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A New Verification-Based Fast-Match for Large
Vocabulary Continuous Speech Recognition
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Abstract—A coustic fast-match is a popular way to accelerate the
search in large-vocabulary continuous-speech recognition, where
an efficient method is used to identify poorly scoring phonemes
and discard them from detailed evaluation. In this paper we view
acoustic fast-match as a verification problem, and hence develop
an efficient likelihood ratio test, similar to other verification sce-
narios, to perform the fast match. Various aspects of the test like the
design of alternate hypothesis models and the setting of phoneme
look-ahead durations and decision thresholds are studied, resulting
in an efficient implementation. The proposed fast-match is tested in
a large vocabulary speech recognition task and it is demonstrated
that depending on the decision threshold, it leads to 20-30% im-
provement in speed without any loss in recognition accuracy. In
addition, it significantly outperforms a similar test based on using
likelihoods only, which fails, in our setting, to bring any improve-
ment in speed-accuracy trade-off. In a larger set of experiments
with varying acoustic and task conditions, similar improvements
are observed for the fast-match with the same model and setting.
This indicates the robustness of the proposed technique. The gains
due to the proposed method are obtained within a highly efficient
2-pass search strategy and similar or even higher gains are ex-
pected in other alternative search architectures.

Index Terms—Fast-match, large vocabulary speech recognition,
search algorithms, utterance verification.

I. INTRODUCTION

HE last decade has witnessed increased interest in the ver-

ification problem among the speech research community.
The term verification encompasses a wide range of technologies
that have important practical applications. Simply stated, verifi-
cation reduces to the acceptance or rejection of a certain claim.
For example, speaker verification (SV) [1] deals with accepting
or rejecting a speaker’s identity using voice, verbal information
verification (VIV) [2] relates to the approval or denial of user’s
speech password, and utterance verification (UV) [3] focuses on
assessing, again for acceptance or rejection, the output of speech
recognition systems. This interest has led to the development
of new techniques that improved the performance of verifica-
tion-based systems.
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By formulating the verification problem in a hypothesis
testing framework where acceptance is associated to the null
hypothesis, and rejection to the alternative hypothesis, it was
shown that the optimal solution reduces to constructing a like-
lihood-ratio test (LRT) and comparing it to a threshold to arrive
at the optimal decision. While this unified framework is appli-
cable to the general verification problem, details for choosing
and training the corresponding models for both hypotheses
is problem-specific, and became an interesting research area
in different application domains. Intuitively, the LRT can be
viewed as an optimal normalization of a conventional likeli-
hood-based procedure. In addition to the hypothesis testing
framework, other alternatives exist for performing verification.
These are mainly based on using posteriors, where the sum
of all class probabilities is used as a normalization, or some
form of approximate posterior, where, for example, the sum is
replaced by maximum leading to a test that is very similar to
beam pruning, which is widely used in search algorithms. In
essence, these methods replace the alternative hypothesis score
by some quantity calculated from the class models. For a more
in-depth overview, we refer the reader to a recent review on the
verification problem [4].

In the statistical approach to automatic speech recognition the
best word sequence is chosen as the sequence which maximizes
the a posteriori probability of the words given the observations
[5]. Finding such a sequence requires in principle exploring
every valid word sequence hypothesis in order to determine the
best scoring one. Large vocabulary applications, on the order
of several thousand words, result in a very large state-space de-
fined by the language model, the acoustic-phonetic models of
phones, and the pronunciation lexicon. Hence, for these appli-
cations, finding the best word sequence involves an expensive
search in this state-space. Reducing this search space and hence
accelerating the computation is one of the most active research
areas in speech recognition. We refer the reader to [6]-[8] for
an overview of the recent trends of the search problem in auto-
matic speech recognition.

Look-ahead [7] techniques are among the popular ways for
reducing the search space. In these methods we look-ahead in
time using some acoustic and/or language model! probabilities
to predict some hypotheses that will score poorly in the future,
and hence discard them from detailed evaluation. In this article
we are primarily concerned with the application of ideas from
verification, as discussed above, to acoustic look-ahead tech-
niques, also named acoustic fast-match or simply fast-match.
Reference [7] contains an overview of language model look-
ahead techniques. In the rest of this section we first review some

Depending on using acoustic or language model look-ahead or both.
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popular fast-match techniques, then motivate and outline the use
of verification methods in fast-match design which will be dis-
cussed in detail in the rest of the paper.

The basic idea of a fast-match (FM) is to look-ahead in
time, using a computationally cheap method, to identify some
phonemes with poor acoustic scores and discard them from
the search space before detailed evaluation. In other words,
rather than expanding the search network with some phone hy-
potheses that are likely to be pruned after detailed scoring, these
hypotheses are pruned immediately, right after the fast-match
scoring. Using a FM improves the speed of the search at the
expense of risking the loss of the correct path. Hence a “good”
fast-match should accelerate the computation with minimal
loss of accuracy. Many fast-match algorithms were proposed
in the speech recognition literature. These algorithms share
the same basic idea but often differ in detail. Here we identify
two general types of fast matches: global fast-match (GFM),
and local fast-match (LFM). These two broad categories differ
in their use of available information in making the fast-match
decision. GFM combines the node score with the look-ahead
score in making the pruning decision. Thus, it mimics the true
search but uses a simpler network in calculating the fast-match
score. For example, in [9] a Viterbi search is run ahead of
the current time on a simple phoneme network using simple
acoustic models. This search leads to a score for each phoneme.
The total score of each potential path is then calculated based
on its current score (coming from the search) plus the fast match
score of the appropriate phoneme. The path is either pruned or
considered for detailed evaluation depending on this combined
score. On the other hand, in a LFM, only the local look-ahead
score is used in making the fast-match pruning decision. For
example, in phone deactivation pruning [10] the posterior
probability of a phoneme in a fixed length look-ahead interval
is used in taking a local pruning decision for the phoneme. Also
in the channel-bank approach of [11] the phoneme likelihood
in a fixed length window is compared to a threshold and used
for pruning. Thus, the main difference between GFM and LFM
lies in the use of the search score in taking the local pruning
decision. The distinction between the two is important in our
context because, as stated above, GFM mainly mimics the
original search and can not easily host ideas like posteriors or
verification, while LFM basically performs a local decision
irrespective of the search results, and hence can accommodate
easily such extensions.

This paper focuses on applying ideas from verification to
local fast-match. At a certain time instant the fast-match makes a
binary decision concerning the presence or absence of a certain
phoneme. This type of binary decision problem is very similar
to the verification problem. Using the current look-ahead infor-
mation we want to accept or reject the hypothesis that a certain
phoneme? will start at the current time. Using this reasoning the
LFM readily fits in the verification framework discussed above.
As stated at the beginning of this section a popular way to ap-
proach the verification problem is by using hypothesis testing
framework. In this approach, the likelihood ratio of the null and

2A word can be equivalently considered but we focus on phonemes in this
work.
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alternative hypotheses is formed and compared to a threshold
to make the required decision. Hence, we propose to use a sim-
ilar likelihood ratio based procedure for constructing a LFM for
large vocabulary speech recognition. In doing so we are mainly
motivated by the success of the hypothesis testing framework
in problems such as speaker and utterance verification [1], [3],
where this methodology has proved to be superior to the more
traditional approach that uses only likelihoods in making the de-
cision. Thus, we believe that using such a likelihood ratio based
verification scheme might be better than using only likelihood
in designing the fast-match. Alternative approaches to this like-
lihood ratio based scheme, such as using posterior, exist in the
verification literature, and have also been used for constructing
local fast-match as in [10]. The comparison to these techniques,
while interesting, is out of the scope of this paper and may be
pursued in future work.

In addition to formulating a LFM in a hypothesis testing
framework, and developing the corresponding likelihood ratio
based LFM scheme, we consider design issues of the proposed
approach. These include choosing and building appropriate
models for the null and alternative hypotheses, calculating the
decision thresholds, and calculating the look-ahead durations
of each phoneme. In all design issues our main focus is on
reducing the overhead incurred in calculating the fast match
score while keeping the error introduced by the fast-match
as small as possible. Considering these design considerations
is important because while the hypothesis testing framework
provides the necessary theoretical foundation, implementation
details are application specific and should be reconsidered
separately for each problem.

The paper is organized as follows. In Section II, we briefly
overview hypothesis testing theory. We then show how to cast
the acoustic fast-match as a hypothesis testing problem and
hence develop a likelihood ratio based fast-match scheme in
Section III. Section IV addresses design and implementation
issues of the proposed method. Our basic decoder structure
is briefly reviewed in Section V where it is shown how the
fast-match is incorporated in the search mechanism. We present
experimental results on a 20 K Japanese broadcast news task
in Section VI. These results demonstrate the computational
advantages introduced by the proposed fast-match compared to
the case of not using a fast-match an dalso using a fast-match
based on the likelihood score only. Finally, conclusions are
drawn in Section VIL

II. HYPOTHESIS TESTING

This section gives a brief introduction to hypothesis testing
theory. Hypothesis testing [12] is a general statistical frame-
work for deciding among several hypotheses based on some ob-
servations. In particular, binary hypothesis testing chooses one
among two hypotheses, usually referred to as the null (Hy) and
alternative (H;) hypotheses. In performing hypothesis testing
two types of errors can occur. These are quantified by the prob-
ability of miss py; = Pr(Say Hi|Hj is true), and the proba-
bility of false alarm pp = Pr(Say Ho|H; is true). Of course,
one would like to minimize both probabilities, but there is a
trade-off between them. Hence, we usually minimize py;, or
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equivalently maximize pp = 1 — pj; subject to the constraint
that pr is less than some specified value.

A solution to this problem is given by the Neyman-Pearson
Lemma. If the probability densities of the observation under
both hypotheses are given, we first form the likelihood ratio,
which is the ratio of the probability densities under the null
and alternative hypotheses. This ratio is further compared to a
threshold, and we decide in favor of Hj if the ratio is greater
than the threshold, and in favor of H; otherwise. The threshold
is determined to satisfy the constraint on the false alarm proba-
bility. Because the logarithm is a monotonic function, the above
procedure is usually implemented in terms of logarithms.

After this brief introduction to hypothesis testing we will
show in the next section how we can formulate the fast-match
as a hypothesis testing problem.

III. PROPOSED FAST-MATCH

This section formulates a fast-match as a hypothesis testing
problem. For a fast-match the null and alternative hypotheses
for phoneme o can be written as

Hy : « starts at time ¢

H; : o does not start at time ¢.

The first step toward developing a likelihood ratio test for
the above hypothesis testing problem is to define suitable
probability distributions for both hypotheses. These proba-
bility distributions can be written as P(X % | starts at t),
and P(X/T"|a does not start at t), where X! represents
acoustic observations in the interval [a, b], and d;, and dy (not
necessarily equal) are possible durations of both events. As
phonemes are known to have variable length it is not possible
to determine beforehand the values of both durations, and a
search procedure, as in [9], can be used to determine the best
end points at each time. On the other hand some types of fast
matches, e.g., [10], and [11], use a fixed look-ahead interval.
We adopt this fixed duration approach, and in this case the two
distributions reduce to P(X; 7% |a), and P(X!T%|@&), where
we set di = do = d,, and denote the models of the null and
alternative hypotheses «, and & respectively.

A note regarding the proposed fast-match is worth men-
tioning here. It is possible to define alternative fast match
methods based on P(a| X *?), the posterior probability of o
given the observations, and abandon the alternate hypothesis
altogether. This approach was used in [10] where a neural
network is used to supply the posterior value. In addition, the
denominator of the posterior can be further approximated as
max, P(X]T%|a), this results in a test which is similar in
spirit to beam pruning that is used in fast matches using a
network search [9]. As mentioned in the introduction all these
alternatives, including the proposed one, can be viewed as
different normalizations of the likelihood score which can be
considered as a baseline for all techniques. It is not usually
possible to arrive at general conclusions of which type of
normalization is better. However, if the problem is viewed in
the context of hypothesis testing, as done in this paper, the
likelihood ratio test is known to be optimal.

Now, assume the score of phoneme « at time ¢ is denoted
Si(«), and that the lookahead duration of « is d,. We define
S¢(«) as the log probability that « starts at ¢ and ends at ¢ + d,,.
Hence, we write S;(a) = log P(X! % |a), where X[ T4 is
the observation sequence in [t,t + d]. The log likelihood ratio
L,(«) can be written as

Li(a) = Si(a) — Si(a) (1)

where S, (@) = log P(X ! |a), and & stands for alternate hy-
pothesis model of phoneme «, and hence represents the alternate
hypothesis H; . The likelihood ratio test reduces to accepting Hy
when Li(«) > 1, and deciding H; otherwise, where 7, is the
decision threshold.

In order to calculate the null and alternate hypotheses scores
we must first evaluate the corresponding probabilities. A nat-
ural choice would be to use hidden Markov models (HMMs) to
calculate these probabilities. In addition, the score is calculated
for every time instance, and hence it would be interesting to in-
crementally calculate the score at time ¢ from the corresponding
score at time ¢ — 1. When using a fixed lookahead duration, the
work in [11] develops an elegant recursion to incrementally cal-
culate the phoneme scores for HMMs. Further, if a phoneme is
represented by a 1-state HMM, or equivalently a Gaussian mix-
ture model, the recursion reduces to the following very simple
formula

Si(a) = S—1() +1ogp (e4a, o) —logp(zi—1]a).  (2)

The probability p(x,|a) can be calculated as

M

Z CmN($T7 Homs Em)

m=1

~ max N (Tr, fhns Y ) 3)

plar|e) =

where M is the number of Gaussian mixture components, and
Cms Mm, and X, are the mixture weight, mean, and covari-
ance of the m'" Gaussian component. The dependence of these
quantities on the phoneme « has been dropped for convenience.
We also note that the maximum approximation, widely used in
calculating Gaussian mixtures, is used here for computational
efficiency and is different in principle from the beam pruning
type maximum approximation mentioned at the beginning of
this section.

In turn, the likelihood ratio can also be incrementally calcu-
lated as

Li(a) = Li—1(@) + ¢ (Tt4a, @) — q(zi—1, ) (4)

where

q(wr, @) = log p(a-|a) — log p(z-|@) Q)

and p(z,|@) is calculated as in (3) but using the parameters
of the alternate hypothesis model. We note that in performing
the Gaussian calculations in (3) we use the now popular Intel
streaming SIMD extension (SSE) instruction set [13], which ac-
celerates the Gaussian computations by about 50%.

At each time frame the proposed fast-match requires 2M
Gaussian calculations, an addition, and a subtraction for each



AFIFY et al.: NEW VERIFICATION-BASED FAST-MATCH

phoneme. This represents a very small overhead compared to
the Gaussian calculations for several thousand states, and the
time alignment needed by the original search. We did not mea-
sure explicitly the fast-match overhead and its performance will
be evaluated in the experiments. In the next section we will dis-
cuss implementation of the proposed fast-match.

IV. IMPLEMENTATION OF THE FAST-MATCH

In the previous section we showed how a fast match is for-
mulated as a hypothesis testing problem and derived a simple
test based on a fixed look-ahead duration and a Gaussian mix-
ture model assumption, that can be incrementally calculated
in each frame. However, several implementation issues for the
successful application of the proposed test remain to be ad-
dressed. These include the definition of alternate hypothesis or
anti-phoneme models, parameter estimation of the phoneme and
anti-phoneme Gaussian mixture models, and determining the
phoneme look-ahead durations and decision thresholds. These
issues will be addressed in this section.

A. Design of Anti-Phoneme Models

Choosing appropriate anti-phoneme models to account for
the alternate hypothesis and hence to be used in calculating the
likelihood ratio is known to be a very important design aspect
in all verification problems. A general trend in their design is to
consider either class specific models or a shared model, often re-
ferred to as background model. Both avenues were explored in
this work, i.e., we considered both a common background model
for all phonemes, and a separate anti-model for each phoneme.
While it can be argued that the background model contains in-
formation from the phoneme of interest this model has been
widely employed, and can be considered as representing the
whole structure of acoustic space in contrast to phoneme models
which are more related to the phoneme of interest. In initial ex-
periments we obtained similar results, in terms of speed-accu-
racy trade-off, for both the general background model and the
phoneme specific models. Given that the latter almost doubles
the number of fast-match computations a single background
model was used in all subsequent experiments. We should note
here that in other verification scenarios, e.g., utterance verifi-
cation [3], it was found that specific anti-models significantly
outperform a general background model.

B. Training of Phoneme and Anti-Phoneme Models

Once we arrive at a definition for anti-phoneme models it re-
mains to estimate their parameters, in addition to the phoneme
models parameters, from training data. This is done as follows.
First, a set of training utterances, e.g., those used in building
the acoustic models, is first segmented using forced alignment
into phoneme units. The training data for each class is then de-
fined by collecting all segments belonging to this class. For ex-
ample, for building a phoneme model all segments belonging to
this phoneme are pooled, and for constructing a general back-
ground model all training data are put together, while for cre-
ating phoneme specific anti-models all data not belonging to
the required phoneme are stacked. The collected data represent
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the training set for the class of interest. An interesting in-search
strategy for collecting alternate hypothesis training data was re-
cently proposed in [14], and may be considered for future work,
in place of the fixed segmentation approach taken here.

Once the training data of each class is collected, as discussed
above, maximum likelihood (ML) estimation can be used to
estimate its Gaussian mixture model. ML estimation is imple-
mented using the segmental K-means algorithm [15] to estimate
the mixture weights, means, and diagonal covariances of each
model. For simplicity, all models are assumed to have the same
number of components. Experimental results for varying the
number of components will be given in Section VL.

An alternative to ML estimation for estimating model pa-
rameters is the minimum classification error (MCE) learning
framework. MCE learning estimates the parameters by mini-
mizing a smooth estimate of the classification error using the
generalized probabilistic descent (GPD) algorithm. The appli-
cation of MCE to Gaussian mixture models is a special case of
the algorithm for continuous density HMM and can be found
in [16]. In other verification problems, e.g., utterance verifica-
tion [3], and speaker verification [17] it was found that the use
of a discriminative training algorithm significantly outperforms
an ML trained baseline. In our application, i.e., verification for
fast-match, we did not find, in initial experiments, a significant
gain, in terms of speed-accuracy trade-off, from using MCE
in building the Gaussian mixture phoneme and anti-phoneme
models. Thus, in the rest of the article we report results for ML
trained models.

C. Calculation of Look-Ahead Duration

As discussed in Section III the implementation of the fast
match requires the calculation of a look-ahead duration d,, for
each phoneme. In this work we use a very simple method for cal-
culating this look-ahead duration. After the segments belonging
to each phoneme are identified using forced alignment of the
training data, the look-ahead duration is computed as the av-
erage duration of these segments.

D. Calculation of Decision Thresholds

Determining the phone decision thresholds 7,, is an important
issue in designing the fast-match. In general hypothesis testing
problems, these thresholds are used to balance the trade-off be-
tween the miss and false alarm probabilities. For example in
some applications the equal error rate is used to determine their
values. For fast-match, a miss will lead to a recognition error
while a false alarm will result in additional search effort. As we
are mainly interested in minimizing the recognition errors in-
troduced by the fast-match we choose the decision threshold to
provide controlled coverage of the area under the correct score
density. This is done in the following simple way.

We start from the segmented acoustic training data, and the
Gaussian mixture models. Then for each phoneme we evaluate
the score, as in (1), of all segments in the training set belonging
to this phoneme . We calculate the mean score (i, and the stan-
dard deviation o, of the score of these segments. These repre-
sent the mean and the standard deviation of the distribution of
the likelihood ratio for correct phone segments in the training
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data. Then we control the coverage of the correct score den-
sity by choosing the threshold as lying at a multiple of the stan-
dard deviation below the mean. Thus, during the test we reject
those segments whose score lies at multiple of the standard de-
viation below the mean. Hence, the threshold is calculated as
Na = Mo — NO,. Here n is used to trade off the speed and accu-
racy. A large n leads to a slower but more accurate search and
vice versa. The choice of appropriate n will be addressed in the
experimental evaluation. We also note that when implementing
a likelihood based fast-match, as will be given in Section VI
for comparison purpose, the same procedure is used for deter-
mining the thresholds except for using the likelihood score in-
stead of the likelihood ratio.

V. BASIC DECODER STRUCTURE

The proposed fast-match can be applied to many of the well
known search strategies in continuous speech recognition. In
this section we briefly overview our two pass decoder and show
how to integrate the fast-match in this search.

The basic idea of the two pass search is to limit the poten-
tial search space to a set of most likely candidates using a fast
search strategy and simple acoustic and language models during
the first pass. These candidates are then rescored using detailed
acoustic and language models in the second pass. This two pass
strategy is adopted in many speech recognition systems. In par-
ticular, our search structure is similar to that in [18]. We will de-
scribe this two pass search below and more details can be found
in [19].

The first pass of our 2-pass decoder uses a single static tree
search structure, left biphone acoustic models, and a bigram
language model. Based on these ingredients a classical Viterbi
beam search is used, where at each time instant the top K can-
didates are propagated back into the root of the tree. The list of
the best word candidates at each time instant is kept for later
use in the backward pass. The forward pass results in a set of
likely words ending at each time frame. This is followed by a
backward pass whose search space is constrained by the results
of the first pass. The backward pass uses within-word triphone
models, and a backward trigram language model. The backward
pass is based on a Viterbi beam search on the constrained search
space.

The fast-match is invoked during the forward pass. As men-
tioned above the forward pass uses a single static tree to per-
form a Viterbi beam search. At each time instant the set of ac-
tive nodes in the tree are expanded to give rise to a set of new
arcs, as represented in Fig. 1. According to the lexicon each arc
has a certain phoneme label. Typically, many of these arcs are
expanded to be pruned later by the beam search. The fast-match
can be invoked to overcome this problem. At each time instant
the fast-match is run and each phoneme is either accepted or re-
jected according to the fast-match test. An arc is expanded only
if the corresponding phoneme passes the fast-match test. This
results in huge savings because the rejection of a phoneme will
lead to rejection of all arcs carrying this phoneme identity.

Possible Network Expansions

g
Active Nodes o
r ] l®
\.
Fast-match
hd pruning hd
o o
ry /4
— — e
‘o I
e

Initial Search Space Pruned Search Space

Fig. 1. Principle of the fast-match algorithm: before costly evaluation of
all possible network expansions, the fast-match is used to prune unlikely
hypotheses. Only the remaining hypotheses will be scored using detailed
acoustic models.

VI. EXPERIMENTAL EVALUATION

The proposed algorithm is tested on a Japanese broadcast
news transcription task, whose vocabulary is drawn from 20 000
words. Training and test speech data in addition to the trigram
language model are provided by the Japan Broadcasting Corpo-
ration (NHK).

We will report results on two series of experiments. First,
we will illustrate the behavior of the fast match algorithm on
a small development set, and describe how tuning the threshold
affects the performance of the system. Then, given the best set-
ting, we will evaluate the performance and robustness of the
fast-match on a much larger dataset including various acoustic
environments.

In the first series of experiments, the training data consists
of 90 h of speech. Context dependent hidden Markov models
are built using decision tree clustering [20]. The feature space is
39-dimensional consisting of 12 cepstrum coefficients, energy,
and their first and second order derivatives. The test set consists
of 162 utterances from male speakers, in a clean studio environ-
ment. The test set perplexity is about 34 and the out-of-vocab-
ulary (OOV) rate is 0.76%. Our baseline system runs in about
0.79 times real-time, for a word error rate (WER) of 4.04%. That
corresponds to a system that has been already highly optimized
for speed.

The fast-match model is trained on the same acoustic data
used for training the acoustic model. The phoneme models
are trained from segmented data using the segmental K-means
training algorithm. The background model is trained from the
data of all phonemes and has the same size as the phoneme
models. The look-ahead duration of each phoneme is taken as
its average duration in the training data. We evaluated various
design parameters of the fast-match namely the Gaussian
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Fig. 2. Percentage word error rate (WER) and real time factor (RT) for the
fast-match with mixture sizes 8, 16, and 32, and for different thresholds on
the development set. Likelihood ratio scores are used here for the fast-match.
The threshold is varied as ¢ — no where n € {4, 3.5, 3,2,1}, and higher n
indicate slower but more accurate search. The baseline result with 4.04% WER
and 0.79 RT is also shown.

mixture size, and the value of threshold. The Gaussian mixture
size is set to 8, 16, and 32 while the threshold is taken as
i — no as discussed in Section IV, and n takes the values
n € {4,3.5,3,2,1}. Large n indicates slower but more accu-
rate search and vice versa. The results are given in Fig. 2. The
figure shows that the performance, in terms of accuracy-speed
trade-off, is almost insensitive to the Gaussian mixture size
in the range 8-32. It also demonstrates the importance of the
threshold n in balancing the accuracy-speed trade-off. A value
of n around 3.0-3.5 accelerates the search by about 20%—-30%
while keeping almost the same accuracy.

The next set of experiments, shown in Fig. 3, compares the
performance, for different threshold values,? of both the like-
lihood ratio and likelihood based fast-match. The size of the
Gaussian mixture in this case is set to 8, and the thresholds are
taken the same as above. The results clearly indicate the superi-
ority of using the likelihood ratio based fast-match. In fact, the
likelihood based fast-match fails in bringing any improvement
in terms of accuracy-speed trade-off in our setting. This is in
contrast to other results, e.g., [11], where a likelihood based al-
gorithm was capable of providing reasonable improvements.

Some discussions and comments on the presented results will
be given below. First, it can be argued that, in contrast to the
presented results, the use of likelihood based fast-match proved
successful in other contexts. Some of these results are obtained
in a GFM setting (as discussed in the paper), e.g., [9], where
the global network score is used in the fast-match decision, and
are not directly comparable to our approach. While it is difficult
to decide which strategy (local or global) is better for imple-
menting a fast-match, a major advantage of a LFM is its com-
putational simplicity, and the ability to enhance it using pos-
teriors [10], or likelihood ratio as done in this work. It is not

3As noted before thresholds are calculated as i — na, and they are phoneme
dependent. Also we would like to emphasize that ¢ and o are different for both
likelihood ratio and likelihood fast-match as discussed in Section IV.

Likelihood Ratio
Likelihood Only 1

WER
o
0

Fig. 3. Percentage word error rate (WER) and real time factor (RT) for the
fast-match with mixture size 8 and for different thresholds on the development
set. Both likelihood ratio and likelihood scores are used here for the fast-match
for comparison. The threshold is varied as ¢ — no where n € {4,3.5,3,2,1}
and higher n indicate slower but more accurate search. The baseline result with
4.04% WER and 0.79 RT is also shown.

TABLE 1
LIST OF ALL EVALUATION CONDITIONS AND NUMBER
OF TEST UTTERANCES PER CONDITION

Environment \ # Test utterances

Field Report 148
Noisy News 56
Spontaneous 40
Sports (clean) 80
Sports (noisy) 117
Studio News 274
Weather 39

clear how these ideas could be integrated in a GFM.# In other
situations which employ a LFM approach, e.g., [11], reason-
able improvements were obtained using likelihoods in contrast
to the results presented here but this was done in a different
search architecture which makes them not directly comparable.
Second, it may seem more reasonable to compare the proposed
fast-match to other more elaborate schemes like using posteriors
[10], or using a normalization based on the maximum over all
phonemes,’ instead of comparing to the likelihood. However, as
discussed above, in many instances likelihood based fast-match
showed improvements which qualifies it as a candidate for com-
parison. In addition, all this schemes may be viewed as dif-
ferent normalizations of the likelihood that were used not only
in fast-match but also in different applications of verification
technology. Comparing them remains to be an interesting issue
in future work.

In a second series of experiments, we illustrate the perfor-
mance of the proposed fast-match algorithm on a much larger
data set, including various acoustic environments, listed in
Table I. This set is intended to measure the robustness of the
proposed method to changing acoustic and task conditions. The

“4In [21] a method for calculating the posterior of sentences using a word
graph, in the context of utterance verification, is given but it is too complex
to be used for fast-match.

5As suggested by a reviewer.
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TABLE 1I
WORD ERROR RATE (WER) AND REAL-TIME (RT) FACTOR ON NHK
EVALUATION TEST SET WITH AND WITHOUT FAST-MATCH

Fast-match off | Fast-match on

Environment

WER| RT [WER| RT
Field Report | 22.0 | 2.19 | 23.1 1.66
Noisy News 29 1.15 2.1 0.89
Spontaneous 26.5 1.85 | 247 | 132
Sports (clean) | 6.7 1.21 7.5 0.86
Sports (noisy) | 152 | 2.63 155 | 2.17
Studio News 2.7 0.98 2.8 0.72
Weather 59 1.06 4.6 0.80
Average 11.7 1.58 11.5 | 1.20

test perplexity varies from less than 10 to about 80 depending
on the environment, with OOV rates ranging from 0.25% to
2.5%. The acoustic models used for recognition are build on
about 170 hours of training data. The fast-match models are the
same as in the previous experiments, and the threshold is set to
uw— 3.50.

Results are reported in Table II in terms of word error rate
and real-time factor, with and without activating the fast-match.
On average, over all environments, the fast match leads to about
0.2% absolute reduction of the word error, for a 20% to 30%
speed-up of the decoding time. This illustrates the robustness
of the proposed fast-match: the fast-match models are easy to
build and are effective in many acoustic environments, while
the fast-match thresholds require little tuning.

VII. CONCLUSION

This paper presents an acoustic fast-match for large-vocabu-
lary speech recognition. The basic idea is to view the fast-match
as performing an accept/reject decision at the phoneme level,
and hence cast it as a verification problem. This naturally leads
to the use of hypothesis testing framework, widely used for other
verification tasks, to develop an optimal solution to the problem
as a likelihood ratio test performed at each frame. Further, by
employing the idea of LFM, as defined in the paper, it is shown
that at the current frame the test can be incrementally calculated
from the previous frame using very simple computations. This
is again very important because it may turn out, see [9], that a
fast-match may do a very good job in performing the accept/re-
ject decision in terms of reducing the number of visited arcs
while it does not lead to similar reduction in the total recogni-
tion time due to the overhead incurred in its computation.

In addition to the link established with the verification
problem, which we believe is one of the important contribu-
tions of this work, the proposed method has links with other
LFM strategies proposed in the literature. A natural choice is
to use the likelihood as a basis of the fast-match decision as
done in [11]. In this context the likelihood ratio provides an
optimal form of normalization of the likelihood score which
leads to large performance improvements as shown in the
experimental comparisons done in the paper. In addition it
offers robustness as evidenced in the multi-environment exper-
iments carried out in Section VI. The likelihood ratio is not the
only possible normalization of the likelihood, and using the
posteriors, which employ the sum of probabilities of all classes

as a normalization, or some approximate posteriors are valid
alternatives. For example, [10] uses posteriors to develop a very
interesting and efficient fast-match. The comparison between
different normalization procedures in this context, and also for
the general verification problem remain an interesting issue for
future work.

It is well known that the successful application of the hy-
pothesis testing framework to a certain verification problem
requires, in addition to theoretical developments, some design
issues related to defining and building alternate hypothesis
models. These considerations were addressed for the proposed
fast-match. In particular, we studied the definition (phoneme
specific versus general), and training (ML vs MCE) of alternate
hypothesis phoneme models, choice of phoneme look-ahead
durations, and decision thresholds. Interestingly, results re-
garding these aspects came in contrast to general practice in
verification problems as discussed in Section IV. We believe
this is due to the specific nature of the fast-match where simple
models are favored and where the price of a miss is higher than
a false alarm.

The proposed fast-match is applied in the first pass of a 2-pass
search algorithm. When used in the search, for a 20 K Japanese
broadcast news task, the fast-match leads to about 20%—-30%
speed-up in the overall search with no degradation in accuracy.
In addition, the improvements using the same fast-match models
and settings carry over to a more diverse testing setup with dif-
ferent environmental conditions and different acoustic models
which highlights the robustness of the proposed technique. We
would like to point out that these improvements are obtained for
a highly optimized search strategy that uses a single static tree
in the first pass and it may be expected that more savings can
obtained in the context of the more conventional multiple tree
Viterbi search or other search strategies.
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