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Solving Large-Margin Hidden Markov Model
Estimation via Semidefinite Programming

Xinwei Li and Hui Jiang, Member, IEEE

Abstract—In this paper, we propose to use a new optimiza-
tion method, i.e., semidefinite programming (SDP), to solve the
large-margin estimation (LME) problem of continuous-density
hidden Markov model (CDHMM) in speech recognition. First, we
introduce a new constraint for LME to guarantee the bounded-
ness of the margin of CDHMM. Second, we show that the LME
problem subject to this new constraint can be formulated as an
SDP problem under some relaxation conditions. Therefore, it can
be solved using many efficient optimization algorithms specially
designed for SDP. The new LME/SDP method has been evaluated
on a speaker independent E-set speech recognition task using
the ISOLET database and a connected digit string recognition
task using the TIDIGITS database. Experimental results clearly
demonstrate that large-margin estimation via semidefinite pro-
graming (LME/SDP) can significantly reduce word error rate
(WER) over other existing CDHMM training methods, such as
MLE and MCE. It has also been shown that the new SDP-based
method largely outperforms the previously proposed LME opti-
mization methods using gradient descent search.

Index Terms—Continuous-density hidden Markov models
(CDHMMs), convex optimization, large-margin classifers,
large-margin hidden Markov models, semidefinite program-
ming (SDP).

I. INTRODUCTION

RECENTLY, it has been shown that discriminative training
techniques, such as maximum mutual information (MMI)

and minimum classification error (MCE), can significantly im-
prove speech recognition performance over the conventional
maximum-likelihood (ML) estimation. More recently, we have
proposed large-margin HMMs for speech recognition [13], [15],
[16], [20], where continuous-density hidden Markov models
(CDHMMs) are estimated based on the principle of maximizing
the minimum margin. From the theoretical results in machine
learning [27], a large-margin classifier implies good general-
ization power and generally yields much lower classification
errors in unseen test data. Readers can refer to [13] for a de-
tailed survey about previous relevant works to apply machine
learning methods to automatic speech recognition (ASR). As
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in [15] and [16], large-margin estimation (LME) of CDHMM
turns out to be a constrained minimax optimization problem.
As opposed to hidden Markov support machine in [2] and Max-
Margin Markov Network ( -net) in [24], LME of CDHMM
cannot be formulated as a relatively simple quadratic program-
ming (QP) problem due to the involved quadratic constraints.
In the past few years, several optimization methods have been
proposed to solve LME, such as iterative localized optimiza-
tion in [15] and constrained joint optimization method in [13]
and [16]. Although the constrained minimax problem in con-
strained joint optimization method can be converted into an un-
constrained minimization problem by casting the constraints as
penalty terms in objective function as in [13] and [16], it remains
as a nonlinear and nonconvex optimization problem. For general
nonconvex optimization problems, searching global optimum
is very difficult, especially in a high-dimensionality space. The
steepest gradient descent method used in [13] and [16] can only
lead to a locally optimal solution which highly depends on the
initial models used for the optimization. And the gradient de-
scent search can be easily trapped into a shallow local optimum
when the objective function is jagged and complicated. More-
over, the gradient descent search is hard to control in practice
since there are a number of sensitive parameters we need to man-
ually tune for various experimental settings, such as the penalty
coefficients and step size and so on. Besides, another closely
related work on large-margin estimation of HMMs has been re-
cently reported in [22].

In this paper, we propose to use a better optimization method
for LME of CDHMM in speech recognition. First of all, we
introduce a new constraint to bound the margin of CDHMM
in LME. Under this new constraint, the LME problem can
be easily converted into a semidefinite programming (SDP)
problem under some relaxation conditions. In this way, we
are able to take advantage of many efficient SDP algorithms
[6], [7], [9], [17], [23], [26] to solve the LME of CDHMM
for speech recognition. SDP is an extension of linear pro-
gramming (LP), and most interior-point methods [17] for LP
can be generalized to solve SDP problems. As in LP, these
algorithms possess polynomial worst case complexity under
certain computation models, but they usually perform very
well in practice in terms of efficiency. More importantly, these
algorithms can lead to the globally optimal solution since SDP
is a well-defined convex optimization problem. In this paper,
large-margin CDHMMs estimated with the proposed SDP
optimization method are evaluated on a speaker independent
E-set speech recognition task using the ISOLET database and
a connected digit string recognition task using the TIDIGITS
database. Experimental results show that the newly proposed
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SDP method is very effective in terms of recognition accuracy
and optimization efficiency. The SDP-based optimization yields
significantly better performance than the previously proposed
gradient descent-based methods in [13], [15], and [16]. With
the SDP-based optimization method, the LME models achieve
0.53% in string error rate and 0.18% in word error rate (WER)
on the TIDIGITS task, which is one of the best results ever
reported on this task.

The remainder of this paper is organized as follows. First of
all, in Section II, we will briefly review the large-margin estima-
tion criterion for HMM. Next, in Section III, a new constraint
is introduced for large-margin estimation to bound margin of
CDHMM. Then, we will present how to convert the constrained
minimax problem in LME into an SDP problem under some
relaxation conditions in Section IV. Experimental results on
the ISOLET and TIDIGITS databases will be reported and dis-
cussed in Section V. At last, we will conclude the paper with
our findings in Section VI.

II. LARGE-MARGIN HMMS FOR ASR

As in [13], the separation margin for a speech utterance
in a multiclass classifier can be defined as

(1)

where denotes the set of all possible words or word sequences,
or denotes the concatenated HMM representing a word

or word sequence in , represents the true transcription
of , and is called discriminant function. Usually,
the discriminant function is calculated in the logarithm scale:

. In this paper, we are only
interested in estimating HMMs and assume is fixed.
Obviously, if , will be incorrectly recognized by
the current HMM set, denoted as ; if , will be
correctly recognized by the models .

Given a set of training data , we usu-
ally know the true transcriptions for all utterances in , denoted
as . The support vector set is defined
as

and (2)

where is a preset positive threshold. All utterances in
are relatively close to the classification boundary even though
all of them locate in right decision region.

The large-margin principle leads to estimating HMM models
based on the criterion of maximizing the minimum margin of

all support tokens, which is named as large-margin estimation
(LME) of HMM

(3)

Note that the support token set is selected and used in
LME because the other training data with larger margin are usu-
ally inactive in optimization towards maximizing the minimum
margin.

III. NEW CONSTRAINT FOR LARGE-MARGIN ESTIMATION

As shown in [13], [15], [16], and [20], the margin as de-
fined in (1) is actually unbounded for CDHMM. In other words,
we can adjust CDHMM parameters in a way to increase the
margin unlimitedly. In [13] and [16], we introduced some the-
oretically sounded constraints to bound the margin to ensure
the existence of the optimal point in the large-margin estima-
tion of (3). However, it is difficult to formulate the constrained
minimax optimization in [13] and [16] into an SDP problem. In
this section, we introduce a new locality constraint which pre-
vents model parameters from deviating too far from their ini-
tial values. More importantly, LME of CDHMM under this con-
straint can be easily converted into an SDP problem.

First of all, suppose each speech unit, e.g., a phoneme, is
modeled by an -state CDHMM with parameter vector

, where is the initial state distribution,
is transition matrix, and is parameter vector com-

posed of mixture parameters for
each state , where denotes number of Gaussian mixtures
in each state. The state observation probablity density function
(pdf) is assumed to be a mixture of multivariate Gaussian dis-
tribution

(4)

where denotes dimension of feature vector, and mixture
weights ’s satisfy the constraint . In many
cases, we prefer to use diagonal covariance matrices. Thus, the
above state observation pdf can be simplified as

(5)

Given any speech utterance , if
we adopt the Viterbi approximation as in [15] and [16], we
know that the discriminant function based on model , i.e.,

, can be expressed as

(6)

where we denote the optimal Viterbi path as the best state se-
quence and the best mixture component
label . Here the best state sequence is
obtained from the Viterbi decoding process. After that, each
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is selected as the most probable Gaussian
in state for each feature vector .

In this paper, for simplicity, we only consider to estimate
Gaussian mean vectors of CDHMM based on the large-margin
principle while keeping all other parameters constant during
large-margin estimation. Therefore, we have

(7)

where is a constant which is independent from all Gaussian
mean vectors.

Furthermore, we assume there are totally distinct Gaus-
sians in the whole CDHMM set . We denote them as

, where . For notational con-
venience, the optimal Viterbi path and can be equiv-
alently represented as a sequence of Gaussian index, i.e.,

, where is the index
of each Gaussian mixture along the optimal path .
Therefore, we can rewrite the discriminant function in (7) as

(8)

Similarly, we assume the Viterbi path for as
. Therefore, the decision margin can be

represented as a standard diagonal quadratic form as follows:

(9)

where is a constant independent of all Gaussian means.
Obviously, if every term in summation of (9) is bounded, the

decision margin is also bounded. It is easy to see that
all these items will be bounded if every Gaussian mean , for
any , in the model set is constrained in a lim-
ited range. Therefore, we introduce the following spherical con-
straint for all Gaussian mean vectors:

(10)

where is a pre-set constant, and represents the initial
values of in the seed models. The boundedness of the
margin can be guaranteed by the following theorem:

Theorem III.1: Assume we have a set of CDHMMs,
and a set of training data, denoted as
. The margin , as defined in (1), is

bounded for any token in the training set as long as the
constraint in (10) holds.

It is trivial to prove this theorem since the constraint in
(10) defines a closed and compact set (see [18] for the proof).
According to theorem III.1, the minimum margin in (3) is a

bounded function of model parameter set under the con-
straint in (10). Thus, we can always search for an appropriate
set of model parameters to maximize the minimum margin.
Therefore, the minimax optimization problem in (3) becomes
solvable under these constraints. Hence, we reformulate the
large-margin estimation as the following constrained minimax
optimization problem:

1) Problem 1:

(11)

subject to

(12)

(13)

for all and and . Here, is a preset
constant. represents the initial values of in the seed
models.

IV. SDP FORMULATION OF LME

As shown above, large-margin estimation (LME) of
CDHMM turns out to be a constrained minimax optimiza-
tion as shown in Problem 1. Obviously, it is a complicated
nonlinear optimization problem, where typically no efficient
solution exists from the viewpoint of optimization theory.
Although this constrained minimax problem can be converted
into an unconstrained minimization problem by casting the
constraints as the penalty terms in the objective function as
shown in [13] and [16], it still remains as a nonlinear nonconvex
optimization problem. There is no efficient algorithm available
to solve this optimization problem, especially in the case of
speech recognition where a large number of model parameters
are involved. The gradient descent method used in [13] and
[16] can only lead to a locally optimal solution which highly
depends on the initial models used for the optimization. And
the gradient descent can be easily trapped into a shallow local
optimum when the objective function is jagged and compli-
cated. Moreover, the gradient descent search is hard to control
in practice since there are a number of sensitive parameters
we need to manually tune for various experimental settings,
such as the penalty coefficients, the step size, and so on. Since
an improper setting of any of these parameters may dramati-
cally deteriorate optimization performance, a large number of
experiments are necessary to find the optimal values for these
parameters, which makes the LME training time-consuming.

In this section, we will consider to convert the minimax op-
timization Problem 1 into an SDP problem under some relax-
ation conditions. In this way, we are able to take advantage of
many efficient SDP algorithms to solve the LME of CDHMM
for speech recognition. SDP is more general than linear pro-
gramming (LP), but SDP is not much harder to solve. As in LP,
most SDP algorithms possess polynomial worst case complexity
under certain computation models. More importantly, these al-
gorithms can lead to the globally optimal solution since SDP
is a well-defined convex optimization problem. We can also
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avoid choosing many optimization parameters manually in ex-
periments since most of them can be gracefully handled by the
algorithms themselves.

A. Introduction to SDP

In this paper, we generally follow the notations in this sec-
tion except explicitly stated otherwise. We denote the set of real
numbers by . denotes the set of nonnegative real numbers.
For a natural number , the symbol denotes the set of
vectors with components in . We always denote vec-
tors using bold lowercase letters. Uppercase letters will be used
to represent matrices. The vector inequality means

for . represents a vector whose entries are all
zeros. And is a vector with at the th position and zero ev-
erywhere else. The dimensions are decided according to the con-
text in an algebraic expression. A vector is usually considered
as a column vector unless otherwise stated. For convenience,
we sometimes write a column vector as
and a row vector as . The superscript de-
notes transpose operation. The inner product in is denoted as

for . For natural numbers
and , denotes the set of real matrices with rows

and columns. The identity matrix is denoted by . The trace
of , denoted as , is the sum of the diagonal entries in .
For a vector , represents a diagonal matrix in
whose diagonal entries are the entries of , i.e., .
A matrix is said to be positive definite, denoted as

, if for all And is positive semidef-
inite, denoted as , if denotes
the space of symmetric matrices in . The inner product in

is defined as follows:
for . And denotes the set of posi-

tive semidefinite matrices in .
SDP can be viewed as either an extension of LP or a special

case of more general conic optimization problem. The standard
SDP form is shown in Definition 1.

Definition 1: The standard SDP form is

subject to

where denotes the set of symmetric positive semidefinite
matrices, denotes the associated inner product, and
both are symmetric constant matrices, and is constant scalar.

In semidefinite programming (SDP), we minimize a linear
function of symmetric matrices in the positive semidefinite ma-
trix cone subject to affine constraints. Similar to the positive or-
thant cone in linear programming, the positive semidefinite ma-
trix cone is generalized linear and convex. Thus, semidefinite
programs are convex optimization problems. And SDP unifies
several standard convex optimization problems, such as linear
programming, quadratic programming, and convex quadratic
minimization with convex quadratic constraints.

B. Transformation of Objective Function

The standard SDP form is a minimization problem, while
Problem 1 from the LME is a minimax optimization problem.
So in the first step, we need to transform the minimax optimiza-
tion problem into a pure minimization problem.

If we introduce a new variable as a common upper
bound to represent max part in (11) along with the constraints
that every item in the minimax optimization must be less than or
equal to , we can convert the minimax optimization in (11)
into an equivalent minimization problem as follows:

1) Problem 2:

(14)

subject to:

(15)

(16)

(17)

for all and , .

C. Transformation of Constraint (15)

In the standard SDP form, all variables and coefficients are
presented in the form of inner product of matrices. In this part,
we will first derive a matrix form for the constraint in (15). We
define mean matrix as a matrix by concatenating all normal-
ized Gaussian mean vectors as its columns as

(18)

where each column is a normalized mean vector

(19)

Similar to (8), we can rewrite as

(20)

where denotes a normalized feature vector (in column) for
each as

(21)
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Obviously, we have

...
. . .

...
...

...
...

...

...

...

...

(22)

where is defined in (18) and is a vector defined in
Section IV-A.

Therefore

(23)

where and are dimensional symmetric
matrices defined as

(24)

(25)

Similarly, we can rewrite the discriminant function, ,
as

where is a dimensional symmetric matrix
defined as

(26)

Thus, it is straightforward to convert the constraint in (15)
into the following form

(27)

where and .

D. Transformation of Constraint (16)

In this part, we will convert the constraint (16) into a matrix
inequality constraint needed by the standard SDP formulation.
Similar as above, in (16) can be rewritten as follows:

(28)

Since , we can similarly
represent this constraint as

(29)

where is a -dimensional symmetric matrix
defined as

(30)

and is defined as in (19).

E. SDP Formulation of LME

Substituting (27) and (29) in Problem 2, we can formulate the
LME problem as

1) Problem 3:

(31)

subject to

(32)

(33)

(34)

for all and , .
In order to change the inequalities (32) and (33) to equalities,

we introduce a slack variable for each of the
constraints in (32), and a slack variable for constraint
(33). We first arrange all the in some order and put them
together as a vector where each corresponds
to a position in the vector. Then, we can organize all these slack
variables and into a semidefinite diagonal matrix

(35)
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Next, we denote a few constant diagonal matrices as follows:

(36)

(37)

(38)

where is a vector with at the corresponding position
of in and 0 anywhere else.

Then, we have the following:

(39)

(40)

(41)

Therefore, the large-margin HMM problem is transformed to
the following form:

2) Problem 4:

(42)

subject to

(43)

(44)

(45)

for all and .
Obviously, the minimization Problem 4 is equivalent to the

original minimax optimization Problem 1 from LME. However,
since the constraint is not convex, it is a nonconvex
optimization problem. As shown in [5], the following statement
always holds for matrices:

(46)

Therefore, following [5], if we relax the constraint
to , we are able to make a positive semidefinite
matrix. During the optimization, the top left corner of must
be an identity matrix, i.e., , which can be easily
transformed into a group of linear constraints as required in the
standard SDP form

for

(47)

If (for , )

(48)

otherwise

(49)

Since is a symmetric matrix, . Obviously, the solu-
tion to this set of constraints is and for
all , .

Finally, under the relaxation in (46), Problem 4 is converted
into a standard SDP problem as

3) Problem 5:

(50)

subject to

(51)

(52)

(53)

(54)

for all and .
Problem 5 is a standard SDP problem, which can be solved

efficiently by many SDP algorithms. In Problem 5, the optimiza-
tion is carried out w.r.t. (which is constructed from all HMM
Gaussian means) and , , , and are constants calculated
from training data and initial models, and is a preset param-
eter, and , , and are defined in (36)–(38).

F. Analysis of SDP Relaxation

Apparently, due to the relaxation in (46), this SDP problem
is just an approximation to the original LME problem. Now, we
investigate how the SDP relaxation in (46) affects the results of
large-margin HMMs estimation. Let us define

(55)

The actual margin which is maximized in this SDP Problem 5
after the relaxation can be calculated as

(56)

Thus, the actual margin that we try to maximize in the SDP
Problem 5 is the original margin defined in (9) com-
bined with another item

(57)

where and are diagonal elements of at positions
and .
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Substituting (57), (27), and (20) to (56), we derive the actual
margin to be maximized in the SDP problem as follows:

(58)

where

(59)

(60)

(61)

Comparing (58) with (27) and (20), we can see that this SDP
problem actually augments each -dimension speech feature
vector to a -dimensional vector and augments
each Gaussian mean vector with a diagonal element of ma-
trix . And then it tries to maximize a variant margin,
in (58), in this augmented -dimension space.

G. Summary of the Training Process

As a remark, the training process is summarized in Algorithm
1. In each epoch, we first recognize all training data based on
the current model parameters. Then, we select support tokens
according to (2) and obtain the optimal Viterbi paths for each
support token according to its recognition result. Then, the re-
laxed SDP optimization, i.e., Problem 5, is conducted with re-
spect to and . At last, all CDHMM Gaussian mean vectors
are updated based on the optimization solution obtained by
the SDP solver. If not convergent, the next epoch starts from
recognizing all training data again.

When we update CDHMM Gaussian means with the solu-
tion matrix , we have two methods. 1) Projection Method:
All Gaussian mean vectors are simply updated with the top-right
portion, i.e., in (25), of the solution matrix and just discard
the remaining part of matrix , e.g., the right-bottom part .
This step can be viewed as a projection from a high-dimension
space to a low-dimension space. The SDP algorithms guarantee
to find the globally optimal solution for the margin in the aug-
mented higher dimension space as in (56), but not the global
optimum in the original space after the projection. 2) Augmen-
tation method: In this method, we use the whole matrix (in-
cluding ) to update models. We first calculate matrix based
on as in (55). Next, we update Gaussian mean vectors with
the right-top part in ; then, we augment each Gaussian
mean vector with its corresponding diagonal element of matrix

to create a -dimension CDHMM as in (60) or (61),
which will be used for recognition directly in a higher-dimen-
sion space. When we recognize with this augmented model, we

also need to augment a zero to each feature vector to derive a
-dimension vector in (59).

V. EXPERIMENTS

In this paper, we evaluate the SDP-based LME training
method on two speech recognition tasks, namely the ISOLET
database and TIDIGITS digit strings database. The SDP
problem Problem 5 in Section IV-E is solved by an open
software, DSDP v5.6 [3] running under Matlab.

Algorithm 1: SDP Optimization

repeat

1) Perform Viterbi decoding for all training data based on
models

2) Identify the support set according to (2)
3) An SDP algorithm is run to optimize the relaxed SDP

Problem 5
4) Update models based on the SDP solution :

5)

until some convergence conditions are met

In our experiments, we use the standard 39-dimension
feature vectors, consisting of 12-D static MFCC, log-energy,
delta, and acceleration coefficients. The LME training method
is compared with the conventional maximum-likelihood esti-
mation (MLE) and MCE. In the experiments, an MLE model
is estimated based on the standard Baum–Welch algorithm.
The best MLE model is used as the seed model to conduct
the MCE training. Then, the best MCE model is used as the
seed model for the LME training. All HMM model parameters
are estimated during the MLE and MCE training. In the LME
training, we only update Gaussian mean vectors while keeping
other model parameters (including Gaussian covariance ma-
trices and HMM transition probabilities) unchanged. During
each epoch of LME training, the support token set is selected
by setting to include exactly ( ranging from 60 to 300)
most competing support tokens. In this paper, we also compare
two different optimization methods for LME, namely gradient
descent method in [13] and the proposed SDP method.

A. Isolated Speech Recognition: ISOLET E-set Recognition

In our first set of experiments, the LME training based on
the SDP method is evaluated on English E-set recognition with
ISOLET database, consisting of {B, C, D, E, G, P, T, V, Z}.
ISOLET is a database of letters of the English alphabet spoken
in isolation. The database consists of 7800 spoken letters, two
productions of each letter by 150 speakers, 75 male and 75 fe-
male. The recordings were done under quiet laboratory condi-
tions with a noise-canceling microphone. The data were sam-
pled at 16 kHz with 16-bit quantization. ISOLET is divided
into five parts named ISOLET 1–5. In our experiment, only the
first production of each letter in ISOLET 1–4 is used as training
data (1080 utterances). All data in ISOLET 5 is used as testing
data (540 utterances). An HMM recognizer with 16-state whole-
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TABLE I
WORD ACCURACY (IN %) ON THE ISOLET E-SET TEST DATA

ML: Maximum-likelihood method. MCE: minimum classification error.
LME-GD: LME method with gradient descent. LME-SDP: LME method
with SDP.

word-based models is trained based on different training cri-
teria. Here CDHMMs with 1-mix, 2-mix, and 4-mix per state are
experimented. In this task, recognition error rate on the training
data is quickly brought down to zero after a couple of iterations
in MCE training, and it remains zero in the LME training on this
task.

1) Performance of LME/SDP on E-set Recognition: In
Table I, we give performance comparison of the best results ob-
tained by using different training criteria to estimate CDHMMs
for the E-set recognition, where LME-GD represents the LME
with the constrained joint optimization method based on gra-
dient descent search in [13] and [16], and LME-SDP represents
the LME method with SDP proposed in this paper.

Experimental results in Table I clearly demonstrate that
both LME methods work well on this task. For example,
the models with 2-mix per state trained by the SDP method
achieve the word accuracy of 95.19%, which indicates 18.89%
errors reduction over the corresponding MCE-trained models,
which get 94.07% in accuracy. And the models with 2-mix per
state trained with gradient descent method achieves the word
accuracy of 95.00%, which indicates 15.68% errors reduction
over the corresponding MCE-trained models. From the experi-
mental results in Table I, we can see that 4-mix models performs
slightly worse than 2-mix models. Because we use 16 states for
each alphabet model, 4-mix models are slightly over-trained
in this small database. At last, if we compare the performance
of two LME methods, we can see that SDP method performs
slightly better than the gradient descent method on this task,
especially in the case of 4-mix.

The range parameter in constraint (10) must be manually
tuned to achieve the best performance. Fig. 1 plots the best word
accuracy achieved by LME/SDP models under different normal-
ized range parameter (normalized by the total number of
Gaussians in the HMMs) for 1-mix models on the E-set task.
From the definition of the constraint, we know that the normal-
ized range means how far each dimension of the mean vectors
is allowed to move away from its original position in average.
From the figure, we can see that with the increase of the nor-
malized range, the word accuracy also increases until it reaches
the highest value 92.96% at the position ; then, it
begins to drop. It is easy to understand the process before the
position , since a larger constraint range should nor-
mally result in a better optimal SDP solution. The reason for the
drop is due to the fact we adopt the Viterbi approximation in (6)
to formulate the LME/SDP method. If the range is too large,
HMM Gaussian means may be dramatically changed during

Fig. 1. Word accuracy of LME/SDP models on the test set is plotted as a func-
tion of the normalized range parameter r =K in the LME/SDP training of 1-mix
models on the E-set recognition task.

TABLE II
BEST NORMALIZED RANGES FOR LME/SDP TRAINING

the SDP optimization. It may invalidate the Viterbi approxima-
tion. In other words, the optimal Viterbi paths , which
we determined using the old HMMs prior to the SDP optimiza-
tion, may not be dominant anymore if the HMMs significantly
change during the SDP optimization. A different path may be-
come dominant for the new updated model. This makes the SDP
optimization irrelevant to the final speech recognition process
since we have used the Viterbi approximation in (6) based on
the original best path, , to formulate the LME/SDP in
the first place.

The best normalized ranges for different models are shown
in Table II. From the table, we can see that the optimal normal-
ized range usually becomes small when mixture number is large.
This is because all Gaussians become closer to each other as the
mixture number increases. In this case, even a small change in
the Gaussian means could make the initial Viterbi path not dom-
inant anymore.

In our experiments, we have also investigated two different
methods to update Gaussian means from the solution matrix ,
namely the projection method and the augmentation method.
However, we have not observed any significant difference in
recognition performance.

B. Continuous-Speech Recognition: TIDIGITS Digit Strings

In this section, the N-best based string-level LME/SDP algo-
rithm has been evaluated in a connected digit string recognition
task using the TIDIGITS corpus [14]. The corpus vocabulary
is made of the digits “1” to “9,” plus “oh” and “zero,” for a
total of 11 words. The length of the digit strings varies from
1 to 7 (except 6). Only the adult portion of the corpus is used
in our experiments. The training set has 8623 digit strings,
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TABLE III
TRAINING SET STRING ACCURACY (%) OF DIFFERENT MODELS

TABLE IV
TEST SET STRING ERROR RATE (%) OF DIFFERENT MODELS

and the test set has 8700 strings. Our model set includes 11
whole-word CDHMMs representing all digits. Each HMM
has 12 states and uses a simple left-to-right topology without
state-skip. Different number of Gaussian mixture components
(from 1 to 32 per HMM state) are experimented. The number
of competing strings in the N-best list is experimentally set
to five. On the TIDIGITS task, recognition accuracy on the
training set is not 100% even after the MCE and LME training.
The recognition result comparison on the training set between
different training criteria are given in Table III for various
model complexities, where LME-GD represents the LME with
the constrained joint optimization method in [13] and [16], and
LME-SDP represents the LME method with SDP proposed in
this paper. During the LME training, from one epoch to next,
some of the training data with negative margins may become
positive. In this case, they will be included in the support token
set in the next epoch.

In Tables IV and V, we give string error rates and word error
rates in the test set for the best models obtained by different
training criteria, respectively. The results are listed for various
model sizes we have investigated. The results clearly show that
the LME-SDP training method considerably reduces recogni-
tion error in terms of both string error rate and word error rate on
top of the MCE training across all different model sizes. As the
model size gets bigger, advantage of using LME decreases, but
it still remains significant. For small model sizes (such as 1-mix,
2-mix, and 4-mix), the LME/SDP method yields over 50% rel-
ative string error reduction and 60% relative word error reduc-
tion on top of the MCE training. For large model sizes (such
as 8-mix, 16-mix, and 32-mix), the SDP method gives around
30%–50% relative string and word error reduction. If we com-
pare the performance with the LME-GD [13] methods, we can

TABLE V
TEST SET WORD ERROR RATE (WER) (%) OF DIFFERENT MODELS.

THE NUMBERS INSIDE PARENTHESES REPRESENT THE RELATIVE

WORD ERROR REDUCTION OF LME OVER MCE

Fig. 2. Evolution of string accuracy for string-level LME/SDP training of
1-mix models under different normalized range parameters r =K on the
TIDIGITS recognition task.

see that SDP method performs significantly better than the gra-
dient descent-based method in terms of both string and word
error rates. The SDP method shows its advantage to find the
globally optimal solution (not just local optimum) in the aug-
mented higher dimension space. Results also show that the ap-
proximation caused by relaxation and projection seems reason-
ably good in our experiments.

The range parameter in constraint (10) has been man-
ually tuned for the best performance. Fig. 2 plots the evolu-
tion of the string accuracy on test data achieved by LME/SDP
models under two different normalized range parameters
for 1-mixture models on the TIDIGITS task. From the figure,
we can see that the range parameter plays an important role in
the training processes. A small range value such as 0.001 in the
figure will generate a relatively slow but stable training process,
while a very large range value such as 0.006 in the figure will
generate a relatively fast training process at the beginning, but it
will cause the following steps unstable. Just as mentioned on the
ISOLET E-set recognition task, a large range value may inval-
idate the Viterbi approximation, e.g., (8), which will makes the
SDP optimization irrelevant to the speech recognition process.
Thus, a suitable range value must be experimentally chosen to
create a relatively stable process with acceptable converging
speed. The normalized range is set between 0.001 and 0.004 for
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the LME/SDP training of the models with various sizes in our
experiments.

As far as computational complexity is concerned, it is still
quite expensive to solve a large-scale SDP problem. As a re-
sult, the LME/SDP training takes much longer time than the
gradient descent method, especially for large model sets. How-
ever, the LME/SDP tends to converge to a better solution due to
its convex optimization nature.

VI. CONCLUSION

In this paper, we have proposed an SDP method for LME of
CDHMMs in speech recognition. At first, we have proposed a
new locality-based constraint for LME of CDHMMs in speech
recognition. The new LME problem subject to this constraint
can be transformed to an SDP problem under some relaxation
conditions. Then, the LME training of CDHMMs can be sloved
with efficient SDP optimization algorithms. We have investi-
gated its performance on a speaker-independent English E-set
isolated-word recognition task using the ISOLET database and
a speaker-independent continuous digit string recognition task
using the TIDIGITS database. The newly proposed LME/SDP
method has been demonstrated to be quite effective on both
tasks. Currently, the LME/SDP method is being extended to
other large-vocabulary continuous-speech recognition speech
recognition tasks. In our future work, we will analyze the the-
oretical convergence property of the proposed LME/SDP algo-
rithm as in [25].
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