

The above taxonomy is artificial, and many algorithms actu-
ally combine both the decorrelation and full covariance mod-
eling in their modeling procedure.
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Fig. 1. Tree generated from the covariance matrix clustering.

In this paper, along the line of the linear combination of co-
variance matrices, we propose a tree-based covariance modeling
(TCM), where a tree structure is used to organize all covariance
matrices in a CDHMM hierarchically, and different amount data
sharing in estimation is built naturally into the tree. The bottom
layer, or the leaf nodes, of the tree corresponds to all Gaus-
sians used in the CDHMM, and the covariance matrix of each
Gaussian is obtained by linearly combining the diagonal covari-
ance matrix at the leaf node and all the full covariance matrices
of its parent and ancestors, all the way up to the root node. The
full covariance matrices in the upper layer of the tree are esti-
mated from the training data since more data are available than
the leaf-node. The linear interpolation coefficients are also esti-
mated from the data in the maximum likelihood sense.

The TCM provides a flexible framework and the linear inter-
polation of matrices can be performed in several different ways.
The interpolation can be done for either covariance or preci-
sion matrices. Alternatively, because the diagonal elements can
be reliably estimated, the interpolation can be also conducted
only to compensate the off-diagonal elements of the covariance
matrix, which represents correlation between different compo-
nents feature. This approach is called tree-based off-diagonal
compensation (TOC), which is experimentally found to yield
the best performance. We have evaluated the proposed TCM
strategy on the DAPRA resource management database [24],
the switchboard database [29], and a Chinese dictation data-
base [26]. Experimental results show that the TOC method can
achieve significant error reduction over the best diagonal covari-
ance models, and it also yields better performance than other ex-
isting covariance modeling methods, such as STC, HLDA, MIC,
and direct full covariance modeling.

The remainder of this paper is organized as follows. In
Section II, we present the key steps of our tree-based covariance
modeling. In Section III, we present how to build a hierarchical
tree-based structure in the covariance space. In Section IV, we
present reestimation of the full covariance matrices in the leaf
nodes. In Section V, we present the algorithm on estimating
the linear interpolation weights. In Section VI, the recognition

experimental setups and results are given. Finally, we conclude
the paper with a summary of results and discussions.

II. BRIEF SKETCH OF THE PROPOSED METHOD

First a brief sketch of our tree-based covariance modeling is
summarized in the following five steps, and detail procedure of
each step is elaborated in the next few sections.

1) Train a baseline Gaussian mixture state-tied triphone
HMMs with diagonal covariance matrices. We will keep
the mixture weights and mean vectors of the baseline
model set unchanged but modify the covariance matrices
in following tree-building steps.

2) Build a tree of full covariance starting from the root by
using all tied-states as base elements in tree-building.
After the tree is built, for each tied-state node we attach
all Gaussian components associated with it as its children,
as shown in Fig. 1.

3) Estimate a full covariance matrix for each non leaf node in
the tree from data belonging to all its children.

4) Each Gaussian covariance at a leaf node is linearly inter-
polated into a full covariance matrix in the maximum like-
lihood sense. The tree-based prototypes for linear interpo-
lation are the estimated covariance matrices of the nodes
along the upward path from the leaf node to the root node.

5) Replace the original diagonal covariance matrices in the
model set with the newly interpolated full covariance ma-
trices and then use them for recognition.

If necessary, we can also run the above TCM procedure iter-
atively. Based on the CDHMM set derived in step 5), we can
recollect statistics over the entire training corpus, reestimate the
initial CDHMMs, rebuild the hierarchical tree and reestimate
the interpolation weights based on the newly constructed tree.

III. TREE-BASED COVARIANCE STRUCTURE

In this section, we explain how to build a tree-based covari-
ance structure for a set of state-tied triphone CDHMMs. The
tree-based structure of sharing HMM parameters is not new
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in speech recognition and has been used for the purpose of
HMM adaptation for years [18]–[20]. However, most of pre-
vious works are focused on building a tree structure to organize
the mean vectors in HMMs. In contrast, in this paper, we are in-
terested in how to build a similar tree structure but merely based
upon the covariance matrices.

In Fig. 1, we illustrate the tree-based covariance struc-
ture. Each leaf node stands for a Gaussian component in the
CDHMM set. The layer just above the Gaussian components
is the tied-state layer. We use tied-states as base elements in
tree-building since the training data for each Gaussian com-
ponent may not be enough for a reliable estimation of a full
covariance matrix. Standard data-driven clustering approach is
applied on the tied-states to build a hierarchical tree from the
root node. First, we build root node and assign all tied-states
to the root. Then, we recursively split each node into different
child nodes. After the tree is built, for each tied-state node at
the bottom layer we attach all Gaussian components as another
layer.

A. Initial Estimation of Gaussians

The HMM state output probability density function (pdf) pa-
rameter set is defined as , where

denotes the th tied-state output pdf, and it is modeled as a
Gaussian mixture model. It is parameterized as

where is an observation of speech feature vector, is the
mixture weight of th Gaussian component, and and
are the corresponding mean vector and the covariance matrix of
the th Gaussian component, respectively. The pdf of the th
Gaussian component is

(1)

where is the dimension of the feature space.
Initially, all of the triphone CDHMM parameters are esti-

mated via the conventional Baum–Welch algorithm with a de-
cision-tree-based, state-tying strategy. The standard estimation
formula of the Gaussian mean is

(2)

where is the th observation vector and , the prob-
ability that belongs to the th Gaussian component in the

th state. Similarly, the corresponding full covariance matrix,
, is estimated as

(3)

where denotes the transpose of a vector.
However, due to the data sparseness, most of the full covari-

ance matrices of Gaussian components cannot be reliably esti-
mated. We use tied-states as base elements in tree-building, and
a Gaussian pdf is used to represent each tied-state. The mean
vector and the full covariance matrix
of the th tied-state are estimated with the observation vectors
associated with the state, i.e.,

(4)

(5)

where is the probability that belongs to the th state.
The weight of the th tied-state node is computed as

(6)

B. Hierarchal Tree Building

Here we use the standard top-down, data-driven clustering ap-
proach on all tied-states in the CDHMM set. Two key compo-
nents in the clustering algorithm, namely, the distortion measure
between any two Gaussians pdf’s and the corresponding cen-
troid of a cluster are given as follows.

1) Distortion Measure: We need to first define a distortion
measure between any two given Gaussian pdf’s,

and . Here, the
distortion measure between them is calculated as the symmetric
Kullback–Leibler divergences between to .
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TABLE I
OVERVIEW OF CLUSTERING ALGORITHM

Since only the covariance clustering is of our primary interest,
we ignore the distance associated with the means. By removing
parts relevant to the means and constants, the distortion measure
between two equal mean Gaussians is then

(7)

2) New Centroid Gaussian: At each node in a tree structure,
if a collection of Gaussians is clustered into
a group associated with a node , the centroid is also represented
as a Gaussian pdf . The mean and
covariance are estimated by

and the equation at the bottom of the page, where
is the weight of the th tied-state node defined by (6). ,
and are the within-class and between-class covariance,
respectively. Again, since only the covariance is of our primary
interest, the distortion between the Gaussian means, or the be-
tween-class covariance, , is ignored. The new centroid
covariance matrix for the cluster is then

(8)

The weight of the new node is calculated by

3) Tree Building Algorithm: The clustering algorithm shown
in Table I is used to construct a tree structure. The meanings of
the parameters are as follows:

1) : the number of children nodes of each node in the tree;
2) : the threshold for splitting;
3) : the tree structure, contains the parent-children relation-

ship of all nodes, the weight and covariance matrix of each
node;

4) : the set of tied-states for splitting;
5) : the set of current centroids.
First, we build the root node and assign all tied-states to the

root. Second, we call recursion function to build the tree
structure and calculate the covariance of each node. Third, for
each tied-state node at the bottom layer we attach Gaussian com-
ponents as another layer.

The overview of function is shown in Table II. We
first choose the tied-states that have largest distance as initial
centroids, and repeat the -mean procedure until the total dis-
tance converges. After assigning the tied-states to different cen-
troids, we call for each centroid to do clustering with
new tied-state subset.

In this paper, no attempt has been made to optimize the two
thresholds values of and , though various schemes, such
as BIC [22] can be used to determine their optimal values.

IV. TREE-BASED COVARIANCE MODELING

After the tree is built, for those nodes in the lower level of the
tree, we may have to use a more constrained covariance matrix,
like a diagonal or block diagonal matrix, due to the data sparse-
ness problem. However, for the nodes in the upper level of the
tree, we will be able to reliably estimate the full covariance ma-
trices since a large amount of training data usually is available.
In this tree, each intermediate node represents a cluster of Gaus-
sians of its children and is parameterized by a single full covari-
ance matrix calculated in (8) as a by-product from clustering.
For Gaussian components in leaf nodes, full covariance matrices
estimated (3) are not reliable in most cases due to data sparse-
ness. However, if we follow a path in the tree upward from the
leaf to the root node, we will have a sequence of full covariance
matrices which can be used to improve the covariance estima-
tion of the leaf node. Following the idea of linear combination
in [14], for each Gaussian in leaf node we can linearly inter-
polate all covariance (or inverse covariance) matrices along the
upward path to root to estimate the full covariance (or inverse
covariance) matrix for current node. This approach is named as
Tree-based Covariance Modeling (TCM). In contrast to MIC
and EMLLT in [14] and [15] that use global prototypes which
are shared among all the Gaussian components, we use different
prototypes for different Gaussian components in the TCM.

For the Gaussian component in the th leaf node, we denote
the set of all intermediate nodes along the upward path from this
node to the root as

's parent and all its ancestors (9)
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TABLE II
OVERVIEW OF RECURSIVE FUNCTION SPLIT () FOR CLUSTERING

TCM provides a flexible framework for full covariance
modeling. The linear interpolation can be performed in sev-
eral slightly different ways, which results in following three
different covariance modeling schemes.

A. Tree-Based Mixture of Inverse Covariance Modeling
(TMIC)

As demonstrated in [14], the interpolation can be done in
terms of the inverse covariance matrix, also known as the pre-
cision matrix. The interpolation of inverse covariance matrices
results in faster calculation in Gaussian likelihood function since
the matrix inversion can be avoided. The estimated inverse full
covariance for the Gaussian component is defined as

(10)

where denotes the diagonal matrix of , , and
denote all the combination weights for the Gaussian ,

and is defined in (9), and is the full covariance
matrices of node and is calculated in (8). This method is called
tree-based mixture of inverse covariance modeling (TMIC) in
this paper.

B. Tree-Based Mixture of Covariance Modeling (TMC)

Alternatively, the linear matrix interpolation can be directly
done in the domain of covariance matrix. In this case, a full co-
variance matrix is calculated for the th Gaussian compo-
nent as

(11)

where and denote another set of combination
weights. This method is named as tree-based mixture of covari-
ance modeling (TMC) hereafter.

C. Tree-Based Off-Diagonal Compensation (TOC)

In a leaf node, the covariance matrix consists of two parts of
information: the diagonal or variance information and the off-di-
agonal components representing the correlation among different
feature dimensions. Generally speaking, the diagonal compo-
nents can be reliably estimated from a relatively small amount of
data, but the off-diagonal or the correlation information cannot
be reliably estimated without a large amount of data. This obser-
vation motivates us to keep the diagonal elements intact as ini-
tially estimated and use the tree-based interpolation to compen-
sate only the correlation information of all off-diagonals compo-
nents. We shall name this method tree-based off-diagonal com-
pensation (TOC).

In TOC, for each Gaussian component in a leaf node, the
off-diagonal components of covariance matrices of all the nodes
along the upward path from this leaf node to the root are used
to compensate the off-diagonal components of covariance ma-
trix based on the linear combination strategy. In TOC, the full
covariance of Gaussian component is estimated as

(12)
where the diagonal elements are kept intact in the
interpolation, and the off-diagonal terms are interpolated by

in TOC.

D. Tree-Based Inverse Covariance Off-Diagonal
Compensation (TIOC)

Because interpolation in inverse covariance space has a com-
putational advantage during decoding, we can also extend the
off-diagonal compensation to the inverse covariance space. We
keep the diagonal of inverse covariance unchanged and compen-
sate only the off-diagonal of inverse covariance. We name this
method tree-based inverse covariance off-diagonal compensa-
tion (TIOC).
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In TIOC, for each Gaussian component in a leaf node, the
off-diagonal components of inverse covariance matrices of all
the nodes along the upward path from this leaf node to the root
are used to compensate the off-diagonal components of inverse
covariance matrix based on the linear combination strategy. The

full inverse covariance of Gaussian component is esti-
mated as

(13)
where the diagonal elements are kept intact in the
interpolation and the off-diagonal terms are interpolated by

in TIOC. Note that may be singular, in this case
we use instead of in TIOC.

V. MAXIMUM LIKELIHOOD ESTIMATION

OF INTERPOLATION WEIGHTS

No matter which TCM modeling scheme is used, we need
to estimate the interpolation weights for all Gaussian compo-
nents to derive the full covariance matrices. In this paper, we
adopt the maximum likelihood estimation (MLE) method for
this purpose, as in [14]. For simplicity, we assume all covari-
ance matrices attached in tree nodes are kept unchanged once
the tree is built. We further assume that all mean vectors of the
CDHMM set are initially estimated as in (2) and remain un-
changed. Under these assumptions, the likelihood function of
the CDHMM covariance matrices can be cast as a function of
all unknown interpolation weights. All unknown interpolation
weights are estimated to maximize the likelihood function of
the whole training set. However, due to the hidden parameter
problem in the underlying CDHMMs, this maximum likelihood
estimation problem cannot be easily solved in a direct way.
Thus, we adopt to use the generalized expectation–maximiza-
tion (GEM) algorithm to derive maximum likelihood estimation
of the unknown weights iteratively. Let’s denote the interpola-
tion weights for the th Gaussian as
and all interpolation weights for the whole model set as

is Gaussian in the model set .

A. E-Step

As in [14], the auxiliary function can be written as

(14)

where and are the old and new estimated model, respec-
tively, the total number of Gaussian components in the
CDHMM set, is the Gaussian occupation, is the initial
full covariance matrix estimated in (3), and is the new
full covariance matrix to be estimated for the th component
by using one of the above tree-based covariance modeling
schemes, i.e., (10) for TMIC, (11) for TMC, or (12) for TOC.
Obviously, the new covariance matrix is a function of
the interpolation weights of the th Gaussian component,
i.e., . Thus, the auxiliary function is a function of all
interpolation weights .

For the th Gaussian component, the interpolation weights
are independent from those of other Gaussian components.

Hence, the optimization problem of the whole model in (14)
can be equivalently decomposed into small optimization
problems

where

(15)

Therefore, for , we optimize the subauxil-
iary function to derive the interpolation weights for
Gaussian .

B. M-Step

The unknown interpolation weights are updated to maximize
the auxiliary function. In other words, for ,
is updated as

The maximization is conducted subject to the constraint that
the interpolated full matrix must be a valid covariance
matrix in a Gaussian distribution, i.e., positive definite. Ob-
viously, the above constrained maximization problem cannot
easily solved in a closed-form but an iterative solution. In this
paper, we use the quasi-Newton method [23] to optimize .
The quasi-Newton method gradually builds up an approximate
Hessian matrix by using gradient information from some or
all of the previous iterations. In the th step, the weights
are updated based on the gradient of the subauxiliary function

where is the Hessian matrix calculated by

where

and .

The gradient of the objective function of three
covariance modeling scheme is given in Appendix I. We can
guarantee that the subauxiliary function is mono-
tonically nondecreasing from one iteration to the next. There-
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fore, the above optimization process, known as generalized EM
(GEM) algorithm, will eventually converge to a local maximum
of .

C. Constraint of Interpolation Weights

Note that unlike the case of mixtures of densities, the weights
are not constrained to sum to one or even to be positive. A valid
covariance matrix must be symmetric and positive definite. To
make it invertible, all eigen values need to be positive. Thus, we
constrain the minimum eigen value of the interpolated matrix to
be positive in the optimization process, i.e.,

(16)

VI. EXPERIMENTS

The initial investigation of the proposed algorithm is evalu-
ated on medium-to-large vocabulary speech recognition tasks.
Our algorithms are compared with standard HLDA, STC and
MIC in three different database: 1) the DARPA Resource Man-
agement, 2) the Switchboard minitrain, and 3) a Chinese dicta-
tion.

A. Resource Management Database

1) Experiment Setup: In this part of experiments, a standard
medium-size vocabulary (994 words) speech recognition task
in the DARPA Resource Management (RM) [24] database,
is tested. Speaker-independent HMMs were trained using the
NIST/RM SI-109 training set consisting of 3990 utterances
from 109 native American talkers (31 females and 78 males),
each providing 30 or 40 utterances. Among these, 11 files
on the CD-ROM have a long series of identical time-domain
samples were removed. The speech signal is sampled at 16
kHz and the analysis frames are 25 ms wide and shifted every
10-ms overlap. A 39-dimensional feature vector, including
12 mel-scale frequency cepstral coefficients (MFCC), log
energy, and their first- and second-order time differences, was
extracted.

We build our training system with the hidden Markov
model toolkit (HTK) [25]. The training begins with a flat
start single Gaussian mixture component monophone system.
The total number of monophone is 47. After four iterations
of Baum–Welch training, the monophone models are cloned
to produce a single mixture component triphone system. The
word-internal triphone models are used. These initial triphone
models are trained with two iterations of embedded training
after which a decision-tree clustering is applied to produce
a tied state triphone system. The baseline HMM system is
produced by standard iterative mixture splitting using four
iterations of embedded training after each mixture increase.
Finally, a mixture of six Gaussian mixture components with
diagonal covariance matrices is trained for each tied-state as
the baseline model. This gave a total of about 1600 tied states
and 9600 distinct Gaussian densities.

A total of 1199 sentences {feb89, oct89, feb91, sep92} (one
sentence corrupted with long series of identical time-domain
values is removed) is used for evaluation. The word error rate
(WER) of the baseline system is 4.09%.

TABLE III
COMPARISON OF WER BETWEEN NONTREE-BASED PROTOTYPES

AND TREE-BASED PROTOTYPES ON RM DATABASE

2) Tree-Based Prototypes: In this experiment, we compare
the performance between global prototypes and our proposed
tree-based prototypes. As for the nontree-based global pro-
totypes, we first build a fixed number of prototype matrices
which are shared among all Gaussian components, as in MIC
[14], SPAM [16], and others. The results are shown in Table III.
The first column lists the covariance estimation equation. The
second and the third column are word error rate of linear
combination for global prototypes and tree-based prototypes,
respectively. The number of global prototype is 39. Note that if
we do linear combination in inverse covariance space and use
global prototypes, it is equivalent to the MIC [14] algorithm.

By comparing the results in the second and the third column
for each row, we can see that no matter which linear combina-
tion algorithm is used, the tree-based prototypes yields better
performance than the global prototypes. These results demon-
strate that our tree-based modeling approach is effective.

By comparing the results in the second and the third rows,
we can see that linear combination in covariance space leads to
a higher WER, which means the linear combination with inverse
covariance prototypes is more preferable. However, if we only
compensate the off-diagonal parameters of the full covariance
matrix, or the TOC interpolation, the performance is even much
better than TMIC. This indicates that we should not change
the diagonal variances, which are already reliably estimated, in
the covariance interpolation process. This partial compensation
takes advantage of robustly estimated diagonal parameters and
compensates only the off-diagonal terms and yields the best per-
formance. Although TIOC has computation complexity advan-
tage, its performance is not as good as that of TOC. The possible
explanation is that in (13) we need to calculate , and
when mixture number is high does not have sufficient train
data for a reliable estimation, in this case is a good
estimation as .

3) Selection for Tree Growing: In the
tree-building algorithm, each node is spitted into child
nodes until the weight of the node smaller than . Our experi-
ments show that the recognition results are less sensitive to
than to . The results of different are shown in Table IV.
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TABLE IV
COMPARISON OF WER BETWEEN TOC WITH DIFFERENT CHILDNODES

THRESHOLDS ON RM DATABASE

TABLE V
COMPARISON OF WER AMONG STC, HLDA, MIC, AND

TOC ON RM DATABASE

From the table, there is a big recognition performance im-
provement from to , but no significant WER
difference for .

4) Compared With Other Related Techniques: We also com-
pare our TOC modeling scheme with other existing covariance
modeling techniques, such as STC, HLDA, and MIC. The re-
sults are shown in Table V. Both STC and HLDA are evaluated
with one global transformation and multiple transformations. In
multiple linear transformations STC and HLDA, the assignment
of component to transform class is determined by which mono-
phone state the component belongs to. The transformations of
STC and HLDA are estimated directly using the nonlinear op-
timization scheme. For HLDA, we project the original 39 di-
mension features to 30 dimension features, and this projection
reduce the number of model parameter by approximately 25%.

From Table V, we can see that all the covariance modeling
techniques can achieve better performance than the baseline
diagonal covariance model set, and among them, TOC is the
best. We conjecture that by separating the full covariance mod-
eling into diagonal and nondiagonal terms, best balance between
training data efficiency and estimation robustness is achieved in
the TOC method.

5) Compared With Standard Diagonal Model With More
Mixture: In Fig. 2, we first show the recognition performance
(in WER) of several diagonal models as a function of their
number of mixture components in each tied-state. We increase
the mixture number from six in the baseline model set up to
12. When the number of mixture components reaches eight
(the error rate is 4.00%), the WER reduction compared with
the baseline is only 1.96%. This shows that no significant im-
provements can be obtained by simply increasing the number
of diagonal Gaussians. We also plot the TOC’s performance in
the figure as a reference point. It is clear that from the figure the
TOC yields much better performance than all diagonal models.

Fig. 2. Performance comparison between TOC and diagonal models with in-
creasing number of mixtures on RM database.

It is worth to mention that the six mixtures full covariance
matrices cannot be directly trained from data using (3) because
the data is insufficient to reliably estimate large amount of pa-
rameters and the full covariance matrices are singular.

B. Switchboard Minitrain Database

1) Experiment Setup: In this part of experiments, the Switch-
board minitrain database is used as our recognition task, which
contains 23 hours training data. The speech signal is 8-kHz tele-
phone data and the analysis frame is 25-ms long and shifted
every 10 ms. For each frame, a 39-dimensional PLP feature
vector is extracted, which consists of a 12 PLP static features,
log energy, and their first and second order time difference. To
reduce the effect of speaker variation on speech recognition re-
sults, mean and variance normalization is applied.

Position-dependent phone-set is used. The phone positions
are defined as the beginning, the middle, and the ending of the
word, or a single word phone. The total number of monophone
is 170. The baseline is a decision-tree clustered tied state tri-
phone HMM system. The training begins with a flat start single
Gaussian mixture component, monophone system. The mono-
phone models are cloned to produce a single mixture component
triphone system. These initial triphone models are trained with
four iterations of embedded training after which a decision-tree
clustering is applied to produce a tied-state triphone system. The
baseline HMM system is produced by standard iterative mix-
ture splitting using four iterations of embedded training after
each mixture increase. Finally, 12 Gaussian mixture compo-
nents with diagonal covariance matrices are trained as the base-
line model for each tied-state. This gave a total of 1978 tied
states and about 23 k distinct Gaussian densities.

NIST’s Hub-5 2000 conversational telephone speech corpus
(Eval2000) is used as the testing corpus. The data comes from
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TABLE VI
COMPARISON OF WER BETWEEN NONTREE-BASED PROTOTYPES AND

TREE-BASED PROTOTYPES ON SWITCHBOARD DATABASE

switchboard-like conversations. The decoding dictionary con-
tains more than 20 K words, and an trigram language model is
used with the Hapivite [28] decoder for recognition.

2) Tree-Based Prototypes: Like the RM database, we com-
pare the performance between global prototypes and our newly
proposed tree-based prototypes on Switchboard minitrain data-
base. The results are shown in Table VI.

We can draw similar conclusion as we did in Table III: the
tree-based prototypes perform better than the global prototypes.
TOC performs the best. However, the relative improvement is
smaller than that in the RM database. This may due to the fact
that the test database is a spontaneous speech database and more
versatile modeling is needed than just the covariance modeling.

3) Compared With Other Related Techniques: We compared
TOC with other covariance modeling techniques, such as HLDA
and STC, and MIC. The results are shown in Table VII.

From the table, we can also see that among all these tech-
niques, the TOC still gives the best performance. Compared
to the 38.00% baseline WER, MIC can achieve 36.50% WER,
and it has 3.94% relative error reduction. Our TOC can achieve
35.90% WER, and it has 5.53% relative error reduction, which
is higher than STC, HLDA, and MIC. Again, the spontaneous
nature of the database hampers the effectiveness of all covari-
ance modeling technique.

C. Chinese Dictation Task

1) Experiment Setup: In this section, the above TMC mod-
eling scheme is evaluated on a Chinese dictation task. A total
of 49 k sentences from 250 speakers (totally 75 h) recorded in
a clean environment was used for training. The baseline system
is the MSRA Mandarin Speech Toolbox [26]. It is a gender-
independent, cross-word triphone mixture Gaussian tied-state
HMM system. In this model set, all the speech models have
three emitting states, left-to-right topology. The silence model
was a fully connected three emitting state model used to rep-
resent longer periods of silence. The speech signal is 16 kHz
sampled and the analysis frames are 25-ms wide with a 10-ms

TABLE VII
COMPARISON OF WER AMONG STC, HLDA, MIC, AND

TOC ON SWITCHBOARD MINITRAIN DATABASE

shift. For each frame, a 39-dimensional feature vector, including
12-dimensional cepstral coefficients, log energy, and their first-
and second-order time differences, was extracted. The base-
line system training begins with a flat single Gaussian mix-
ture component monophone system. The total number of mono-
phone is 97. A decision-tree clustering is used to create 5114
speech tied-states. The baseline HMM system is produced by
standard iterative mixture splitting using four iterations of em-
bedded training per mixture configuration. Finally, 36 Gaussian
mixture components with diagonal covariance matrices are used
as the baseline model. This gives a total of 5114 tied states and
184 k mixture components.

A total of 500 sentences from 25 speakers are used for free
syllable loop. The speakers are different with those in the
training set and no speaker adaptation was performed here.
The error rate of Chinese character of the baseline system is
19.54%.

2) Tree-Based Prototypes: We compare the performance be-
tween nontree-based global prototypes and our newly proposed
tree-based prototypes on the Chinese dictation database. The re-
sults are shown in Table VIII.

It is shown again here that for all combination algorithms
tried, the tree-based prototypes are always better than the non-
tree-based global prototypes. Also, TOC yields the best perfor-
mance.

3) Compared With Other Related Techniques: We compare
the TOC with other existing covariance modeling techniques,
such as HLDA and STC. The results are shown in Table IX. Dif-
ferent with that in RM database, for the best results of multiple
linear transformations STC and HLDA, the assignment of com-
ponent to transform class was determined by which tied-state
the component belongs to. If Gaussian component belongs to
different tied-state, they have different STC and HLDA linear
transformation matrices for decoding likelihood calculation. For
our system, we have 5114 tied-states, so the total number of
linear transformation is 5114. We use more classes on this data-
base because more data is available for reliably estimating more
STC and HLDA linear transformation matrices. From the table,
we can also see that among all these techniques, the TOC still
gives the best performance.

4) Compared With Diagonal Model With More Mixtures: In
Fig. 3, we show the recognition performance (in SER) of several
diagonal model sets as a function of their mixture numbers in
each tied-state. It shows that it cannot significantly improve the
performance over our baseline model by simply increasing the
number of diagonal Gaussian mixtures. The TOC yields much
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TABLE VIII
COMPARISON OF SYLLABLE ERROR RATE (SER) BETWEEN NONTREE-BASED

PROTOTYPES AND TREE-BASED PROTOTYPES ON CHINESE

DICTATION DATABASE

TABLE IX
COMPARISON OF SER AMONG STC, HLDA, MIC, AND

TOC ON CHINESE DATABASE

better performance than the diagonal model set with even larger
number of mixtures.

5) Compared With Standard Full Covariance Model: In
many cases, we have a choice to directly train a full covariance
matrix system. In these cases, we usually cannot estimate a full
covariance matrix system with the same number of Gaussians
as a diagonal covariance system. With the increased mixture
number, the training samples that belong to each mixture com-
ponent will decrease. If the training sample is not enough, the
full covariance estimated with (3) cannot be reliably estimated,
or even singular. If full covariance matrices must be used,
we have to limit the total number of Gaussian components
in the system. However, when a smaller number of Gaussian
components is used, the resultant model may not be able to
characterize the true data distributions at an acceptable level
of precision. One possible solution is to mix full covariance
matrices with diagonal covariance matrices; for those compo-
nents with inadequate training samples, we resort to diagonal
covariance matrices and for those components with sufficient
training data, we use full covariance matrices.

Comparing to the directly trained full covariance system,
our tree-based covariance modeling provides a framework
to reliably estimate full covariance models which can have
the same level of mixture numbers as the standard diagonal
covariance models. If train data is enough for training a full

Fig. 3. Comparison between TOC and diagonal models with increasing
number of mixtures on Chinese database.

TABLE X
COMPARISON OF SER WITH STANDARD FULL COVARIANCE SYSTEM

covariance system of certain mixture number per tied-state,
it will be enough for training a diagonal covariance system
with much higher mixture number. Our TOC method starts
with the diagonal covariance system and only compensates
the off-diagonal system, and it will generate a full covariance
system which has the same number of Gaussian mixtures as
that of diagonal covariance baseline.

We compare our TOC approach with the directly trained
full covariance model on Chinese dictation task. The results
are shown in Table X. Using the training data, we can train
a full covariance system with three mixtures per state. We
cannot directly train a full covariance system with four mixture
components because a large number of full covariance matrices
estimated from (3) becomes singular. Using the mixture of
full and diagonal covariance, i.e., and backing up to diagonal
covariance if the estimated full covariance is singular, we can
increase the mixture component up to 36. From the results,
we can see that our TOC clearly outperforms the direct full
covariance modeling method.

D. Computational Complexity

The strong benefit of STC, HLDA, and MIC is that their com-
putation complexity during decoding is close to that of diagonal
covariance system. Although our tree-based covariance mod-
eling approaches perform better than other covariance modeling
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TABLE XI
SUMMARY OF WORD ERROR REDUCTION BETWEEN TOC AND THE DIAGONAL COVARIANCE BASELINE

techniques, the computation cost during decoding is higher. In
this section, we discuss the computation complexity problem.

Here, we list the computation cost for different approaches.
We denote feature dimension as , the tied-state number as ,
the number of mixture components of each tied-state as , and
the feature frame as . For decoding without pruning, we com-
pute the likelihood for every different frame-state pair.

1) For baseline diagonal model, the computation cost is on the
order of additions and multiplications. The

is the cost of calculating (1), which needs mul-
tiplications and additions for calculating the likelihood
of each Gaussian component.

2) For STC and HLDA system, the cost is on the order of
additions and multiplica-

tions, where is number of transformation matrices. The
front-end overload is that we need to apply the
linear transformations to feature vector before calculating
the likelihood. In STC and HLDA system with global
linear transformation, this overhead is marginal and can
be ignored. With the increase of , the overhead is con-
tinuously increased.

3) For MIC system, the cost is on the order of
additions and multiplications,

where is number of global prototypes. The overhead is
on computing the likelihood of the observation frame and
the MIC prototypes.

4) For TMIC and TIOC system, the cost is on the order of
additions and

multiplications, where is number of parent nodes that
Gaussian leaf nodes belong to and is equal to the layers of
the tree, and is number of root node and all middle layer
nodes. Because we use more prototypes, the computation
cost is higher than MIC.

5) For TOC system, the cost is on the order of
additions and multiplications. This is equiv-

alent to a full covariance system. Because the interpolation
is made in covariance space instead of inverse covariance
space, we cannot take advantage of computation saving in
decoding.

From the above analysis, we can see that although the de-
coding performance of TOC is better than STC and MIC, the
major drawback of the TOC is its computational complexity
in decoding with the full covariance models. There exists one
possible way of improving the decoding speed. In [30], full co-
variance decoding is based on the Cholesky decomposition of
the inverse covariance matrix. This allows pruning the likeli-
hood computation for a mixture component as soon as the par-
tial sum across dimensions falls below a threshold. Second, A
hierarchical Gaussian evaluation is described in [31]. By com-
bining these two approaches, the decoding time for full covari-
ance models has been sped up to is brought down to 3.3 times

real-time without loss in accuracy [30]. This approach can be
similarly applied on our TOC algorithm for faster decoding.

As far as the training time is concerned, our proposed TOC
is faster than standard MIC because interpolation weights es-
timation can be cast into a decomposed rather than large joint
optimization procedure.

In general, the TIOC scheme is recommended for building
a fast system, and the TOC method is the choice to achieve
the best recognition performance with sacrificing decoding ef-
ficiency.

VII. CONCLUSION

In this paper, we propose a tree-based covariance modeling
(TCM) algorithm to estimate full covariance matrices of HMMs
for speech recognition applications. In this TCM framework, we
also derive four linear combination methods, namely, tree-based
mixture of inverse covariance (TMIC), tree-based mixture of co-
variance (TMC), tree-based off-diagonal compensation (TOC),
and tree-based inverse covariance off-diagonal compensation
(TIOC) to interpolate the full covariance matrices. We evaluate
our tree-based schemes on three different ASR tasks, and the re-
sults of our TOC compared to the diagonal covariance baseline
is summarized in Table XI.

Based on experimental results, we have found the following.
1) For all linear combination algorithms tested, the tree-based

covariance prototypes performs better than the nontree-
based global prototypes in ASR.

2) The diagonal terms of covariance matrix which are the
most reliably estimated parameters in a full covariance ma-
trix should not be changed.

3) TOC yields best performance when compared with other
full covariance modeling methods.

APPENDIX

In the numerical optimization method, we need to calculate
gradient of the objective function with respect to
unknown interpolation weights . In the following, we derive
the formula to compute gradient for each of the above tree-based
covariance modeling schemes.

1) TMIC: The gradient of the first part of (15) is

and the gradient of the second part of (15) is
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Combine above two equations, the gradient of the objective
function is

2) TMC: The gradient of the first part of (15) is

and the gradient of the second part of (15) is

Combine above two equations, the gradient of the objective
function is

3) TOC: The gradient of the first part of (15) is

and the gradient of the second part of (15) is

Combine above two equations, the gradient of the objective
function is

4) TOIC: The gradient of the first part of (13) is

and the gradient of the second part of (13) is

Combine above two equations, the gradient of the objective
function is
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