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Abstract

In speech recognition, confidence measures (CM) are used to evaluate reliability of recognition results. A good con-

fidence measure can largely benefit speech recognition systems in many practical applications. In this survey, I summa-

rize most research works related to confidence measures which have been done during the past 10–12 years. I will

present all these approaches as three major categories, namely CM as a combination of predictor features, CM as a

posterior probability, and CM as utterance verification. Then, I also introduce some recent advances in the area. More-

over, I will discuss capabilities and limitations of the current CM techniques and generally comment on today�s CM
approaches. Based on the discussion, I will conclude the paper with some clues for future works.
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1. Introduction

Automatic speech recognition (ASR) has
achieved some substantial successes in past few

decades mostly attributing to two prevalent tech-

nologies in the field, namely hidden Markov mod-

eling (HMM) of speech signals and efficient

dynamic programming search (also known as

decoding) techniques for very-large-scale networks.

Today, in many aspects, it has become a standard
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routine to build a state-of-the-art speech recogni-

tion system for any particular task if sufficient

training data is provided for the target domain.
However, when we migrate speech recognition sys-

tems from laboratory demonstrations to real-

world applications, even the best ASR systems

available today still encounter some serious diffi-

culties. First of all, system performance usually

dramatically degrades in the real fields because of

ambient noises, speaker variations, channel

distortions and many other mismatches. How to
maintain and/or improve ASR performance in

real-field conditions has been extensively studied

in speech community under the topic of robust
ed.
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speech recognition. Many good tutorial and over-

view papers, such as Juang (1991), Gong (1995),

Lee (1998b) and many others, can be easily found

in the literature with regard to this topic. Secondly,

since every speech recognizer inevitably will make
some mistakes during recognition, outputs from

any ASR system are always fraught with a variety

of errors. Thus, in any real-world application, it is

extremely important to be able to make an appro-

priate and reliable judgement based on the error-

prone ASR results. This requires the ASR systems

to automatically assess reliability or probability of

correctness for every decision made by the systems.
Nowadays, to certain degree, the capability to

evaluate reliability of speech recognition results

has been regarded as a crucial technique to in-

crease usefulness and ‘‘intelligence’’ of an ASR

system in many practical applications. In this area,

researchers have proposed to compute a score

(preferably between 0 and 1), called confidence

measure (CM), to indicate reliability of any recog-
nition decision made by ASR systems. For exam-

ple, a CM can be computed for every recognized

word to indicate how likely it is correctly recog-

nized or for an utterance to indicate how much

we can trust the results for the utterance as a

whole. Despite a large amount of research efforts

in the past, we still believe that robust speech rec-

ognition and confidence measure will remain as
two most active and influential research topics in

speech community for a foreseeable future. Due

to importance of CM in ASR systems, it has at-

tracted considerable research attention from most

major speech research groups all over the world

and an excessive amount of research works have

been reported in the past decade. But, unlike ro-

bust speech recognition, so far we have not seen
too many overview papers in the literature to sur-

vey this important and active topic. This largely

motivates me to write a comprehensive survey to

summarize the CM-related research works re-

ported mostly in the past 10–12 years. In the sur-

vey, I will mainly highlight the major progresses

we have achieved in the CM area during the past

decade. And I will stress some promising CM com-
putation approaches which are theoretically sound

and experimentally superior, and also discuss their

capabilities and limitations. Finally, I will present
some comparative discussions with respect to all

reported CM computation methods and conclude

the paper with some clues for possible future

works from my personal perspective. Throughout

the paper, I will attempt to present the CM tech-
niques from a fairly high level and avoid technical

and experimental details as much as possible, for

which readers may wish to refer to the original pa-

pers. At the end of this paper, I also compose a

comprehensive list of reference papers for the con-

venience of readers, which includes most of pub-

lished works relevant to confidence measures in

ASR. To my best knowledge, Lee (2001) seems
to be the only CM-related overview paper which

gives some good tutorials on statistical nature of

confidence measure problems and also enumerates

many potential CM applications for ASR.

First of all, we can backtrack some early re-

search works on confidence measure (CM) to

non-keyword rejection in word-spotting systems

which were proposed to handle unconstrained
speech inputs, such as Wilpon et al. (1990),

Mathan and Miclet (1991), Chigier (1992), Rose

(1992), Sukkar and Wilpon (1993), etc. In these

works, they first adopted the so-called garbage or

sink models to explicitly model non-keywords,

extraneous speech and background noises in

unconstrained input utterances, with which key-

word spotting systems first recognize speech inputs
to detect all embedded keywords as well as other

speech segments corresponding to non-keywords

or noises. Besides all of these, they all noticed a

need to build additional rejection module to effec-

tively distinguish non-keywords from the detected

keywords in order to reduce false alarms in non-

keyword rejection. Apparently, the rejection

module can be viewed as a stage to investigate reli-
ability or confidence measures for the decisions

made by word-spotters. Secondly, other early

CM-related works lie in automatic detection of

new words (out of the current lexicon) in large

vocabulary speech recognition, such as Asadi

et al. (1990), Young and Ward (1993) and Young

(1994), etc. In addition to modeling out-of-vocab-

ulary (OOV) words with a (or a set of) generic hid-
den Markov model(s), Young and Ward (1993)

proposed to use word score normalization to de-

tect misrecognition and out-of-vocabulary words
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for continuous speech recognition. Young (1994)

first elucidated how to use the posterior probabil-

ity as a confidence measure for speech recognition,

where she employed the acoustic score normaliza-

tion based on a separate all-phone recognition to
approximate such a posterior probability. Young

(1994) also tried to combine the normalized acous-

tic scores with other high-level knowledge sources,

e.g. semantic, pragmatic and discourse analysis, to

improve quality of confidence measures. Thirdly,

Sukkar and Wilpon (1993), Sukkar (1994) and

others realized that confidence measures for ASR

become extremely important when speech recogni-
tion technology is applied to any practical applica-

tions or services for end-users. Some intensive

research efforts at the former AT&T Bell Labs re-

sulted in lots of fruitful works related to confi-

dence measure for ASR, but under a different

name, namely utterance verification. Rose et al.

(1995a) first formally cast the confidence measure

problem in speech recognition as a statistical
hypothesis testing problem in classic statistics

and proposed to use likelihood ratio testing

(LRT) to solve the problem. Then, the LRT-based

formulation has become the basic theoretical foun-

dation for the follow-up works (e.g. Sukkar and

Lee, 1996; Rahim et al., 1997; Rahim and Lee,

1997a,b; Sukkar et al., 1997, etc). In these works,

they discovered that some discriminative training
techniques, such as minimum classification error

(MCE) and minimum verification error (MVE)

methods, can significantly improve performance

of modeling both the null and alternative hypothe-

ses in utterance verification. Finally, a tremendous

amount of research activities have been carried out

more recently in this area to seek for some reliable

confidence measures for ASR, mainly driven by an
increasing number of dialogue applications. Based

on confidence measures, spoken language systems

will be able to handle error-prone ASR outputs

more intelligently in those post-recognition mod-

ules, such as language understanding and dialogue

management (e.g., see Hazen et al., 2000). Some

representative works include Eide et al. (1995),

Cox and Rose (1996), Chase (1997), Gillick et al.
(1997), Neti et al. (1997), Kemp and Schaaf

(1997), Schaaf and Kemp (1997), Weintraub

et al. (1997), Rueber (1997), Jiang and Huang
(1998), Willett et al. (1998), Siu and Gish (1999),

Benitez et al. (2000), Wessel et al. (2000), Kamp-

pari and Hazen (2000), Kamppari and Hazen

(2000), Jiang et al. (2001), Jiang and Lee (2002),

Jiang and Lee (2003), San-Segundo et al. (2001),
Zhang and Rudnicky (2001) and many others.

Generally speaking, all methods proposed for

computing confidence measures (CMs) in speech

recognition can be roughly classified into three

major categories. Firstly, a large portion of works

aim to compute confidence measures based on a

combination of the so-called predictor features,

which are collected during decoding procedure
and may include acoustic as well as language infor-

mation about recognition decisions. Then all pre-

dictor features are combined in a certain way to

generate a single score to indicate correctness of

the recognition decision. We will briefly summa-

rize these methods in Section 2. Secondly, it is well

known that the posterior probability in the stan-

dard maximum a posterior (MAP) decision rule
is a good candidate for CM in speech recognition

since it is an absolute measure of how well the

decision is. However, it is very hard to estimate

the posterior probability in a precise manner due

to its normalization term in the denominator. In

practice, many different approaches have been

proposed to approximate it, ranging from simple

filler-based methods to complex word-graph-based
approaches. We will introduce these methods in

Section 3. Next, as already mentioned above, un-

der the name of utterance verification (UV), lots

of works have been conducted to verify the

claimed content of a spoken utterance. The con-

tent can be hypothesized by a speech recognizer

or keyword detector or human transcriber. Under

the framework of utterance verification (UV), the
CM problem can be formulated as a statistical

hypothesis testing. In Section 4, we will briefly

present all proposed methods in this category,

ranging from the LRT-based non-Bayesian ap-

proach (based on Neyman–Pearson Lemma) to

the Bayes-factors-based Bayesian approach. We

also introduce how to use some discriminative

training methods to improve modeling in UV. In
the remainder of the paper, in Section 5, I will first

mention several samples of very recent research

advances regarding CM computation, including
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an in-search data selection for improving verifica-

tion models in UV, and a novel idea to compute

confidence measures based on neighborhood infor-

mation in model space, and how to annotate con-

fidence measures based on semantic information
measured by latent semantic analysis (LSA). In

Section 6, I will discuss about performance com-

parison issues among all different CM methods

and focus on capabilities and limitations of the

current CM techniques in a variety of potential

applications. Finally, I will make some general

comments on CM methods in ASR and conclude

this paper with some clues for future works.
2. CM as combination of predictor features

In the literature, a very large portion of CM-re-

lated works aim to search for a predictor feature

(or a set of features) which is informative to

distinguish correctly recognized results from other
possible recognition errors. Any feature can be

called a predictor if its probabilistic distribution

(e.g., p.d.f.) of correctly recognized words is

clearly distinct from that of misrecognized words.

Usually, the predictor features may have to be

collected within the recognition process at levels

of acoustics, language model, syntax, and seman-

tics. Some common predictor features reported in
the literature may include:

• Pure normalized likelihood score related: acous-
tic score per frame.

• N-best related: count in the N-best list, N-best

homogeneity score (the weighted ratio of all

paths passing through the hypothesized word

in N-best list), top N recognition scores, top
N � 1 difference in adjacently ranked recogni-

tion scores, etc.

• Acoustic stability: a number of alternative

hypotheses are generated based on different lan-

guage model weights in decoding and acoustic

stability of any given word is defined as the

number of times the word occurs in the list

divided by the number of alternatives in the list.
• Hypothesis density: the number of alternative

arcs spanning the time segment of the recog-

nized word in word graph.
• Duration related: HMM state duration, pho-

neme duration, word duration.

• Language model (LM) related: LM score, LM

back-off behavior, etc.

• Parsing related: whether or not a word is parsed
by grammar in robust parsing, position of each

parsed word within the sematic slot (either edge

or middle), the language model back-off mode

of the whole parsed slot, etc.

• Posterior probability related: see Section 3 for

details.

• Log-likelihood-ratio related: see Section 4 for

details.

For more predictor features, please refer Cox

and Rose (1996), Schaaf and Kemp (1997), Chase

(1997), Benitez et al. (2000), San-Segundo et al.

(2001), etc. An ideal predictor feature should pro-

vide strong information to separate the correctly

recognized words from other misrecognitions and

the distribution overlap between the two classes
should be minor. However, none of the above pre-

dictor features is ideal in this sense. As reported in

many papers, the overlap is actually quite large

even for the best predictor feature. Therefore,

some people attempt to combine several different

predictor features for a better performance. Many

different combinational models have been reported

in the literature, including linear discriminant
function (Sukkar, 1994; Sukkar and Lee, 1996),

generalized linear model (Gillick et al., 1997; Siu

and Gish, 1999), single or mixture Gaussian classi-

fier (Chigier, 1992), neural networks (Mathan and

Miclet, 1991; Weintraub et al., 1997; San-Segundo

et al., 2001), decision tree (Eide et al., 1995; Neti

et al., 1997), support vector machine (Zhang and

Rudnicky, 2001), boosting (Moreno et al., 2001)
and others. In most cases, parameters of combina-

tional models are estimated from some discrimina-

tive training procedures based on some criteria

such as cross-entropy, classification error rate

(see Weintraub et al., 1997 for more details about

this).

A combination approach can improve the over-

all performance only when all individual compo-
nents are statistically independent. Obviously,

this is not the case for the above predictor features.

It has been observed in many experiments that all



H. Jiang / Speech Communication 45 (2005) 455–470 459
these predictor features are highly correlated,1 re-

fer to Kemp and Schaaf (1997), Schaaf and Kemp

(1997), Jiang and Huang (1998) and etc. Usually

the combination methods cannot significantly im-

prove over the best predictor feature. We believe
that an interesting combination strategy lies in

combining the best acoustic features, such as pos-

terior probability and N-best related ones, with

other pure language features, such as parsing-

and/or semantic-related ones, as in Zhang and

Rudnicky (2001), Guo et al. (2004) etc. However,

so far we have not seen any compelling results

by combining various predictor features in confi-
dence measure estimation.
3. CM as posterior probability

It is well known that the conventional ASR

algorithm is usually formulated as a pattern classi-

fication problem using the maximum a posterior
(MAP) decision rule to find the most likely se-

quence of words bW which achieves the maximum

posterior probability p(WjX) given any acoustic

observation X, i.e.,

bW ¼ argmax
W 2R

pðW j X Þ

¼ argmax
W 2R

pðX j W Þ � pðW Þ
pðX Þ

¼ argmax
W 2R

pðX j W Þ � pðW Þ ð1Þ

where R denotes the set of all permissible sen-

tences, p(W) is the probability ofW evaluated with

a language model, p(X) is the probability of

observing X, and p(XjW) is the probability of

observing X by assuming that W is the underlying
word sequence for X. In theory, the posterior

probability p(WjX) is a good confidence measure

for the recognition decision that X is recognized

asW. However, as shown in Eq. (1), most practical

ASR systems simply ignore the term p(X) in deci-

sion-making because it is constant across different

words W. This explains why the raw ASR scores
1 Refer to final remarks in Section 7 for a possible explana-

tion for this.
are inadequate as confidence measures to judge

recognition reliability. However, after being nor-

malized by p(X), the posterior probability

p(WjX) can serve as a good confidence measure

since it represents the absolute quantitative mea-
sure of the match between X and W. In theory,

we should compute p(X) as follows:

pðX Þ ¼
X
H

pðX ;HÞ ¼
X
H

pðHÞ � pðX j HÞ ð2Þ

where H denotes any a hypothesis for X, and the

above summation must be done over all possible

hypotheses for X, including all combinations of

words, phonemes, noises and other events. Obvi-

ously, without any further constraint, it is impossi-

ble to enumerate and model all these hypotheses so

that it is extremely difficult to estimate p(X) in a
precise manner. In practice, we have to either im-

pose certain assumptions or adopt some approxi-

mate methods when estimating p(X) for the

posterior probability.

In the first category, it includes the so-called fil-

ler-based methods which try to calculate p(X) from

a set of general filler or background models, i.e.,

all-phone recognition (Young, 1994), catch-all
model (Kamppari and Hazen, 2000), the highest

score in recognizing the word from decoder (Cox

and Rose, 1996), etc. These approaches are very

straightforward and usually can achieve an reason-

able performance in many cases. In another cate-

gory, there are the so-called lattice-based methods

which attempt to calculate p(X), then the posterior

probability p(WjX) in turn, from a word lattice or
graph based on the forward–backward algorithm,

such as Kemp and Schaaf (1997) and Wessel

et al. (1998, 1999, 2000, 2001). Usually, one word

lattice or graph is generated by the ASR decoder

for every utterance. Then the posterior probability

of each recognized word or the entire hypothesized

sentence can be calculated based on the word-

graph from an additional post-processing stage.
Since word graph is a compact and fairly accurate

representation of all alternative competing hypoth-

eses of the recognition result which usually domi-

nate the summation when computing p(X) over a

variety of hypotheses in Eq. (2), the posterior prob-

ability calculated from a word graph can approxi-

mate the true p(WjX) pretty well. Therefore, the



460 H. Jiang / Speech Communication 45 (2005) 455–470
resultant confidence measures generally achieve

better performance than all other CMs mentioned

in the above. However, generating word graphs

and scoring word-graphs for posterior probabili-

ties are relatively complicated and quite demanding
in computation, especially in large vocabulary

ASR systems. Thus, for the sake of simplicity, an

N-best list can also be used in place of word graph

for this purpose, such as Rueber (1997), Wessel

et al. (1999), etc. Due to its superior performance

as a CM for ASR, in the following, I will review

some details about how to compute posterior

probabilities from a word graph as originally re-
ported by Wessel et al. (2001).
2 Note that the posterior probability of an arc given the word

graph X differs from the original posterior probability given the

utterance X.
3.1. Word graph notations

Usually the ASR decoder generates a word

graph X for each utterance X. Here, the word

graph is represented as a directed, acyclic, weighted

graph. All its nodes represent discrete points in
time. Each arc is labeled with three variables, i.e.

½w	es , where w is the hypothesized word attached

to the arc, and s and e denote the starting and end-

ing time instances of the arc respectively. Also,

each arc is associated with a weight, BðwÞes , which
is actually acoustic score of generating acoustic fea-

ture vectors from time s to e based on the HMM of

word w. In every word graph, there are two special
nodes: one is called START node which corre-

sponds to the beginning of the utterance and one

END node for the end of the utterance. Any path

from START node to END node is called a com-

plete path which represents a sentence (a sequence

of words) hypothesis for the underlying utterance.

Let us assume a complete path in word graph X
of an utterance X, which consists of n different arcs
as C ¼ f½w1	e1s1 ; ½w2	e2s2 ; . . . ; ½wn	ensng. Obviously, it is

straightforward to compute the probability of

this complete path given the word graph X as

follows:

pðC j XÞ ¼
Yn
i¼1

BðwiÞeisi � pðwi j hiÞ ð3Þ

where hi denotes the history of word wi along the
path and p(wijhi) is the language model score com-

puted with n-gram language models.
3.2. Posterior probability of an arc

Based on the above notations, it is easy to com-

pute the posterior probability of any arc a ¼ ½w	es
given the word graph X, namely pða j XÞ.2 Nor-
mally, pða j XÞ is calculated as a ratio between

the total probability of all complete paths passing

through the arc a to that of all complete paths in

X, i.e.,

pða j XÞ ¼
P

C2X;a�CpðC j XÞP
C2XpðC j XÞ ð4Þ

where C 2 X denotes C is a complete path in word

graph X and a�C denotes that the complete path

C passes through the arc a. The posterior probabil-

ity pða j XÞ can be efficiently computed based on a
forward–backward algorithm. A forward proba-

bility as(a) is recursively computed from the start-

ing node of the arc a backward until the START

node of the word graph as:

asðaÞ ¼ BðwÞes �
X
a0

as0 ða0Þ � pðw j h0Þ ð5Þ

where the summation is conducted for all arcs a 0 (s 0

is the starting time of a 0) merging into the starting

node of a and h 0 is word history of w in language

model computation. Analogously, a backward

probability be(a) is computed from the ending node

of a forward until END node of the word graph as:

beðaÞ ¼
X
a00

be00 ða00Þ �Bðw00Þe
00

s00 � pðw00 j h00Þ ð6Þ

where the summation is conducted over all arcs a00

(e00 is the ending time of a00 and w00 is word id in a00)
leaving the ending node of a and h00 is word history

of w00 when calculating language model score.

Obviously, the numerator in Eq. (4) can be com-

puted as the product of as(a) and be(a). And the

denominator in Eq. (4) can be recursively com-

puted as forward probability as(a) in Eq. (5) start-

ing from START node until END node of the

word graph or backward probability be(a) in Eq.
(6) from END node backward to START node

of word graph.
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3.3. Posterior probability of a recognized word

We can directly use the posterior probability,

pða j XÞ, of the arc, a ¼ ½w	es , as confidence mea-

sure for the recognized word w. But it has been
shown that it does not perform very well as a con-

fidence measure for w. We know that except the

arc a ¼ ½w	es , there are usually lots of other arcs

in word graph that have the same word id w but

slightly different starting time s and ending time

e. It will underestimate confidence measure of w

if we only count pða j XÞ for w. Thus, it is very

important to take into account other arcs which
have the same word id w but slightly different s

and e. Wessel et al. (2001) proposes three different

ways to solve this problem. In the first method,

called Csec, when calculating confidence measure

for the word w in an arc a ¼ ½w	es , we sum over

all arcs in word graph which have the same word

id w and intersect with the current arc a ¼ ½w	es in
time domain. In the second method, called Cmed,
we only accumulate posterior probability for all

arcs with the same word id which intersect the

median time frame of the arc under consideration.

In the third approach, called Cmax, we determine a

best-case probability for word w in an arc a ¼ ½w	es .
We accumulate posterior probability for all arcs

(with the same word id) which not only intersect

the median time frame but also all other time
frames between s and e, and then choose the max-

imum one from these sums as the confidence mea-

sure for the word w in the underlying arc. Based on

Wessel et al. (2001), the third method, namely

Cmax, yields the best performance.

There are many other implementation issues to

consider when computing posterior probability in

word graph, e.g., scaling of probabilities in sum-
mation, elimination of redundant silence edges,

etc. Readers are referred to Wessel et al. (2001)

for more details.
4. CM as utterance verification

Mainly motivated by speaker verification prob-

lem, Rose et al. (1995a), Sukkar and Lee (1996),

Rahim et al. (1997) have proposed to tackle con-

fidence measure problems from a different pers-
pective. Under the framework of utterance

verification (UV), the confidence measure problem

in ASR is formulated as a statistical hypothesis

testing problem. For a given speech segment X, as-

sume that an ASR system recognizes it as wordW
which is represented by an HMM kW. Utterance

verification is a post-processing stage to examine

the reliability of the hypothesized recognition re-

sult. Under the framework of UV, we first propose

two complementary hypotheses, namely the null

hypothesis H0 and the alternative hypothesis H1

as follows:

H 0 : X is correctly recognized and truly

comes from model kW

H 1 : X is wrongly classified and is

NOT from model kW

ð7Þ

Then we test H0 against H1 to determine whether

we should accept the recognition result or reject

it. According to Neyman–Pearson Lemma, under

some conditions, the optimal solution to the above

testing is based on a likelihood ratio testing (LRT),

i.e.,

LRT ¼ pðX j H 0Þ
pðX j X 1Þ

?

H0

H1

s ð8Þ

where s is the critical decision threshold. The

LRT-based utterance verification provides a good

theoretical formulation to address confidence mea-

sure problems in ASR. As pointed out by Lee

(2001), the above LRT score can be transformed
to a confidence measure based on a monotonic

one-to-one mapping function. The major difficulty

with LRT is how to model the alternative hypoth-

esis which usually represents a very complex and

composite event, where the true distribution of

data is unknown. In practice, as in (Rose et al.,

1995a; Sukkar and Lee, 1996; Rahim et al.,

1997), the same HMM structure is adopted to
model the alternative hypothesis, which can be a

general background model, or hypothesis-specific

anti-model, or a set of competing models, or a

combination of all the above. In these works, a

variety of training methods have been used to esti-

mate HMMs for the alternative hypothesis. It is

generally agreed that a discriminative training pro-

cedure plays a crucial role in improving modeling
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posterior odds in favor ofH0, and
PrðH0Þ
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H0.
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performance for the alternative hypothesis. In

(Sukkar and Lee, 1996), a GPD (generalized prob-

abilistic descent) based discriminative training pro-

cedure is used to estimate parameters of a linear

discriminant function based on a criterion to min-
imize sub-word level verification error counts rep-

resented by a sigmoid function. In (Rahim et al.,

1997), it is found that the minimum classification

error (MCE) training, which is originally proposed

to reduce recognition errors, can contribute to

improving performance of UV. In (Rahim and

Lee, 1997a; Sukkar et al., 1997), a GPD-based

training algorithm is proposed to achieve mini-
mum verification error (MVE) estimation for

utterance verification with respect to optimizing

verification HMM parameters. In MVE, the

string-level verification errors are approximated

by using a sigmoid function embedded with a mis-

verification function, which actually is negative

log-likelihood ratio used in verification. Then the

total empirical verification errors can be mini-
mized over all training data by optimizing the ver-

ification HMM parameters corresponding to the

both null and alternative hypotheses. The optimi-

zation can be iteratively achieved by using the

GPD algorithm. Experiments clearly show all

these discriminative training methods can largely

improve performance of the LRT-based utterance

verification.
Alternatively, if we consider the above UV

problem from a Bayesian viewpoint, the final solu-

tion ends up with calculating and evaluating the

so-called Bayes factors as in (Jiang and Deng,

2001). Bayes factors has its solid foundation from

Bayesian theory. Given the speech data X along

with the above two hypotheses H0 and H1, Bayes

factors is computed as:

BF ¼ p̂ðX j H 0Þ
p̂ðX j H 1Þ

¼
R
f ðX j k0;H 0Þ � pðk0 j H 0Þdk0R
f ðX j k1;H 1Þ � pðk1 j H 1Þdk1

ð9Þ

where, for k = 0,1, kk is the model parameter under
Hk, p(kkjHk) is its prior density, and f(Xjkk,Hk) is
the likelihood function of kk under Hk.

Bayes factors offers a way to evaluate evidence

in favor of the null hypothesis H0 because Bayes
factors is the ratio of the posterior odds of H0 to

its prior odds, regardless of the value of the prior

odds.3 Therefore, Bayes factors can be used to

compare with a threshold, just like the likelihood

ratio in Neyman–Pearson lemma, to make a deci-
sion with regard to H0. In other words, if BF > s,
where s is a pre-set critical threshold, then we ac-

cept H0, otherwise reject it. Like LLR, the BF va-

lue can also be transformed or formulated as a

confidence measure for ASR.

As shown in (Jiang and Deng, 2001), Bayes fac-

tors is a powerful statistical tool to model compos-

ite hypotheses and can be used to solve many
different verification problems. The same formula-

tion proposed for speaker verification in (Jiang

and Deng, 2001) is also equally applicable to the

above UV problem though no research work has

been reported about this. The key issues are what

role the prior distributions p(k0jH0) and p(k1jH1)

will play in utterance verification and how to use

them as a flexible tool to incorporate a variety of
information sources useful for UV.
5. Some recent efforts

Confidence measure or utterance verification

aims to verify reliability of speech recognition out-

puts, which significantly differs from other typical
verification problems in statistics, such as test for

goodness-of-fit, and outlier detection in statistical

data analysis. We believe that it is beneficial not

to isolate confidence measure (or utterance verifi-

cation) from its prior recognition stage. In acoustic

level, it is very important to know the distribution

properties of competing sources in recognition

phase in order to optimize performance of CM
or UV. In the following, I will first present two

pieces of recent research works along this direc-

tion. Besides, I will also briefly summarize some

other research works to integrate some high-level

knowledge (beyond acoustic information) for

CM or UV.
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5.1. In-search data selection for accurate

competing models

Under the UV framework, it is not an easy job to

model the alternative hypothesis. Rose et al.
(1995a), Sukkar and Lee (1996), Rahim et al.

(1997) propose to use the so-called anti-models for

this purpose. However, it is still unclear what data

should be used to estimate these anti-models. In

their works, some heuristic methods are adopted,

such as performing forced-alignment against a

wrong or random transcript to generate training

data for each anti-model. More recently, Jiang
et al. (2001) propose a well-defined in-search data

selection procedure to collect the most representa-

tive competing tokens for eachHMM in the system.

Then the selected tokens can be used to estimate

highly accurate competing models for the utterance

verification purpose.

In (Jiang et al., 2001), we first define competing

tokens (CT) of any a given HMM as data seg-
ments which are misrecognized to this model dur-

ing recognition. A dynamic in-search data

selection method is proposed to collect competing

tokens for every HMM automatically from train-

ing data set. In the method, every utterance in

training set is recognized with the Viterbi beam

search algorithm just as in regular recognition

phase. During the Viterbi search, all potential seg-
ments located in all active partial paths within the

search beam width are compared with the refer-

ence segmentation generated from a forced-align-

ment procedure to determine whether each

segment should be a competing token or true to-

ken of the model. The procedure is carried out

for all training data to collect two token sets,

namely the competing token set SCðaÞ and the
true token set STðaÞ for every HMM a in the sys-

tem. The competing information collected in this

way is very valuable for utterance verification. Gi-

ven that a speech observation X is recognized asW

by the decoder, the original hypotheses in Eq. (7)

can be re-phrased as follows:

H 0 : X belongs toW ’s true token setSTðW Þ;
i:e:; X 2STðW Þ

H 1 : X belongs toW ’s competing token setSCðW Þ;
i:e:; X 2SCðW Þ ð10Þ
Comparing with the original hypotheses, both the

null hypothesis H0 and the alternative hypothesis

H1 in the above are well-defined from available

data, which in turn make our modeling problem

easier. The simplest way to model them is to esti-
mate two different models KT and KC for STðW Þ
and SCðW Þ respectively, based on all tokens col-

lected from training data. Then the LRT-based

utterance verification is operated as follows:

g ¼ pðX j H 0Þ
pðX j H 1Þ

¼ PrðX 2 STðW ÞÞ
PrðX 2 SCðW ÞÞ

¼ pðX j KTÞ
pðX j KCÞ

?

H0

H1

s ð11Þ

where s is the critical decision threshold. The

above models KT and KC can be estimated based

on different criteria, such as maximum likelihood

(ML), or minimum verification error (MVE), etc.

Jiang et al. (2001) shows the ML-trained models

already significantly surpass the conventional UV

methods, such as in (Sukkar and Lee, 1996; Suk-
kar et al., 1997; Rahim et al., 1997; Rahim and

Lee, 1997a).

5.2. UV based on neighborhood information in

model space

In (Jiang and Lee, 2002, 2003), a novel ap-

proach is proposed for utterance verification based
on competing information in model space. First of

all, let us look at the model space T of HMM.

Each HMM k in the system can be viewed as a

point in the model space T. Intuitively, we can

imagine two nested neighborhoods surrounding

the underlying model k, namely a small neighbor-

hood K1 and a medium neighborhood K2. The

small neighborhood K1 is a tiny neighborhood
which tightly surrounds the underlying model k.
As indicated in (Jiang et al., 1999), a neighborhood

with a relatively small size contains all variants of

the original model due to estimation errors and

possible mismatches in testing. It serves as a robust

representation of the original model. On the other

hand, the medium neighborhood K2 is significantly

larger than K1. As the neighborhood size increases,
it starts to cover all of its competing models in the

model space, which by definition should be close
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to the original one in some sense. Based on the

concept, we can translate the original hypotheses

in Eq. (7) in another way.

Once again, assume a speech observation X is

recognized asW which is represented by the model
kW. We are interested in verifying the reliability of

the decision. Given the decision that X is recog-

nized as model kW, if X is not from the model

kW (as stated in the alternative hypothesis), it is

reasonable to consider that X probably comes

from some competing model of kW. Therefore,

we can translate the original hypotheses in Eq.

(7) as:

H 0 : The true model of X

locates in the small neighborhood K1

H 1 : The true model of X

locates in the region K2 � K1

ð12Þ
where K2 � K1 denotes the holed region inside the
medium neighborhood by excluding the small

neighborhood, as shown in Fig. 1.

In (Jiang and Lee, 2002, 2003), an approach

based on Bayes factors is proposed to solve the

above hypothesis testing problem.
Fig. 1. Illustration of the hypothesis testing based on
g ¼
R

K1
f ðX j kÞ � p0ðkÞdkR

K2�K1
f ðX j kÞ � p1ðkÞdk

?

H0

H1

s ð13Þ

where f(Xjk) is likelihood function, and p0(k) and
p1(k) represent the prior distribution of model

parameters under the hypothesis H0 and H1

respectively. Furthermore, Jiang and Lee (2002)

propose two simple methods, i.e. a parametric def-

inition and a non-parametric one, to quantitively
define the neighborhoods as well as the prior dis-

tributions for the above formulation. Some preli-

minary experiments show some promising results

for utterance verification based on the above

framework. Obviously, much more research efforts

are needed to define the neighborhoods in a more

precise and controllable manner.

5.3. Incorporation of high-level information for CM

So far we have concentrated on confidence mea-

sures which solely rely on acoustic information.

However, other syntactical or sematic information

is also reported to provide certain clues for the

purpose of confidence measure, such as Young

(1994), Pao et al. (1998), Zhang and Rudnicky
(2001), etc. More recently, Cox and Dasmahapatra
the neighborhood information in model space.



H. Jiang / Speech Communication 45 (2005) 455–470 465
(2002) report that human can clearly identify a cer-

tain portion of recognition errors in recognizer

outputs on purely semantic grounds. They also

propose to use latent semantic analysis (LSA) to

annotate confidence scores for recognized words.
Latent sematic analysis (LSA) is a technique for

associating words that are ‘‘semantically coher-

ent’’. The semantic coherence between any two

words is computed as the cosine of the angle be-

tween the two vectors corresponding to these two

words in a reduced subspace. Thus, confidence

measure of a recognized word is calculated as an

average of coherence of this word with all other
recognized words in a close context. Although

CMs based on this kind of semantic information

is generally not as good as the best CMs in the

acoustic level, a combination probably will yield

a better performance due to their clear indepen-

dence. More recently, Guo et al. (2004) conduct

some comparative experiments to combine high-

level confidence measures, which are based on
LSA and/or inter-word mutual information, with

the word posterior probability based CMs calcu-

lated from word graphs. Some moderate gains

have been shown in two large vocabulary speech

recognition tasks.
6. Performance and applications of CM:
Capabilities and limitations

It is well known that good confidence measures

will largely benefit a variety of ASR applications,

e.g., to smartly reject non-speech noises, detect/re-

ject out-of-vocabulary words, detect/correct some

potential recognition mistakes, clean up human

transcription errors in large training corpus, guide
the system to perform un-supervised learning,

provide side information to assist high-level

speech understanding and dialogue management,

and so on and so forth. However, confidence mea-

sures for ASR is an extremely difficult problem.

Even today�s best available CMs are generally

not good enough to effectively support most of

the above-mentioned applications. In this section,
we first briefly talk about the assessment problem

of confidence measures in ASR. Then, based on

my personal understanding, I will discuss on per-
formance issues of various CMs. At last, I will

point out several promising applications for the

current CMs in ASR even though many other

applications are apparently beyond the capability

of today�s techniques.
When evaluating confidence measure annota-

tion, we usually encounter two types of errors,

namely false alarm errors and false rejection er-

rors. Obviously, receiver operating characteristic

(ROC) curve gives a full picture of verification per-

formance at all operating points. In many cases, it

is convenient to use a single-number metric for

CM assessment. Some widely used metrics include
equal error rate (EER), confidence error rate, nor-

malized cross entropy, etc. Refer to Kemp and

Schaaf (1997), Siu and Gish (1999), Maison and

Gopinath (2001) and Wessel et al. (2001) for de-

tails. Another important issue in CM evaluation

is to take recognition boundaries into account.

For example, a correctly recognized word may

have a very low confidence measure because its
boundary is wrong (though its identity is correct).

Thus, it is helpful to use the concept of ‘‘word-cor-

rectness’’ proposed by Weintraub et al. (1997) in

evaluating CMs.

As far as CMs performance issues are

concerned, it has been widely reported that N-best

related feature predictors perform much better

than other predictors introduced in Section 2 (see
Chase, 1997; Rueber, 1997; Williams and Renals,

1999, etc). Moreover, Wessel et al. (1998, 1999,

2001) clearly shows that posterior probabilities

calculated from word graphs significantly outper-

form N-best-related confidence measures. On the

other hand, along a totally different line, Sukkar

and Lee (1996, 1997) and Rahim et al. (1997,a)

demonstrate that MVE-based discriminative train-
ing significantly improve performance of utterance

verification. Furthermore, Jiang et al. (2001)

shows the performance of utterance verification

is largely improved over the previous UV ap-

proaches by using an in-search data selection

method to train some highly accurate competing

models. In (Garcia et al., 1999), the conventional

LRT-based utterance verification is compared
with posterior probabilities in word graph albeit

their implementation is an approximate one.

The results show word-graph-based posterior
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probabilities outperform the LRT-based utterance

verification methods. However, it still remains

unclear how the approach in (Jiang et al., 2001)

compares with word-graph-based posterior proba-

bilities in (Wessel et al., 2001). Moreover, it will be
more informative if all CMs are evaluated in a

common corpus for several well-designed verifica-

tion tasks. Generally speaking, the CMs based on

posterior probabilities derived from word graphs

are advantageous since language model scores

can be naturally incorporated in CM computation

in addition to acoustic information. But once

being strictly implemented as in (Wessel et al.,
2001), the performance of CMs cannot be easily

improved within the same paradigm because word

graphs with various sizes usually generate CMs

with similar performance. On the other hand, per-

formance of utterance verification can be progres-

sively improved by estimating better and better

verification models. And the hypothesis testing

paradigm, as formulated in LRT- or Bayes-fac-
tors-based testing, provides a flexible framework

to incorporate a variety of knowledge sources

which may be useful for CM computation.

As already mentioned above, the overall perfor-

mance of CMs (even the best ones) remains fairly

poor, which largely limits their applications. Some

early research onCMaimed to detect out-of-vocab-

ulary (OOV) words in large-vocabulary ASR sys-
tem. However, even by today, an effective

detection of OOV words in continuous speech rec-

ognition remains as an open question. It seems only

feasible to use CMs to reject OOV words in some

constrained small vocabulary applications, such

as isolated voice command controlling, etc. Besides,

a large amount of works have been conducted to

improve ASR performance with assistance of vari-
ous CMs (e.g., Neti et al., 1997; Jitsuhiro et al.,

1998; Vergyri, 2000; Wessel et al., 2000; Tan

et al., 2000; Lleida and Rose, 2000; Koo et al.,

2001 and others). A consistent and significant error

reduction over the state-of-the-art performance is

still not an easy goal to achieve4 unless the perfor-

mance of CMs is enhanced further. Moreover,
4 If counting the correct recognition results which are

mistakenly rejected.
CMs have been included in many spoken dialogue

systems to provide certain level of support for lan-

guage understanding and dialogue management.

But the CMs themselves are found not robust and

reliable enough to be a solid basis for decision-mak-
ing in many cases. In spite of these, the current CM

techniques still have a chance to shine if they are ap-

plied to a proper place. Although it is hard to detect

or correct errors made by ASR systems by using

CMs, it seems much easier to use CMs to detect hu-

man-made errors. Thus, it is promising to use CMs

to clean-up or verify transcription in a large corpus,

such as some preliminary studies in (Arslan and
Hansen, 1999; Li et al., 2002). In addition, there

are two other successful stories to apply CMs to

verify some decisions not hypothesized by ASR sys-

tems. One is verbal information verification (VIV)

in (Li et al., 2000) where the authors verify each in-

put utterance against pre-stored information, such

as birthday, address, phone number, etc, based on

its verbal content by using the LLR-based utter-
ance verification technique. Another one is Liu

et al. (2001) and Afify et al. (in press) where an

LLR-based CM is computed for a look-ahead

speech segment at each time instant to discard some

unlikely phonemes from further consideration in

full search stage. They demonstrate effectiveness

of using the LLR-based CMs in such a fast-match

stage for search space pruning prior to recognition
stage. Moreover, another interesting area to apply

CMs is un-supervised adaptation where CMs are

used to select more reliable speech segments from

recognizer�s outputs to self-improve recognition

models (e.g. Wallhoff et al., 2000; Goronzy, 2002

and many others). One important issue here is that

the operating point in verification stage should be

set up to guarantee a low false acceptance rate.
7. Final remarks

Although there are various types of CMs re-

ported for ASR, almost all CMs in acoustic level

fundamentally rely almost entirely on a single

information source, namely how much the under-
lying decision can overtake other possible compet-

itors. The larger the difference is the more

confident we will believe the decision to be. This
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explains why most research works to combine a

variety of CMs usually do not yield better results.

The various CM or UV methods mentioned in this

paper attempt to explore this discrepancy in differ-

ent ways (direct or indirect). For example, in the
posterior probability method based on a word

graph, if the recognition result significantly sur-

passes other competing choices in the word graph,

the contribution of the recognized path will domi-

nate the total posteriori probability computed

based on the forward–backward algorithm. In this

case, the derived CM will be large (close to 1). If

other competing paths in the word graph come
very close to the recognized results, the contribu-

tion of the recognized path will be relatively small

when computing the posterior probability. Thus,

the derived CM will be small (close to 0). Similarly

in UV, if the recognized result largely surpasses

other competitors, the likelihood under the null

hypothesis will be significantly larger than that of

the alternative hypothesis. As a result, the likeli-
hood ratio will be large. On the other hand, the

likelihood ratio will be small if the competing

sources from the alternative hypothesis gives com-

parable results with the recognized one in the null

hypothesis. This also explains why it is very impor-

tant to model distribution properties of competing

hypotheses when deriving CMs for ASR. Appar-

ently, it is a real challenge to compute any effective
CMs beyond this sole source. Besides, one major

drawback of almost all CM or UV methods is that

we only verify segment identities but never ques-

tion the correctness of segmentation hypothesized

by ASR systems. It is common that most recogni-

tion errors accompany with segmentation mistakes

in continuous speech recognition. A preliminary

study on boundary adjustment for UV can be
found in (Matsui et al., 2001). Three heuristic

methods to calculate word posterior probability

CM in word graph by Wessel et al. (2001), i.e.,

Csec, Cmed and Cmax as reviewed in Section 3.3,

also tackle the problem in an ad hoc way. We be-

lieve it is critical to improve performance of CMs

by taking this segmentation issue into account.

How to consider it effectively in any formal way
in CM estimation still remains unclear. Finally, de-

spite a large number of research activities in the

past, confidence measure estimation for ASR still
remains unsolved in so many aspects. Due to its

importance in practice and its difficulty in theory,

we expect much more research efforts will be de-

voted into this topic in coming years.
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