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Abstract

In this paper, we extend our proposed Viterbi Bayesian predictive classi®cation (VBPC) algorithm to a new class of

prior probability density function (pdf), namely a family of natural conjugate prior pdf's of the complete-data density in

continuous density hidden Markov model (CDHMM) and their mixtures. In this way, we can on-line adapt the prior

pdf via a sequential Bayesian learning algorithm when some new data are available, so that the performance of VBPC

can be continuously improved. Moreover, we also study a sequential Bayesian learning strategy for CDHMM based on

a ®nite mixture approximation of its prior/posterior density which attempts to derive a more accurate prior pdf to

describe the unknown mismatches. The experimental results on a speaker-independent recognition task of isolated

Japanese digits con®rm the viability and the usefulness of the proposed method. Ó 1999 Elsevier Science B.V. All

rights reserved.
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Notations

W a speech unit (a word)
X acoustic observation
X �n� n independent samples of acoustic observations
K CDHMM parameter
u hyperparameter of CDHMM
s state sequence in CDHMM
l mixture component label sequence in CDHMM
i a path in CDHMM
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1. Introduction

Recently, the topic of robust automatic speech recognition (ASR) has been attracting increasingly more
research e�orts in speech community (e.g., see recent reviews in (Furui, 1997; Lee, 1998)). From the
modeling point of view, an ASR procedure is described as robust if it is not very sensitive to the departure
from the assumptions on which it depends, such as modeling inaccuracy, mismatch between training and
testing conditions, etc. From the application point of view, robust speech recognition refers to the problem
to design an automatic speech recognizer which works well for di�erent tasks and speakers under unex-
pected and/or adverse conditions. Especially, how to maintain the recognizer's performance under various
mismatches between training and testing conditions has recently become one of the hottest topics in robust
speech recognition.

In the past few years, we have been investigating a so-called Bayesian predictive classi®cation (BPC)
approach to deal with various types of unknown mismatches under a general theoretical framework for
CDHMM (Gaussian mixture continuous density hidden Markov model) based robust speech recognition
(Huo and Lee, 1997c; Huo et al., 1997; Jiang et al., 1997, 1999). In this paper, we extend our previously
proposed Viterbi BPC (VBPC) algorithm (Jiang et al., 1997, 1999) to a new class of prior probability
density function (pdf), namely a family of natural conjugate prior pdf's of the complete-data density of
CDHMM and their mixtures. As shown in Fig. 1, equipped with the capability of sequential Bayesian
learning, we can on-line adapt the prior pdf's when some new adaptation/test data become available, so
that the performance of VBPC can be improved continuously. Moreover, we also study a new sequential
Bayesian learning strategy for CDHMM based on a ®nite mixture approximation of its prior/posterior
density, by which we attempt to derive a more accurate prior pdf to describe the unknown mismatches
under the VBPC framework. The proposed methods have been examined in a speaker-independent rec-
ognition task of isolated Japanese digits to deal with two types of mismatch between training and testing
conditions: (i) additive white Gaussian noise caused mismatch, (ii) cross-gender mismatch. The experi-
mental results con®rm the viability and the usefulness of the algorithms.

� path space in CDHMM
f ��j�� likelihood function of CDHMM
p��j�� probability density function (pdf)
~p��j�� predictive pdf
arg max�M� the operation to choose the M largest items
N�M� the set consisting of the M largest terms

Fig. 1. A block diagram of VBPC decoder equipped with on-line Bayesian learning (supervised mode).
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The remainder of the paper is organized as follows. In Section 2, after a brief introduction of the VBPC
decision rule, we extend the VBPC formulation to the natural conjugate prior pdf's of the complete-data
density of CDHMM. In Section 3, we introduce the basic principle of sequential Bayesian learning for
CDHMM and show how to combine VBPC with a simple Bayesian learning strategy, namely segmental
Bayesian learning. In Sections 4 and 5, we propose a novel Bayesian learning method for CDHMM using a
®nite mixture approximation of the CDHMM's true prior/posterior pdf, and develop an N-Best based
implementation strategy to practically perform the above-mentioned Bayesian learning. In Section 6, we
report experimental results along with some discussions. Finally, we summarize our ®ndings in Section 7.

2. Viterbi Bayesian predictive classi®cation

Given a speech unit (refer to as word heretofore) W and the associated acoustic observation X, we model
each word W with a CDHMM. Assuming that the model is accurate enough for X and no mismatch exists
between training and testing conditions, the prior pdf of model parameter K can be viewed as a delta
function centered at the true model parameter. An optimal speech recognizer can be achieved by optimal
MAP (maximum a posteriori) decision rule. However, in case the mismatch exists between training and
testing conditions, some extra uncertainty will be involved into the decision procedure due to unknown
mismatch. The prior pdf of model parameter K is in¯ated to an unknown function p�Kju;W � with
hyperparameter u. Obviously, p�Kju;W � represents the prior knowledge about the involved mismatch and
the interaction between the mismatch and model parameter K related to each word W . Under these as-
sumptions, an optimal decision rule for robust speech recognition which achieves an expected minimum
word recognition error rate in the mismatched situation is based on the following BPC decoding (Huo and
Lee, 1997c; Huo et al., 1997):

Ŵ � argmax
W

~p�W jX� � argmax
W

~p�X ;W � � argmax
W

~p�Xju;W � � p�W �; �1�
with

~p�X ju;W � �
Z

f �X jK;W � � p�Kju;W �dK �
X

s;l

Z
f �X ; s; ljK;W � � p�Kju;W �dK; �2�

where ~p�X ju;W � is called the predictive pdf of the observation X given the word W , f �X jK;W � is likelihood
function of CDHMM, and s and l denote the unobserved state sequence and the associated sequence of the
unobserved mixture component labels, respectively.

However, due to the nature of the missing data problem in HMM formulation (see related discussions in
(Huo and Lee, 1997a,c)), it is not easy to compute the true predictive density ~p�X ju;W � in the CDHMM
case. One feasible way is to compute the predictive pdf based on Viterbi approximation (Jiang et al.,
1997, 1999),

~p�X ju;W � � max
s;l

Z
f �X ; s; ljK;W � � p�Kju;W �dK: �3�

The resultant BPC decision rule is called VBPC rule,

Ŵ � argmax
W

p�W � �max
s;l

Z
f �X ; s; ljK;W � � p�Kju;W �dK

� �
: �4�

A detailed recursive search algorithm to implement Eq. (4) can be found in (Jiang et al., 1997, 1999).
From our previous study, we notice that the prior pdf p�Kju;W � plays a key role in the VBPC rule. If

p�Kju;W � adequately describes the mismatches between the training and testing conditions, the robustness
of recognition systems can be greatly improved even when the mismatches in question are quite large. In
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(Jiang et al., 1997, 1999), we have examined a so-called less-informative (actually constrained uniform)
prior distribution to deal with some unknown mismatches. The less-informative prior pdf has a simple
functional form, but its hyperparameters can not be easily estimated in advance and the prior pdf itself is
also di�cult to be updated when new knowledge becomes available. In order to incorporate new infor-
mation dynamically into the existing system, in this section, we ®rst extend the VBPC formulation to
another class of prior pdf which belongs to the family of natural conjugate prior pdf's (see (Gauvain and
Lee, 1994) for the details) of the complete-data density of CDHMM.

Assuming that we model each word W with an N -state CDHMM with a parameter vector K � �p;A; h�,
where p is the initial state distribution, A is the transition matrix, and h is the parameter vector composed of
mixture parameters hi � fxik;mik; rikgk�1;2;...;K for each state i (K denotes the number of mixtures in each
state), with the mixture coe�cients xik, the D-dimensional mean vectors mik, and the D� D precision
(inverse covariance) matrices rik. In this paper, we only consider the uncertainty of the mean vectors in
CDHMM with diagonal precision matrices. Therefore, the natural conjugate prior pdf of the complete-data
density has a Gaussian functional form,

p�Kju;W � �
YN
i�1

YK
k�1

YD

d�1

�������
sikd

2p

r
exp

�
ÿ 1

2
sikd mikd� ÿ likd�2

�
; �5�

where u � flikd ; sikd j16 i6N ; 16 k6K; 16 d 6Dg are hyperparameters.
Substitute the prior pdf Eq. (5) into Eq. (3), under the condition that only the mean vectors of CDHMM

are considered to be uncertain, the Viterbi approximate predictive density can be simply computed as (see
Appendix A for more details)

~p�X ju;W � � f X ; s�; l�jK;W� � � p�Kju;W �
p�Kju0;W � ; �6�

where u0 � fl0ikd ; s
0
ikd j16 i6N ; 16 k6K; 16 d 6Dg are the updated hyperparameters which will be ex-

plained in Eqs. (11) and (12), and fs�; l�g denote the optimal path found via VBPC search algorithm
(shown later in Eq. (9)).

One implementation issue here is the hyperparameter estimation of the initial prior pdf's, i.e., how to
design suitable prior pdf's from the available parameters of the pre-trained CDHMM's. Following the idea
in (Huo and Lee, 1997a±c), we use the initialization method as follows:

l�0�ikd � mikd and s�0�ikd � � � rikd � cik � gd ; �7�
where � > 0 is a weighting coe�cient, cik is a weight count accumulated for the kth mixture component of
the state i during training CDHMM's parameters. gd � d2 � qd �q > 1:0�. According to the upper bound of a
perturbation in speech cepstral domain given in (Merhav and Lee, 1993), gd � d2 � qd �q > 1:0� is used to
avoid too severe smoothing in the high dimension of the cepstral vector.

3. Sequential segmental Bayesian learning for VBPC

Since the performance of VBPC based on the initial prior pdf's constructed as Eq. (7) usually is not good
enough, we follow Huo and Lee (1997b,c) to adopt Bayesian learning to update the prior pdf's in order to
improve VBPC's performance successively.

Given the initial prior pdf's p�KjW � and independent observation samples X �n� � fX1;X2; . . . ;Xng, the
formal sequential Bayesian learning is performed as follows (Huo and Lee, 1997a):

p KjX �n�;Wÿ � � f XnjK;W� � � p KjX �nÿ1�;W
ÿ �R

X f XnjK;W� � � p KjX �nÿ1�;W
ÿ �

dK
: �8�
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where X denotes an admissible region of the parameter space. Starting the calculation from
p�KjX �0�;W � � p�KjW �, we can obtain a sequence of prior/posterior densities p�KjX �1�;W �, p�KjX �2�;W �,
and so forth, with gradually increased accuracy. Once these updated pdf's are obtained, they are employed
in VBPC procedure in place of the initial prior pdf's p�KjW �.

However, there is no closed form solution to the above sequential learning procedure for CDHMM (see
discussions in (Huo and Lee, 1997a)). In practice, some approximations are needed. In this paper, we ®rst
study a simple sequential Bayesian learning strategy, namely segmental Bayesian learning, for VBPC. Then,
we extend segmental Bayesian learning to cover a ®nite mixture approximation of the CDHMM's true
prior/posterior density, by which we attempt to derive a series of prior pdf's with increased accuracy to
describe the unknown mismatches in robust speech recognition.

In (Huo and Lee, 1997a), under a very general framework, a speci®c approximation procedure, namely
quasi-Bayes (QB) learning method has been proposed and extensively studied. Starting from the Viterbi
version of the QB procedure in (Huo and Lee, 1997a), in this paper, we try to get the optimal state and
mixture component label sequences by using the labeling algorithm embedded in VBPC approach (Jiang
et al., 1997, 1999) as follows:

s�; l�f g � argmax
s;l

Z
X

f �X ; s; ljK;W � � p�KjW �dK: �9�

In this way, we are trying to ®nd the hidden label sequences to maximize the joint predictive density of
the observation and hidden label sequences instead of the conventional joint density as in standard Viterbi
labeling algorithm. Once the intended hidden label sequences are identi®ed, we can use the same formu-
lations as in (Huo and Lee, 1997a) to update the posterior pdf p�KjX ;W �.

Given an adaptation data X � fX1;X2; . . . ;XTg, we ®rst determine the optimal pair fs�; l�g as in Eq. (9).
Then the posterior pdf p�KjX ;W � is approximated as follows according to segmental (or Viterbi) Bayesian
learning:

p�KjX ;W � / f X ; s�; l�jK;W� � � p�KjW �: �10�
If the natural conjugate prior pdf p�KjW � like Eq. (5) is chosen, the posterior pdf also has the form as the

right hand side of Eq. (5), with the adapted hyperparameters l0ikd and s0ikd given as follows:

l0ikd �
likdsikd � l�ikds

�
ikd

sikd � s�ikd

; �11�

s0ikd � sikd � s�ikd ; �12�
where

l�ikd �
PT

t�1 Xtdd s�t ÿ i
ÿ �

d�l�t ÿ k�PT
t�1 d s�t ÿ i

ÿ �
d l�t ÿ k
ÿ � ; �13�

s�ikd � rikd

XT

t�1

d s�t
ÿ ÿ i

�
d l�t
ÿ ÿ k

� �14�

and d��� is the Kronecher delta function.

4. Sequential Bayesian learning of CDHMM based on a ®nite mixture approximation of its prior/posterior pdf

The above segmental Bayesian learning is easy to perform, and the updated prior/posterior pdf's always
keep the simple form and unimodal shape. However, the unimodal functional form might be too simple for
the prior pdf to describe the unknown mismatches usually encountered in robust speech recognition.
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A more ¯exible prior/posterior pdf might be useful to make BPC approach perform better. A natural choice
is to use a ®nite mixture distribution for the prior/posterior pdf (e.g., Smith and Makov, 1985; Titterington
et al., 1985; Bernardo and Giron, 1988). In this section, we extend the above segmental Bayesian learning to
cover a ®nite mixture prior/posterior pdf. In the next section, an N-Best based implementation is derived to
incrementally adapt the ®nite mixture prior/posterior pdf to new data so that the performance of VBPC can
be successively improved.

According to Eq. (8), the true posterior pdf after observing X can be expressed as

p�KjX ;W � / f �X jK;W � � p�KjW � �
X
i2�

f �X ; ijK;W � � p�KjW �; �15�

where for convenience i, called a path, denotes a combination pair of fs; lg, and the path space � consists of
all possible i.

We further examine the predictive density of X,

~p�X ju;W � �
Z

f �X jK;W � � p�Kju;W � dK

�
X
i2�

Z
f �X ; ijK;W � � p�KjW � dK �

X
i2�

-�X ji;W �; �16�

where

-�X ji;W � �
Z

f �X ; ijK;W � � p�KjW � dK: �17�

Here -�Xji;W � denotes the component part of the predictive density corresponding to the path i in � ,
which can be computed via VBPC algorithm in (Jiang et al., 1997, 1999). We notice that the true posteriori
pdf in Eq. (15) is a ®nite mixture function, which consists of numerous homogeneous terms. Each term in
turn corresponds to a path in � . It is reasonable to pick up the M most signi®cant terms among � , based on
their contribution to the predictive density, i.e. -�X ji;W �, to approximate the true posterior pdf and
truncate others in order to keep computation and memory under control. That is,

N�M� � argmax
�M�
i2�

-�X ji;W �; �18�

where arg max�M� denotes the operation to choose the M largest items, N�M� denotes the set of the M most
signi®cant terms. Then the approximate posterior pdf can be expressed as

p�KjX ;W � �
P

i2N�M� f �X ; ijK;W � � p�KjW �P
i2N�M� -�X ji;W �

�
X

i2N�M�
ei � p�Kji;X;W �; �19�

where

ei � -�Xji;W �P
i2N�M� -�X ji;W �

�20�

and p�Kji;X ;W � denotes natural conjugate prior of the complete-data density given i, whose form has been
shown in Eq. (5).

5. N-Best based implementation

Assuming that we have observed training data X �nÿ1�, the current prior/posterior pdf follows Eq. (19)
and can be shown as
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p KjX �nÿ1�;W
ÿ � � X

i12N�M�1

ei1
� p KjX �nÿ1�; i1;W
ÿ �

�
X

i12N�M�1

ei1
�
YN
i�1

YK
k�1

YD

d�1

��������
s�i1�

ikd

2p

s
exp

�
ÿ 1

2
s�i1�

ikd mikd

�
ÿ l�i1�

ikd

�2
�
; �21�

where s�i1�
ikd and l�i1�

ikd are hyperparameters.
When a new data Xn � fXn1;Xn2; . . . ;XnT g becomes available, we ®rst use N-Best VBPC algorithm to

decode the top M best paths. We denote the set of these M best paths as N�M�2 . According to Eq. (9), the
prior p�Kju;W � determines the VBPC search. Thus the top M best paths found by N-Best VBPC search
algorithm are di�erent from the M best paths decoded from the normal N-Best Viterbi search. Then, for
each path in N�M�2 , we can derive the corresponding component of the likelihood function. Thus the current
likelihood function can be approximated as a summation of M mixtures, i.e.,

f XnjK;W� � �
X

i22N�M�2

f Xn; i2jK;W� � �
X

i22N�M�2

C�i2� �
YN
i�1

YK

k�1

YD

d�1

exp

�
ÿ 1

2
s�i2�

ikd mikd

�
ÿ l�i2�

ikd

�2
�
; �22�

with

l�i2�
ikd �

PT
t�1 Xntdd s

�i2�
t ÿ i

� �
d l�i2�

t ÿ k
ÿ �

PT
t�1 d s

�i2�
t ÿ i

� �
d l�i2�

t ÿ k
ÿ � ; �23�

s�i2�
ikd � rikd

XT

t�1

d s�i2�
t

ÿ ÿ i
�
d l�i2�

t

ÿ ÿ k
�
; �24�

C�i2� � p
s
�i2�
1

x
s
�i2�
1

l
�i2�
1

��������������
r

s
�i2�
1

l
�i2�
1

2p

s YT

t�2

a
s
�i2�
tÿ1

s
�i2�
t

x
s
�i2�
t l

�i2�
t

��������������
r

s
�i2�
t l

�i2�
t

2p

r

�
YN
i�1

YK
k�1

YD
d�1

exp

"
ÿ rikd

2

XT

t�1

X 2
ntd

��
ÿ l�i2�

ikd

� �2
�

d s�i2�
t

ÿ ÿ i
�
d l�i2�

t

ÿ ÿ k
��#

; �25�

where s
�i�
t and l�i�t denotes the state and Gaussian component labels corresponding to time instant t in the

path i, respectively.
According to Bayes' theorem in Eq. (8), the new posterior pdf corresponds to the product of the prior

pdf and the likelihood. Based on our approximations of prior pdf and likelihood function in Eqs. (21) and
(22) respectively, the new posterior pdf p�KjX �n�;W � includes M2 terms, which is denoted here as the set
N�M

2�. Each term of N�M
2� corresponds to a product of each i1 in N�M�1 and each i2 in N�M�2 . We denote it as i,

i.e. i � i1 
 i2. Then

p KjX �n�;Wÿ � / X
i2N�M2�

- XnjX �nÿ1�; i;W
ÿ � � p KjX �n�; i;Wÿ �

; �26�

where

- XnjX �nÿ1�; i;W
ÿ � � ei1

� C�i2� �
YN
i�1

YK
k�1

YD

d�1

���������������������
s�i1�

ikd

s�i1�
ikd � s�i2�

ikd

vuut � exp

"
ÿ 1

2

s�i1�
ikd s�i2�

ikd

s�i1�
ikd � s�i2�

ikd

l�i1�
ikd

�
ÿ l�i2�

ikd

�2

#
�27�
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and p�KjX �n�; i;W � has the same form as p�KjX �nÿ1�; i1;W � in Eq. (21), with the adapted hyperparameters
s�i�ikd and l�i�ikd given as follows:

s�i�ikd � s�i1�
ikd � s�i2�

ikd ; �28�

l�i�ikd �
l�i1�

ikd � s�i1�
ikd � l�i2�

ikd � s�i2�
ikd

s�i1�
ikd � s�i2�

ikd

: �29�

In order to reduce the computational and storage overhead, we still choose the M most signi®cant terms
from N�M

2� based on -�XnjX �nÿ1�; i;W �, i.e.

N�M� � arg max
�M�

i2N�M2�
- XnjX �nÿ1�; i;W
ÿ �

: �30�

Thus we approximate the posterior distribution p�KjX �n�;W � by these M terms,

p KjX �n�;Wÿ � �Pi2N�M� - XnjX �nÿ1�; i;W
ÿ � � p KjX �n�; i;Wÿ �P

i2N�M� - XnjX �nÿ1�; i;W
ÿ � �

X
i2N�M�

ei � p KjX �n�; i;Wÿ �
; �31�

where

ei �
- XnjX �nÿ1�; i;W
ÿ �P

i2N�M� - XnjX �nÿ1�; i;W
ÿ � : �32�

The updated posterior pdf p�KjX �n�;W � can be used in Eq. (4) in place of p�Kju;W � to improve VBPC's
performance. As a remark, we can see that the above sequential Bayesian learning strategy is a general-
ization of segmental Bayesian learning, which is included as a special case (M � 1). The N-Best imple-
mentation ¯ow of the above sequential Bayesian learning algorithm is sketched in Fig. 2.

As a remark, the N-Best method has been used in adaptation by Matsui and Furui (1998). However, in
our work, N-Best strategy is used to derive a ®nite mixture form of the prior/posterior pdf. And the derived
mixture prior/posterior pdf's are evolved under the theoretical Bayesian framework. Thus the work in this
paper are signi®cantly di�erent from that of Matsui and Furui (1998). Besides, in (Mokbel, 1997), an N-
Best solution is also used to consider alternatives to the optimal path in unsupervised mode and is com-
bined with stochastic matching for equalization.

One important issue in N-Best implementation is related to the choice of top M mixands in the ®nite
mixture approximation. In practice, if the chosen mixands are too similar to each other (it is the case es-
pecially when the mixands are derived from N-Best paths as in the above N-Best implementation), the ®nite
mixture approximation of the posterior pdf can not provide more information than a unimodal approxi-
mation. A heuristic solution to mitigate the problem is to merge those similar mixands during the N-Best
approximation process as described below. Let the mixands f �Xn; i2jK;W � in Eq. (22) be indexed by

i�1�2 ; i�2�2 ; . . . ; i�M�2 , which correspond to the top M most signi®cant mixands in N�M�2 in order. The dissimilarity

measure, d�i�m�2 ; i�n�2 �, between two mixands is simply de®ned and computed by directly checking the path
di�erence between two paths of i�m�2 and i�n�2 .

IF d�i�m�2 ; i�n�2 �6#1, where we assume m < n and #1 is a preset threshold;
THEN we merge mixand i�n�2 with i�m�2 :

(i) to remove mixand i�n�2 ,
(ii) to update the weight of i�m�2 as Ci�m�

2 � #2 � �Ci�m�
2 � Ci�n�

2 �, where #2 > 0 is another preset constant to
control the merging.
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By choosing the control parameters #1 and #2 appropriately, we can obtain the needed mixture ap-
proximation of the posterior pdf.

6. Experimental results

To examine the viability of the above algorithm, it is applied to a speaker-independent (SI) recognition
task of isolated Japanese digits where the unknown mismatch exists between training and testing con-
ditions. We have studied two types of mismatch: (i) the mismatch caused by additive white Gaussian
noise, (ii) cross-gender mismatch. The speech data are selected from ATR Japanese Speech Database. It
contains 0±9 Japanese digit utterances from 60 speakers (half male, half female). Each digit is modeled by
a left-to-right 4-state CDHMM without state skipping and each state has six Gaussian mixture com-
ponents with diagonal covariance matrices. Each feature vector consists of 16 LPC-derived cepstral
coe�cients. In the following experiments, two control parameters #1 and #2 are manually set in advance,
and remain constant during the adaptation procedure because we can not ®nd an easy way to adjust
them automatically.

6.1. Noisy speech recognition

One mismatch to be examined is caused by additive noise. While SI training is performed on clean
speech data, computer-generated Gaussian white noise is added to the testing and adaptation data with the
same level of intensity prior to the preprocessing. The experimental results are shown in Fig. 3. In Fig. 3,

Fig. 2. N-Best implementation of the sequential Bayesian learning based on the ®nite mixture approximation of the true prior/posterior

pdf.
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``Plug-in-MAP+Adp'' denotes that a plug-in MAP decision rule is used in speech recognition and an on-
line Bayesian learning algorithm is used to adapt CDHMM's parameters; ``VBPC+Adp-Mix1'',
``VBPC+Adp-Mix3'' and ``VBPC+Adp-Mix5'' denote that the VBPC decision rule is used in speech rec-
ognition and the prior/posterior pdf of the CDHMM's is approximated by one (i.e., segmental Bayesian
learning), three and ®ve mixture pdf's, respectively, in each step of on-line adaptation. It is shown that
VBPC method surpasses the conventional plug-in MAP decision rule when no knowledge about mismatch
is available at the beginning, where the prior pdf's are initialized as in Eq. (7). The performance of VBPC
can be further improved via incremental adaptation of the prior/posterior pdf with the new adaptation
data. It is observed that VBPC consistently outperforms the plug-in MAP decoding in this case. In addi-
tion, a better performance of VBPC can be achieved by using three mixture components in the prior/
posterior pdf than a unimodal pdf if the pdf mixands are appropriately pruned and merged as described
above. But only a slight improvement has been observed when we further increase mixture number from
three to ®ve.

6.2. Cross-gender speech recognition

We have also examined a more general mismatch caused by gender di�erence. In the cross-gender ex-
periments, we train the CDHMMs with all the female speech data. The male speech data are divided into
two sets. One is used for adaptation and another for testing. The experimental results are shown in Fig. 4.
A similar learning behavior is observed here as that in noisy speech recognition. We observe that the initial
improvement of VBPC over plug-in MAP rule without any adaptation data is minor comparing to that in
noisy speech recognition. However, a signi®cant improvement has been observed when we replace uni-
modal pdf with a three-mixture pdf. It suggests that mixture approximation helps more when dealing with a
more complex mismatch situation.

6.3. Convergence property of the sequential bayesian learning

The convergence property of the sequential Bayesian learning in terms of the recognition accuracy
improvement based on VBPC and plug-in MAP decoding in noisy speech recognition is displayed in Fig. 5.
The results show that the on-line Bayesian learning schemes maintain a good asymptotic convergence
property in both VBPC and plug-in MAP decision rules.

Fig. 3. Performance comparison of noisy speech recognition at SNR� 20 dB as a function of amount of adaptation data among

methods by combining sequential Bayesian learning with plug-in MAP decoding and VBPC (with mixture number M � 1; 3; 5).
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7. Discussion and conclusion

Theoretically speaking, whether VBPC achieves a satisfactory performance or not greatly depends
on whether the prior pdf can really re¯ect the mismatch in question. Ideally, such a prior pdf should
be constructed from the subject knowledge about the possible mismatch involved in real applications.
However, in practice, it seems more attractive if we can use an automatic learning method to elicit the
required prior/posterior pdf from some training data. In this study, we show again that the natural con-
jugate prior pdf of the complete-data density of CDHMM is a good choice for the initial prior pdf. Al-
though it might not be good enough initially, we show that the prior pdf can be dynamically improved via
sequential Bayesian learning. The experimental results con®rm that it is helpful to use a ®nite mixture
approximation in both Bayesian learning and VBPC calculation. Such an improvement over the unimodal
pdf approximation greatly depends on how properly the true pdf is pruned. Concretely, how to auto-
matically adjust some control parameters, namely #1 and #2, during the adaptation procedure. This is an
important issue which is still under our investigation. Furthermore, in the current implementation, the new

Fig. 5. Convergence property comparison at SNR � 20 dB among methods by combining sequential Bayesian learning with plug-in

MAP decoding and VBPC (with mixture number M � 1).

Fig. 4. Performance comparison of cross-gender speech recognition as a function of amount of adaptation data among methods by

combining sequential Bayesian learning with plug-in MAP decoding and VBPC (with mixture number M � 1; 3).
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precision information incorporated in Bayesian learning procedure, namely s�i2�
ikd in Eq. (40), is directly

derived from pre-trained model's precision as in Eq. (24). Thus we can not warrant that the updated
posterior pdf's re¯ect the mismatch more accurately. To take uncertainty of both mean and precision
parameters simultaneously into account might be helpful. Moreover, the Bayesian learning algorithm
proposed in this paper is suitable and useful to update the system to track the slow condition changes.
Obviously the strategy is not applicable to those abrupt changes. We need other mechanisms to deal with
these problems, which is beyond the scope of this paper. As a ®nal remark, the sequential learning of a
mixture distribution, which has no su�cient statistics with a ®xed dimension, is a quite challenging
problem. Although the formal Bayesian learning theoretically converges to the optimal solution under the
condition of unlimited memory and calculation, only suboptimal methods can be implemented in practice.
The N-Best implementation studied here is sensitive to the pruning, selection, and merging of the mixture
components in the sequential adaptation procedure. More e�orts are still needed to look for a better prior
pdf in BPC approach.

Appendix A

By adopting Viterbi approximation, the predictive pdf can be expressed as in Eq. (3),

~p�X ju;W � � max
s;l

Z
f �X ; s; ljK;W � � p�Kju;W � dK

�
Z

f X ; s�; l�jK;W� � � p�Kju;W � dK; �33�

where

s�; l�f g � argmax
s;l

Z
f �X ; s; ljK;W � � p�Kju;W � dK �34�

can be achieved by using VBPC search algorithm in (Jiang et al., 1997, 1999).
In case we only consider the uncertainty of the mean vectors in CDHMM with diagonal precision

matrices, the natural conjugate prior pdf of the complete-data density has a Gaussian functional form as in
Eq. (5) and is repeated here,

p�Kju;W � �
YN
i�1

YK
k�1

YD

d�1

�������
sikd

2p

r
exp

�
ÿ 1

2
sikd mikd� ÿ likd�2

�
; �35�

where u � flikd , sikd j16 i6N ; 16 k6K; 16 d 6Dg are hyperparameters.
On the other hand, the likelihood function corresponding to the optimal path fs�; l�g can be expressed as

f X ; s�; l�jK;W� � � C� �
YN
i�1

YK
k�1

YD

d�1

exp

�
ÿ 1

2
s�ikd mikd

ÿ ÿ l�ikd

�2

�
; �36�

with

l�ikd �
PT

t�1 Xtdd�s�t ÿ i�d l�t ÿ k
ÿ �PT

t�1 d s�t ÿ i
ÿ �

d l�t ÿ k
ÿ � ; �37�

s�ikd � rikd

XT

t�1

d s�t
ÿ ÿ i

�
d l�t
ÿ ÿ k

�
: �38�
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According to Bayes' theorem, the approximate posterior pdf p�Kju0;W � is the product of the approxi-
mate likelihood function f �X ; s�; l�jK;W � and the prior distribution p�Kju;W �. If the the normalization
factor is taken into account, we have

p�Kju0;W � �
YN
i�1

YK
k�1

YD

d�1

�������
s0ikd

2p

r
exp

�
ÿ 1

2
s0ikd mikd

ÿ ÿ l0ikd

�2
�
; �39�

with

s0ikd � sikd � s�ikd ; �40�

l0ikd �
likd � sikd � l�ikd � s�ikd

sikd � s�ikd

: �41�

Substitute Eqs. (35) and (36) into Eq. (33), we have

~p�Xju;W � � C�
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�
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�
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�
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p�Kju0;W � : �42�
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