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Abstract—in this paper, we propose to use neighborhood infor- Itis well known that conventional ASR algorithms are usually
mation in model space to perform utterance verification (UV). At formulated as a pattern classification problem usingrita-
first, we present a nested-neighborhood structure for each under- imum a posterior(MAP) decision rule to find the most likely se-

lying model in model space and assume the underlying model’s f ds which achi th . terioriorob
competing models sit in one of these neighborhoods, which is usegduénce orwords which achieves the maximpaosterorprob-

to model alternative hypothesis in UV. Bayes factors (BF) is first ability p(W|X), i.e.,
introduced to UV and used as a major tool to calculate confidence

measures based on the above idea. Experimental results in the Bell W
Labs communicator system show that the new method has dramat-

ically improved verification performance when verifying correct

= arg maxp(W|X)

words against mis-recognized words in the recognizer’s output, rel- = arg max p(X|W) - p(W)

atively more than 20% reduction in equal error rate (EER) when wer p(X)

comparing with the standard approach based on likelihood ratio

testing and anti-models. = arg {AT}EGDEP(X|W) -p(W) (1)

Index Terms—Bayes factors, Bayesian predictive density, confi-
dence measure, neighborhood in model space, utterance verifica-where X is the sequence of input feature vectors representing

all permissible sentences(WW) is the probability ofi¥ evalu-
I. INTRODUCTION ated with alanguage model,X) is the probability of observing

, ] _. X, andp(X|W) is the probability of observing{ under the

W E KNOW THAT today's automatic speech recognitionyssmption thalV is the underlying word sequence fat. In

(ASR) systems are always fraught with recognition etpeqry, the posterior probabiligy(W]X) is a good confidence
rors even in very constrained conditions. Recently, as more and,sure for the recognition resiif given the acoustic input
more ASR systems are deployed in real-world applications, 4t However, as shown in the above (1), most practical ASR
becomes extremely urgent to equip the ASR system with the %?/‘stems simply ignore the ter{X) in decision-making be-
pability to evaluate the reliability of speech recognition resultsy ;se it is constant across different wordsTherefore, the raw
Based on the reliability measurements, a series of further actigi§r scores (only representing relative differences) become in-
can be taken after recognition, €.g., to smartly reject nonspeegii, . ate as confidence measures to judge recognition reliability

noises, detect/reject out-of-vocabulary words, even detect/CRg . se the raw score can not tell how well the match is unless

rect some potential recognition mistakes, guide the systemt@. ,ormalized by (X). In fact, without any model constraint,
perform unsupervised learning, and provide side information

s extremely difficult to have an accurate estimate@X) for

assist high level speech understanding, and so on and so forily,en acoustic inpuk'. In practice, many different heuristic
(refer to [18] for more other applications). It becomes very clediaihods must be used to approximate it.

that a good reliability measurement is one of the most cruciaIDuring the past years, a lot of research works have been

techniques to make today’s ASR systems more “intelligent”. {6 in this field to seek for a reliability measurement for ASR,
the beginning of this paper, we first briefly explain the reasqpainly driven by an increasing number of dialogue applications.
why areliability measurement is missing from the conventiongly e on this sort of reliability measurement, machines will be
ASR procedure. Then we review many different methods whicly e ¢4 handle the error-prone ASR outputs more intelligently.
have been proposed to derive areliability measurement for A2 herally speaking, the related works reported in the literature
in the literature. Finally we will present and focus on a coms,, e classified into two major categories. Firstly, under the
pletely different approach which computes this kind of religssme of Confidence Measures (CMs), various methods have
bility measures based on the “neighborhood” information igaap, proposed to calculate the probability of a whcbeing
model space. correctly recognized by an ASR system, such as [3], [5], [13],
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methods which try to calculatg(X) from a set of general (or confidence) of any recognition decision is mainly based on
filler models, i.e., all-phone recognition [28], catch-all modehow much the underlying decision can overtake other possible
[13], the highest score in recognizing the word from decodeompetitors. The larger the difference is the more confident we
[3], etc. And the second one is calldalttice-basedmethod will consider the decision to be. The various CM or UV methods
which attempts to calculatg(X) from a word lattice (or attempt to explore this discrepancy in different ways (direct
graph) based on the forward-backward algorithm, such asdnindirect). For example, in the posteriori probability method
[16], [27]. Sometimes, in place of word lattice (or graph)hased on a word graph, if the recognition result significantly
an N-Best list can also be used for this purpose for the sateertakes other competing choices in the word graph, the
of simplicity [26]. So far, to our knowledge, comparing withcontribution of the recognized path will dominate the total
other methods to approximate the posteriori probability, thEosteriori probability computed based on forward-backward
method based on a word-graph gives the best performaradgorithm. In this case, the derived CM (i.e., the normalized
since the word graph (or lattice) represents the informatigrosteriori probability) will be large (close to 1). If other
of all other possible competing paths during Viterbi searatompeting paths in the word graph come very close to the
in a fairly accurate way. However, both the generation @écognized results, the contribution of the recognized path
word graphs and the computation of the posteriori probabilitiegll be relatively small when computing posteriori. Thus, the
over a word graph are relatively complicated. Besides tlderived CM will be small (close to 0). Similar in UV, if the
posterior-probability-based confidence measures (CMs), manggognized result overtakes other competitors, the likelihood
people have also proposed some informal ways to derive CMisider the null hypothesis will be significantly larger than that
i.e., the combination method, where a bunch of the so-callefithe alternative hypothesis. As a result, the likelihood ratio
feature predictors are first collected from the speech recognitiaill be large. On the other hand, the likelihood ratio will be
procedure, such as acoustic stability [4], hypothesis dens#mall if the competing sources from the alternative hypothesis
[16], language model (LM) backoffs, duration, and mangives comparable results with the recognized one in the null
others (see [2], [12], [24], [25]). Then all these features alg/pothesis. Therefore, it becomes very important to know
combined with a linear model or neural networks to derivihe properties of competing source distributions in order to
a CM score for every recognized word. Secondly, in anotheptimize the performance of utterance verification or confidence
major category, mostly motivated by speaker verification, sonneeasures. In this paper, we are going to investigate a novel
people [20], [23] have proposed the utterance verification (U\flea to perform utterance verification based on neighborhood
approach which attempts to verify the claimed content of iaformation in model space. We first introduce a structure of
spoken utterance. The content can be hypothesized by a spéaelsted-neighborhoods” around the underlying model in model
recognizer or keyword detector or human transcriber. Undgpace. Then we conceptually explain the physical meaning
the framework of utterance verification (UV), the problem caof these nested neighborhoods with different sizes and we
be formulated as a statistical hypothesis testing problem [28}gue that one of these neighborhoods with a properly-selected
[23]. According to Neyman-Pearson Lemma, under certagize includes all possibly potential competing models of the
conditions, the optimal solution is based on a likelihood ratioriginal underlying model. Then we will also show how to use
testing (LRT). The LRT-based utterance verification providakese “nested neighborhoods” to compute confidence scores
a good theoretical formulation to attack the tough problefor utterance verification. In this worlBayes factorserves as

of ASR reliability measurement. The major difficulty witha major computing vehicle to implement this idea. In order to
LRT in utterance verification is how to model the alternativexamine the viability of the proposed approach, we have applied
hypothesis, where the true distribution of data is unknown aitdo recognition error detection in the Bell Labs Communicator
alternative hypothesis usually represents a very complex asybtem, where we verify correct words against mis-recognized
composite event. In [20], [23], the same HMM model structure igords in the decoder’s outputs. The experimental results show
adopted to model the alternative hypothesis, they are commotiigat the new method has dramatically improved verification
named asanti-models Some significant successes have begrerformance, relatively more than 20% reduction in equal
made in usinganti-modelsto model the alternative hypothesiserror rate (EER) when comparing with the standard approach,
whenanti-modelsre trained from either discriminative trainingwhich is likelihood ratio testing based on anti-models.
procedure as shown in [20], [23], or some smart data selectionThe remainder of the paper is organized as follows. At first, in
procedure as in [9]. On the other hand, if we study utteran&ection Il, we introduce the structure of nested neighborhoods
verification problems from a Bayesian viewpoint, the finain model space and how to use the neighborhood information to
solution ends up with evaluating the so-callBdyes factors perform utterance verification. Next, in Section Ill, we briefly
[10]. As shown in [10],Bayes factords a powerful tool to review how to use Bayes factors as a general tool to do statistical
model composite hypotheses, which can be used to solve magpothesistesting. Then, based onthe above general formulation,
different verification problems. The same speaker verificatiome will investigate two particular neighborhood definitions
method in [10] is also equally applicable to UV problemsor HMM, a parametric neighborhood in Section IV and a
As far as the relation between CMs and UV is concerned, asnparametric one in Section V respectively. In Section VI,
discussed in [18], there is a close link between CM and UWe will report our experimental results on the Bell Labs
Any verification scores in UV can be transformed into a CMommunicator system, where we verify mis-recognized words
score. Basically, in the speech recognition area, as we hagainst correctly recognized words in ASR outputs. Finally,
known so far, the most effective way to measure the reliabilitye conclude the paper with our findings in Section VII.
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[I. UV BASED ON NEIGHBORHOODINFORMATION M - -
RPN ~. Original I'nodel
A. Nested Neighborhoods in Model Space // . N ©  @ero Neighgorhood)
i g * ‘\ mpetil
First of all, let us look at the model spageof HMM. Sup- '{3 . " RN ®  Compeing models
pose we haveV different HMMs in the recognizer, denoted as / ' &h ° ! ®‘\ ®  Other Models
{Ai]1 <i < N}. Each); can be viewed as a point in the mode [ \ !
- . | . , , Tight Neighborhood
spaceT7 . Intuitively, for every given mode);, we are able to i . ® , j
enumerate a set of nested neighborhoods which are all sur- \ el . . j Medium Neighborhood
rounding the underlying mode\;. For a given model;, we \ teT Vi i
. . ; (4) . . . . —.— Large Neighborhood
can define a set of nested nmghborhoﬁﬁ%./ Ay’ - -, within- \. ® //
creasing neighborhood sizes as follows: \\,\_ o
1) Zero neighborhood Aff): A(()i) consists of the centey;
Only. HMM Model Space

2) Tight neighborhood Ag’b): Agz) is a very small neighbor-
hood which tightly surrounds the modg). As indicated Fig. 1. lllustration of the structure of nested neighborhoods in HMM model
in [6], this kind of neighborhood serves as a robust regpace.
resentation of the original modai. In other words, due
to estimation errors and any mismatched condition durifigation purposes. In this work, we only concentrate on the first
testing phase, the optimal model for any given test utteseenario, namely detecting recognition errors in ASR.
ance could slightly shift from the original position of the For a given speech segmelit assume that an ASR system
estimated model, but it generally is considered that thtecognizes it as word?V which is represented by an HMM
optimal model still resides somewhere witmrﬁl) since model)\y-. We are interested in examining the reliability of this
the resultant model shift can not be too large. decision in order to accept or reject it. Under the framework of

3) Medium neighborhood AgL): AY) has a medium size UV, we usually formulate it as a statistical hypothesis testing
and is significantly larger thangzi)_ Thus,A$” possibly problem. We test thaull hypothesisH, against the alternative
includes all of\;’s potential competing models, whichhypothesisi; as
are by definition close td\; in model space, no matter
whether they are used by the recognizer or not.

4) Large neighborhoodAg”): Ag) is even larger in size and
should cover all related speech models in model space.

. () .
Because the size df;” is much larger than the distance  1he major difficulty with this conventional hypothesis testing

among all model§A;[1 < i < N}, the large neigh- s that it is quite hard to model the alternative hypotheis
borhood of different models; should overlap with each \\nich obviously is composite and not well-defined.

other. On&pe o('g]er hang), adifferent modeshould have  Gjyen the decision that is recognized as modaly, if X is
itsowndy’, Aj” andAy . not from the modeh,y, itis reasonable to consider thitprob-
5) Infinity neighborhood A{”: A} has an infinity size and ably comes from some competing modelgf . Based on the
it actually covers the entire model space. Therefa®, concept described in Section II-A, we define two nested neigh-
should include all models in model space which repré&orhoods in model space around the underlying maogel i)
sents nonspeech events. In concept, these models areigt neighborhood\ ; : as a robust representation of the original
away from the original model,. model\yy; i) medium neighborhood,: including all poten-
The whole picture is illustrated in Fig. 1. A neighborhoodial competing models ofyy. Therefore, based on the above
with a relatively small sizeA(”, contains all variants of the discussions, we can translate the above hypothesis tegfing (
original model due to estimation errors and possible mismatch&s H1) into the following ones:
in testing. As the neighborhood size increases further, it starts to
cover all of its competing models in the model space, which by
definition should be close to the original model in some sense.
Then a larger neighborhood can include all meaningful models
in the model space, i.eA,z()f). Eventually it can cover the whole
model space, like\|".

Hy : X is truly from model Ay
H; : X is NOT from model Ay . (2)

Hj : The true model of X lies in the
tight neighborhood A4
H : The true model of X lies in the
region Ap — Ay 3)

whereA, — A; denotes the holed region inside medium neigh-
borhoodA, but excluding tight neighborhoadl;, as shown in

In utterance verification, we usually have several differetig. 2. Now we formulate utterance verification as a new hy-
scenarios, e.g., to detect recognition errors or to reject out-of-yapthesis testing problem where we veil}) againstt] to de-
cabulary words or to reject no-speech noises. Based on the abtide the reliability of the original recognition result. Note that
flexible “nested-neighborhood” structure, we will be able to sdwere both hypothesdd;, andH} are composite which makes
lect some neighborhoods with different sizes for different verit hard to solve this verification problem under the traditional

B. UV Based on Neighborhood Information
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tial competing models of the original model. And Bayes fac-
©  Target model tors becomes an ideal computation tool to calculate the average
contributions from all models in these two neighborhoods. How-
Competing models ever, in order to use Bayes factors to solve the hypothesis testing

®
®  Other Models problem, i.e. Hg vs. Hj in (3), two important issues must be
@ addressed first: i) how to quantitatively define neighborhoods
% Region represents o ¢ /A1 @NdAo; ii) how to properly choose prior distributigs(-) of
¢ HMM model parameter for each hypothesis. Because of high

Regionrepresents 1 ¢~ dimension in HMM model space, it is not straightforward to
® define a proper neighborhood form for HMM. In this paper,
we have investigated two different ways to define neighborhood
form in HMM model space: i) Parametri€’( p) neighborhood,
previously used for robust speech recognition [6], [21], where
two parameters and p must be specified manually before-
hand to control the size and shape of the neighborhood. In this
Egse, a uniform distribution is chosen as prior p.d.f. to com-
pute Bayes factors; ii) Non-parametric neighborhood: we plot

framework of likelihood ratio testing (LRT). Besides LRT, ther&!l HMM models of the recognizer in the model space and adjust

are several other tools available to solve verification problenf3® N€ighborhood size to include a certain number of models. In
In this paper, we will investigate how to ugayes factor¢o this case, a mixture delta function is selected as the prior distri-

solve the above hypothesis testing problem. bution.

HMM Model Space

Fig. 2. lllustration of hypothesis testing in the scenario of detecting spee
recognition errors based on the neighborhood information.

IV. Case I: (C, p) NEIGHBORHOOD AND
CONSTRAINED UNIFORM PRIORS

Ill. BAYES FACTORS A BAYESIAN TooOL
FOR VERIFICATION PROBLEMS
Assume each HMM is anN -state continuous density HMM
DHMM) with parameter vectoA = (w, A, ), wherer is
an initial state distributionA is a state transition matrix, and
f is a parameter vector composed of mixture parametets
{6;]: = 1,2,---, N}, wheref, denotes the parameterssth
state in HMM. #; consists of several Gaussian mixtures, i.e.,
_ p(X|Ho) [ F(X|Xo, Ho) - p(Ao|Ho)d Ao y 0; = {wir, mir, rix }(k = 1,2,---, K), wherek indicates the
Cp(X|H1) [ F(X|A1, Hy) - p(Ai|Hr)d ) mixture number in the state. Th_e state observ_atlon_p.q.f. is as-
sumed to be a mixture of multivariate Gaussian distributions

where, fork = 0, 1, A\; is the model parameter undéf,, with diagonal precision matrix
p(Ax|Hy) is its prior density, and (X |\x, Hy) is the likelihood
function of A\, underHy. K R

Bayes factors offers a way to evaluate evidence in favor of ~ P(X[0i) = >owi ] \/ %e N )
the null hypothesisH, because the Bayes factors is the ratio k=1 d=1
of the posterior odds aff, to its prior odds, regardless of thenare the mixture weightswix's satisfy the constraint
value of the prior odds [15].Therefore, Bayes factors can b kK—1 wip = 1.
psed to compare with a threshold, just like .the I|kgl|hood rat At first, following the work in [21], we define the neighbor-
in Neyman-Pearson _Iemma, to make a d_eC|S|on with re_gardqq@od form for bothA; andA, as
Hy. In other words, ifBF > 1, wherer is a pre-set critical
threshold, then we accepl,, otherwise reject it. A = {Mr = 7%, A= A%, wip, = Wiy, rip = 775,

In the above, we have presented a general framework to per- - -
form utterance verification based on neighborhood information

Bayes factors has its solid foundation from Bayesian theory.
As shown in [15], the Bayesian approach to hypothesis testi
involves the calculation and evaluation of the so-caBayes
factors Given the observation datX along with two hy-
pothesedi, and H,, Bayes factors is computed as

BF

mika — mipgl < Cd~'p?, 1 <i <N,

in HMM model space. As shown in Fig. 2, according to cer- 1<k<K,1<d<D} (6)
tain distance measurement between two HMMs conformable o
with the decision rules used by speech recognition, we can §8ere A* = {x*, A", wi, %, mj,,} denotes the original

fine two nested neighborhoods around the underlying mod@odel parameter which is the central point of the neighbor-
The small one is viewed as a robust representation of the or\‘gmd’ andC'(C > 0) andp(0 < p < 1) are used to control
inal model and it contains all possible variants from the orighe shape and size of the neighborhood. As shown in [21], the
inal model due to mismatches and other estimation errors [Bgighborhood in (6) is derived based on an upper bound in cep-

On the other hand, the large neighborhood includes all poteittal domain of any small perturbation of speech signals. The
parametelC is used to control the absolute neighborhood size

*Any probability can be converted to the odds scale, iglds = across all vector dimensions. The acceptable dynamic region
probability /(1 — probability). Thus,(Pr(Ho|y))/(Pr(H,|y)) is called for C i h e v [ 101. Th
the posterior odds in favor dffo, and(Pr(H,))/(Pr(H,)) is prior odds in OF C in speech recognition is usually [1, 10]. The paramgter

favor of Ho. is an exponential shrinking scale used to reflect the shrinkage



JIANG AND LEE: NEW APPROACH TO UTTERANCE VERIFICATION 429

of dynamic range of speech cepstral in high dimensions. Theore details about VBPC algorithm. In this paper, in order to
acceptable dynamic range pfin speech recognition is [0.1, balance contribution from different models in the neighborhood,
0.9]. Generally speaking, the larger the absolute value§ ofwe introduce an exponential scale facigee > 0) into the inte-
and p are, the larger the size of the underlying neighborhoagtal calculation. The exponential scale factois important to

will be. For medium neighborhoatl,, we choose larger valuesequalize the contributions from different models in the neigh-
for C andp. And for tight neighborhood , we choose smaller borhood during the computation of Bayes factors. For example,
values forC and p. Secondly, given the neighborhood, wef we choosea > 1, the models with large likelihood values
assume that the prior distribution of HMM parameter is are emphasized. On the other handy ik 1, the models with
uniform p.d.f. constrained in the neighborhood. Based on thesmaller likelihood values will be put more weights. Therefore,
assumptions, the calculation of Bayes factors can be simplifigiven the optimal pattis, [}, the approximate Bayesian predic-

as tive densityp(X) is computed as follows:
p1(X) Ja, FX |A } o
BF, = =D- B ~ 3 o
fA X|)\ d)\ N K D mik b (27, -)
D - 7 Tk 2 e ikd ikd
Tiama - T, fama O H H 11 ) o
1=1k=1d=1
whereD = [, d)/ [, dXisthe normalization factor. Ob-
viously, Bayes factors is aratio between two Bayesian predictive O”“Lk ik
densities so that we can calculate numerator and denominator
separately. The VBPC (Viterbi Bayesian predictive classifica- >< \/arm,nlk ( — Tika + Cd*lpd))
tion) algorithm in [6] is used to compute each Bayesian predic-
tive densityp(X), e.g.,p1(X) = [ f(X|A)dX andp(X) = _ <I><, o
fAQ_Al F(X|MN)dA= fAQ X|)\ )dA — fAl (X|N)dA. ' )
Given an utteranc& = {z1,z2,---,z7}, under the above o
definition of prior distribution, the Bayesian predictive density X (m kd — Tika — Cd™ " p )ﬂ } (10)
p(X) for the neighborhood is computed as follows:
. where
= (X|N)dX = X, 5, 1|A)dA
/f(l) /;f( 1) . _
' nig =Y 8(5 —i) - 8(Iy — k) (11)
= Z/f (X, s, [|]N)dA= max/ (X,s,1[N)dX (8) t=1
o ‘ 1 ¢ N
* ' Tiva =—— > wwa-8(5 i) 0l —k)  (12)
wheres and/ denote a state sequence and mixture component =1
label sequence correspondingXa We term the paths and! (13)

7 _ 2 5 T _ L
which maximize this integral as the optimal path, denoted as Tika =~ > wia 6(5e =) 8(l = k).
{5,1}:{51,---,§T,ll7---,lT},i.e., t=1
In the above§(-) denotes the Kronecker delta indicator with

{5,1} = arg max /f(X./s./l|)\)d)\. 9)
s J 1, a=1b

6(a—b):{0; 02D
Given the input utteranc&, the underlying CDHMM\, and i i o
uniform prior distribution in the neighborhood, the optimal pat@d @IS0 (y) represents the error function of Gaussian distri-
{3,1} can be obtained by using the VBPC recursive search alngJt ol

rithm described in [6]. The VBPC algorithm is a modified ver- 1 Y )
sion of the Viterbi search in speech recognition to implement O(y) = — - / e~ 7w (24)
Viterbi approximation of calculating Bayesian predictive den- 2 .

sity in (8). In the VBPC algorithm, for every time instant, the

Bayesian predictive density, i.e., the integral in (8), is calculated The only issue left here is how to specify the parametets (
for all active partial paths survived in the search. Then, similar fd for various neighborhoods. In this work, we propose the fol-
the Viterbi search, all partial paths are propagated in the seal@fying two different methods.

network and their Bayesian predictive densities are re-computeds Global setting: We manually select;, p;) for tight
until the end of the utterance. In this way, we can get an ap- neighborhood\; and (5, p-2) for medium neighborhood
proximate method to calculate Bayesian predictive density for A, whereC; < C3 andp; < ps. In this case, we use
HMM. Meanwhile, the optimal pathés, [} can also be obtained the same tight (or medium) neighborhood for all different
by backtracking search results. The readers can refer to [6] for states and Gaussian mixtures in all HMMs.
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 State-dependent settingGiven a HMM state with pa- we also can set up delta priors in the level of HMM states. In
rameterd;, we assume the neighborhood for this state other words, for all distinct HMM states in the recognizer, we
is defined as in (6), we calculate the maximum deviatioran build the above delta priors separately for each state by using
from the central point within the neighborhood in terms ahe delta functions centering at all other HMM states in the pool.

euclidean distance as Then Bayes factors is calculated for each state segmentindepen-
o dently and these scores are combined to obtain a verification
D—C2. H |:(d_1pd)2 ) InléXTikd . (15) score for the HMM mode_l, each recogngq wqrd, or even the
e k=1 entire utterance, for the final utterance verification purpose.
In reverse, when fixing, we can calculat€’ based on a devi- VI. EXPERIMENTS

ation distanceD from the above equation. Thus, we first man- ) he viabil f th q hod
ually selectp; andp- for tight neighborhood\; and medium To examine the viability of the propose methods, we
oneA,, then we define maximally allowed deviation distanceSvaluate them on the Bell Labs Communicator system [19] to

for tight and medium neighborhoods, i.&; andD, (usually gete%[ rec%gnltlolrﬂ ertgors in f|nal_recogn|t|0n re_sults fro:n the
D, < D), finally we can calculate”; andC, for different 94€€O er. The Bell Labs Communicator system is a travel reser-

HMM states fromD; andD, based on (15). In this case Wevation system developed at Bell Labs under the sponsor of the

can use different tight (or medium) neighborhoods for differet'R,ARPA Communicator project. Users can talk and negotiate
states in all HMMs. with the system through telephone line with free spontaneous

speech to make their own travel plans, such as flight tickets
reservation, hotel booking, etc. In this work, we consider how
to reliably detect recognition errors, such as city-name and
Given a model\”, we still define two neighborhoods arouncother keywords, from the recognition output of the decoder.
A*:tight neighborhood; and medium neighborhoath. Then  The detection results and the resultant confidence scores will
for each neighborhood, to say, we construct a prior distribu- pe used to facilitate and improve the performance of speech un-
tion as a mixture of delta functions. These delta functions aﬁérstanding and dia|ogue management in the later Stages_ In our
centered at other models in the recognizer, which are loca@geriments, the newly proposed utterance verification method

V. CASE Il: DELTA PRIORS

inside neighborhood ;. That is, is compared with the traditional method, i.e., likelihood ratio
1 testing (LRT) based on standard anti-models, which are trained
= Z (A=) (16) from training data with the fixed segmentation (generated from
Eien forced alignment against reference transcriptions).

whereN; denotes the total number of models insitde

Similarly, we can build a prior distribution for the regidn — A. Baseline System

Ay In our recognition system, we used a 38-dimension fea-
1 ture vector, consisting of 12 Mel LPCCEP, 12 delta CEP,

p2(N) = — Z S(A—\) (17) 12 delta-delta CEP, delta and delta-delta log-energy. In the

N N EAg—A, baseline system, the best acoustic HMMs are trained by using

the standard Baum-Welch ML estimation on a total of 46
'Wours of task-dependent speech data. The acoustic models are
state-tied, tri-phone CDHMM models, which consist of roughly
SR distinct HMM states with an average of 13.2 Gaussian
mixture components per state. Besides, a class-based, tri-gram
5 F(X]A) language model including 2600 words is used for decoding in
M€AL N, (18) the system. The baseline system achieves 15.8% word error
A €As Ay % rate (WER) in our independent evaluation set, which includes
in total 1395 utterances. In the experiments, we are interested
To balance the contribution from different models, we caf detecting recognition errors from the decoder’s outputs.
similarly introduce a scale facter(a > 0) in the above sum- e verify correctly recognized words against mis-recognized

where N,,, denotes the total number of models located in t
regionAs, — Aj.

Based on these two priors, Bayes factors to verify hypothe
H{ andH in (3) can be simplified as

BF, =

mation. Then we have words (only substitution and insertion errors). The recognition
1 result is first aligned against the reference transcription by
XD = ; ;
Donen, N, a standard dynamic programming procedure to label each
BF; = L (19) recognized word as either correct or wrong. In all recognizer’s
Y oA €A —A, M} : recognition outputs of the evaluation set, we totally have 3257

words labeled asorrectand 520 words asrong(not including
At present, in many large-scale ASR systems, we usually udeletion errors). Based on the word and phoneme segmentations
state-tied CDHMMs as fundamental acoustic models for speegénerated by the recognizer, we calculate a confidence score for
recognition, which basically consists of a pool of distinct HMMevery recognized word. According to the computed confidence
states, from which all HMMs in the system share their statescores, we verify all correctly recognized words against other
Therefore, instead of building delta priors for each HMM modeinis-recognized words. As our baseline verification system, we
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use LRT based on a standard mono-phant-models which
are trained from all training data with fixed forced alignmen
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TABLE |

tVERIFICATION PERFORMANCE COMPARISON (EQUAL ERROR RATE IN %) OF
BASELINE UV METHOD (LRT + ANTI-MODELS) WITH THE PROPOSEDNEW

phoneme segmentation, generated from the standard forcegproact INSEVERAL DIFFERENT SETTINGS. IN EACH CASE, THE BEST

alignment procedure. That is, all phone segments of a phdfgerForMANCE oF THENEW APPROACH AND ITSCORRESPONDINGPARAMETER
SETTING ARE GIVEN. HEREWE ALWAYS FIX @ = 1.2

are collected to train the positive model for this phone and

all other phone segments are used to train an anti-model f
this phone. As shown in the first row of Table I, we achieve

method | EER |

parameter setting

40.0% equal error rate (EER) with this standard method in ot anti-model | 40.0 _
evaluation data set. The ROC curve is also shown in Fig. 3 wi
the labelbaseline casel-global | 36.7 p1=0.1p,=07C,=C,=3.0
casel-state | 32.4 | p = 0.1, p, = 0.9, D; = 3, Dy, = 200
B. New Approach With Settings in Case |
In this section, we first investigate the Bayes factors methoc casell-A 31.5 Ni =1, Nm = 1000
described in Section IV where we choosg, () neighborhood casell-B | 31.0 Dy =12.5, D, = 40.0
and constrained uniform prior distribution for Bayesian calcu-
lation. For all recognition results from the decoder, based ¢~ Comparison of ROG curves
the segmentation information, we calculate Bayes-factors-bas ' ' " [ Bassine Aai-modeie)
scoreBF, for every phoneme segment as shown in (7). The °*°[\ e e
these phone-level scores are combined to get the average sc o[ '~
per frame for each recognized word. Based on these scores, o7} N
repeat the same UV experiments as in the baseline verificati, , | \\ AN
system. Since we use static, delta, and delta-delta features, 12 RN N
lowing [6], [8], we slightly modify the (7, p) neighborhood def- % SN
inition in (6) to suit with delta and delta-delta features as Foar T~ NN - -
o3}l AR NN
AN ={\r =7, A= A%, wi, = Wiy, Tik = T 1
Imia — mig| < Cd—1p, 1< i < N, e
‘m,k(%) — mfk(%) S Cd_lpd, oo of1 012 oia 014 Falseg;esiecﬁon ofe 017 ofa of9 iRl
-1 d
‘mik(%) T k(22 < Cdpf, Fig. 3. Comparison of ROC curves for different methods when verifying
D mis-recognized words against correctly recognized words in ASR outputs.
1§z‘§N,1§k§K,1§d§§} (20)

reason why state-dependent setting gives much better perfor-

where forl < d < D/3, m;a’s correspond to the static featuremance is that we can use different neighborhood sizes for dif-
part,m;(p/3+a)’s the delta feature part and;op344)'s the ferent HMM states based on certain deviation distance measure-
delta-delta feature part. Obviously, in the above definition, waent. Another reason is that it is much easier and more accurate
use the same neighborhood bound for static, delta and def@specify the neighborhood size by using the distance deviation
delta features. introduced in (15) rather than using the original control param-
In the case of global setting, we manually check the rangiersC' andp. For both settings, we also plot the ROC curves in
C1,Cy € [1.0,10.0)(Cy < Cy) andpy, pa € [0.1,0.9](py < Fig. 3, which also clearly show that both methods significantly
p2). The best performance as well as its corresponding setti@gtperform the baseline system.
is shown in the second row of Table |. We can see that the verifi- ] ) )
cation score3 F; based on global setting obtains 36.7% in terrfy- NeW Approach With Settings in Case Il
of EER, which is slightly better than our LRT-based baseline In this part, we choose delta priors in (16) and (17) in the level
performance (40.0% of EER). The performance is limited bef HMM state for Bayes factors. At first, for each distinct state in
cause in this case we are using the same neighborhoods fomatiustic models, we calculate its distance from all other states
different HMM states. (roughly 4K). The distance between two HMM states is com-
As for the state-dependent setting, we first setpypto a puted as the minimum euclidean distance between every pos-
small value, to say 0.1, ang to a large value, to say 0.9. Ac-sible pair of Gaussian components from these two states. For
cording to (15), once we fix the maximum deviation distanceach state, we sort all other states according to their distances
D, we can derive the parametér for different HMM states from the underlying state. Then we save the sorted list and all
from (15), where only static feature components are considemresponding distances for every state in order to determine the
in this calculation. In this case, we have manually checked thizes of neighborhoods. In the first case, denoteGase 11-A
rangeD; € [0,10.0], andD, € [100.0,250.0]. The best perfor- for each underlying HMM state, we choose neighborhood sizes
mance is shown in the third row of Table |, where we achieue include exactlyN; other states im\; and NV,,, in Ao — A;.
32.4% in terms of EER using the state-dependent seBifg  In the second case, denoted @ase II-B from the top 1500
This is a big improvement from the global setting. One possibétates, we choose neighborhood sizes\foto include all other
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EER as a function of N when using delta priors

48.0 ————————————————————T—— many other models are included in the neighborhood. As shown
‘\d Lo - ; . in Fig. 4, the larger the number is, the better the performance will
st , : : 1 be (of course, at expense of more computational cost). Generally,
N : if N is larger than 500, the performance will be reasonably good
= 4oof Lol ‘ ' . 1 fordifferent data sets.
g N i When we compare two investigated neighborhood defini-
‘§ a7s \&\ Pl 1 tions, namely parametric method (case 1) and nonparametric
3 SN P one (case Il), based on the above experiments, we can see that
Y ssol PN N : : the nonparametric method (case II) slightly outperforms the
: Paell P parametric method (case 1) in case we use a large number of
ses | f : C Tre-e-o 1 delta mixture components in the nonparametric method. But
¢ P ‘ Yo the nonparametric method requires much higher computational
300 —f b complexity to calculate confidence scores because a large
N number of mixture components are involved in the delta prior

Fig. 4. \Verification performance, in terms of EER (in %), of the methocp'd'f" Where_ we must r_epeat “ke“hOOd calculation for every
Casell-A is shown as a function of paramebér, when we fixV, = 1 and component in summation calculation of Bayes factors. On
a =12 the other hand, the parametric definition of neighborhood (or
the priors) is cheaper in terms of computational complexity
states with distance less thayp and ones’ distance betwe®n  because an approximate closed-form solution usually is avail-
andD,, for A, — A;. In Fig. 4, we plot the verification perfor- able to the integral calculation in Bayes factors. The problem
mance in term of EER as a function of the mixture numigy is that it is usually very hard to define a proper parametric
in large neighborhood, when we fix the number of other statesneighborhood (or prior distribution) for HMM models due to
in small neighborhoodd, i.e., NV; = 1 and the scale factor the high dimension in HMM model space.
a = 1.2. From the result, we can see that the verification perfor- If we compare the proposed methods with the traditional anti-
mance significantly improves a¢,,, increases. But it requires amodel-based LRT approach, the new method is simple to use be-
pretty large number, e.g>1000, to achieve a reasonably goodause it does not require to build separate verification models.
result. In the last part of Table I, we also give verification perfol®nce the neighborhood is defined, we can calculate confidence
mance in terms of EER, 31.5% f@ase II-Aand 31.0%Case score immediately. In contrast, in LRT-based approaches, we
[I-B. Generally speaking, delta prior gives a slightly better pensually have to follow a very complicated training procedure
formance than uniform distribution based a¥, (p). However, in order to obtain some reasonable verification models, such as
because it usually requires a very large number of delta com-[9], [20]. When comparing with other confidence measures
ponents, the computational complexity is much more expensiwéich are proved to work reasonably well, such as word-graph-
than the parametric neighborhood in Case I. Finally, we also pledised posterior methods [27], the neighborhood-based approach
the ROC curve fo€ase II-A(with N,,, = 1000) in Fig. 3, which is much faster and instant. In other words, in [27], in order to ob-
clearly shows that it gives the best verification performance. tain confidence scores of certain recognized words from a word
graph, we have to wait until the whole recognition process ends,
D. Discussions and then build a word graph for confidence measurement. The
Theoretically, the exponential scale factoiis important to confidence score calculation based on the word graph is also
equalize the contributions from different models in the neigivery complex and relatively computationally expensive. On the
borhood when calculating Bayes factors. If we choase 1, other hand, the neighborhood-based approach can calculate the
the models with larger likelihood value are emphasized. On tRenfidence score as soon as a recognition decision is made. For
other hand, ifx < 1, the models with smaller likelihood valueinstance, like in [9], the new method can even be used to cal-
will be put more weights. However, in our experiments, we fingulate confidence scores for all partial paths during the Viterbi
the verification performance is not very sensitiveitin a cer- search procedure. Based on these scores, we will be able to
tain range, to say [0.6, 1.5]. Thus, in our above experiments, Wéine out some very unlikely hypotheses during the process of
have fixeda = 1.2, which gives a slightly better performance. Viterbi search for the purpose of speed and accuracy [9]. Even
As for the parametric neighborhood paramet@endp, sim-  though the lattice-based posterior probability could also be cal-
ilar to some previous works [6], [21], the use 6f,(p) neighbor- culated during the search procedure once an intermediate recog-
hood suffers fromthe difficulty of how to automatically determin@ition is made, backtracking a lattice and computing the poste-
the control parameters andp. The general behavior is that therior probability over lattice are both complicated and expensive
method usually performs wellin a certain range@f f), usually When comparing with the methods proposed in this work (as
[1, 10] for C and [0.1, 0.9] forp. But optimal values of’ andp Was pointed out by one reviewer).
usually depend on the particular data set. In Table I, we give the
best performance and its corresponding parameter setting in the
test set. For other’ andp values in the above region, the perfor-
mance will be slightly worse. To overcome this difficulty, we have In this work, we have examined how to perform utterance
proposed anonparametric neighborhood (case ) in this papevérification based on neighborhood information in model
thiscase, itismucheasiertospecify parameters. Forexample, lepace. The basic idea is to assume that all competing models

VII. CONCLUSIONS
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of a given model sit inside one neighborhood of the underlying10]
model. Based on definition of the neighborhood, Bayes factors
is adopted as a major computation vehicle to calculate confi[-11
dence measures for utterance verification. In this paper, we have
investigated two particular neighborhood definitions: i) Para{12]
metric one: ', p) neighborhood with constrained uniform prior
p.d.f.; i) Non-parametric one: mixture delta prior p.d.f. with a 13
fixed number of mixtures included in the neighborhood. Based
on these two neighborhood definitions, Bayes-factors-baseid4]
confidence measures become quite easy to calculate for HMM.
From the experimental results in the Bell Labs communicatoyis)
system, we have found that it is a promising direction to use
neighborhood information in model space to perform utterancé!
verification for the purpose of confidence measurement. Somgz
preliminary studies based on two particular neighborhood
definition have shown that the new method works better than
the traditional anti-model-based LRT approach if we define[18]
and choose the neighborhoods properly, which in turn provegoj
that the neighborhood information is very useful in calculating
confidence measures for speech recognition. In this paper, Wso)
have proposed a systematical framework to perform utterance
verification based on the neighborhood information and Bayes
factors. Although we have investigated two different neighbor{21!
hood definitions, one parametric neighborhood and another
nonparametric one, we believe much more research workgz)
are still needed to search for a better neighborhood definition
in high-dimension HMM model space. As another possible[23
research direction for future works, instead of Bayes factors,
other statistical hypothesis testing tools, such as generalizde]
likelihood ratio testing (GLRT), can also be used to implement
the neighborhood based UV described in this paper. At last, ifs,
this work, the proposed methods are compared only with one
traditional approach in the literature [20], [23]. It will be very
interesting to compare with other popular methods, such o]
[16], [26], [27].

[27]
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