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Abstract—In this paper, we propose to use neighborhood infor-
mation in model space to perform utterance verification (UV). At
first, we present a nested-neighborhood structure for each under-
lying model in model space and assume the underlying model’s
competing models sit in one of these neighborhoods, which is used
to model alternative hypothesis in UV. Bayes factors (BF) is first
introduced to UV and used as a major tool to calculate confidence
measures based on the above idea. Experimental results in the Bell
Labs communicator system show that the new method has dramat-
ically improved verification performance when verifying correct
words against mis-recognized words in the recognizer’s output, rel-
atively more than 20% reduction in equal error rate (EER) when
comparing with the standard approach based on likelihood ratio
testing and anti-models.

Index Terms—Bayes factors, Bayesian predictive density, confi-
dence measure, neighborhood in model space, utterance verifica-
tion, Viterbi Bayesian Predictive Classification (VBPC).

I. INTRODUCTION

WE KNOW THAT today’s automatic speech recognition
(ASR) systems are always fraught with recognition er-

rors even in very constrained conditions. Recently, as more and
more ASR systems are deployed in real-world applications, it
becomes extremely urgent to equip the ASR system with the ca-
pability to evaluate the reliability of speech recognition results.
Based on the reliability measurements, a series of further actions
can be taken after recognition, e.g., to smartly reject nonspeech
noises, detect/reject out-of-vocabulary words, even detect/cor-
rect some potential recognition mistakes, guide the system to
perform unsupervised learning, and provide side information to
assist high level speech understanding, and so on and so forth
(refer to [18] for more other applications). It becomes very clear
that a good reliability measurement is one of the most crucial
techniques to make today’s ASR systems more “intelligent”. In
the beginning of this paper, we first briefly explain the reason
why a reliability measurement is missing from the conventional
ASR procedure. Then we review many different methods which
have been proposed to derive a reliability measurement for ASR
in the literature. Finally we will present and focus on a com-
pletely different approach which computes this kind of relia-
bility measures based on the “neighborhood” information in
model space.
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It is well known that conventional ASR algorithms are usually
formulated as a pattern classification problem using themax-
imum a posteriori(MAP) decision rule to find the most likely se-
quence of words which achieves the maximumposterioriprob-
ability , i.e.,

(1)

where is the sequence of input feature vectors representing
the underlying utterance, is a word sequence, is the set of
all permissible sentences, is the probability of evalu-
ated with a language model, is the probability of observing

, and is the probability of observing under the
assumption that is the underlying word sequence for. In
theory, the posterior probability is a good confidence
measure for the recognition result given the acoustic input

. However, as shown in the above (1), most practical ASR
systems simply ignore the term in decision-making be-
cause it is constant across different words. Therefore, the raw
ASR scores (only representing relative differences) become in-
adequate as confidence measures to judge recognition reliability
because the raw score can not tell how well the match is unless
it is normalized by . In fact, without any model constraint,
it is extremely difficult to have an accurate estimate of for
a given acoustic input . In practice, many different heuristic
methods must be used to approximate it.

During the past years, a lot of research works have been
done in this field to seek for a reliability measurement for ASR,
mainly driven by an increasing number of dialogue applications.
Based on this sort of reliability measurement, machines will be
able to handle the error-prone ASR outputs more intelligently.
Generally speaking, the related works reported in the literature
can be classified into two major categories. Firstly, under the
name of Confidence Measures (CMs), various methods have
been proposed to calculate the probability of a wordbeing
correctly recognized by an ASR system, such as [3], [5], [13],
[16], [17], [24], [25], [27], [28], and so on. Some of these
works are based on how to calculate theposteriorprobability

for the ASR output . As we mentioned above,
the posterior probability is a good candidate for CM but it
is very hard to estimate the distribution in a precise
manner. In practice, many heuristic methods are proposed to
approximate it. The first ones are the so-calledfiller-based
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methods which try to calculate from a set of general
filler models, i.e., all-phone recognition [28], catch-all model
[13], the highest score in recognizing the word from decoder
[3], etc. And the second one is calledlattice-basedmethod
which attempts to calculate from a word lattice (or
graph) based on the forward-backward algorithm, such as in
[16], [27]. Sometimes, in place of word lattice (or graph),
an N-Best list can also be used for this purpose for the sake
of simplicity [26]. So far, to our knowledge, comparing with
other methods to approximate the posteriori probability, the
method based on a word-graph gives the best performance
since the word graph (or lattice) represents the information
of all other possible competing paths during Viterbi search
in a fairly accurate way. However, both the generation of
word graphs and the computation of the posteriori probabilities
over a word graph are relatively complicated. Besides the
posterior-probability-based confidence measures (CMs), many
people have also proposed some informal ways to derive CMs,
i.e., the combination method, where a bunch of the so-called
feature predictors are first collected from the speech recognition
procedure, such as acoustic stability [4], hypothesis density
[16], language model (LM) backoffs, duration, and many
others (see [2], [12], [24], [25]). Then all these features are
combined with a linear model or neural networks to derive
a CM score for every recognized word. Secondly, in another
major category, mostly motivated by speaker verification, some
people [20], [23] have proposed the utterance verification (UV)
approach which attempts to verify the claimed content of a
spoken utterance. The content can be hypothesized by a speech
recognizer or keyword detector or human transcriber. Under
the framework of utterance verification (UV), the problem can
be formulated as a statistical hypothesis testing problem [20],
[23]. According to Neyman-Pearson Lemma, under certain
conditions, the optimal solution is based on a likelihood ratio
testing (LRT). The LRT-based utterance verification provides
a good theoretical formulation to attack the tough problem
of ASR reliability measurement. The major difficulty with
LRT in utterance verification is how to model the alternative
hypothesis, where the true distribution of data is unknown and
alternative hypothesis usually represents a very complex and
composite event. In [20], [23], the same HMM model structure is
adopted to model the alternative hypothesis, they are commonly
named asanti-models. Some significant successes have been
made in usinganti-modelsto model the alternative hypothesis
whenanti-modelsare trained from either discriminative training
procedure as shown in [20], [23], or some smart data selection
procedure as in [9]. On the other hand, if we study utterance
verification problems from a Bayesian viewpoint, the final
solution ends up with evaluating the so-calledBayes factors
[10]. As shown in [10],Bayes factorsis a powerful tool to
model composite hypotheses, which can be used to solve many
different verification problems. The same speaker verification
method in [10] is also equally applicable to UV problems.
As far as the relation between CMs and UV is concerned, as
discussed in [18], there is a close link between CM and UV.
Any verification scores in UV can be transformed into a CM
score. Basically, in the speech recognition area, as we have
known so far, the most effective way to measure the reliability

(or confidence) of any recognition decision is mainly based on
how much the underlying decision can overtake other possible
competitors. The larger the difference is the more confident we
will consider the decision to be. The various CM or UV methods
attempt to explore this discrepancy in different ways (direct
or indirect). For example, in the posteriori probability method
based on a word graph, if the recognition result significantly
overtakes other competing choices in the word graph, the
contribution of the recognized path will dominate the total
posteriori probability computed based on forward-backward
algorithm. In this case, the derived CM (i.e., the normalized
posteriori probability) will be large (close to 1). If other
competing paths in the word graph come very close to the
recognized results, the contribution of the recognized path
will be relatively small when computing posteriori. Thus, the
derived CM will be small (close to 0). Similar in UV, if the
recognized result overtakes other competitors, the likelihood
under the null hypothesis will be significantly larger than that
of the alternative hypothesis. As a result, the likelihood ratio
will be large. On the other hand, the likelihood ratio will be
small if the competing sources from the alternative hypothesis
gives comparable results with the recognized one in the null
hypothesis. Therefore, it becomes very important to know
the properties of competing source distributions in order to
optimize the performance of utterance verification or confidence
measures. In this paper, we are going to investigate a novel
idea to perform utterance verification based on neighborhood
information in model space. We first introduce a structure of
“nested-neighborhoods” around the underlying model in model
space. Then we conceptually explain the physical meaning
of these nested neighborhoods with different sizes and we
argue that one of these neighborhoods with a properly-selected
size includes all possibly potential competing models of the
original underlying model. Then we will also show how to use
these “nested neighborhoods” to compute confidence scores
for utterance verification. In this work,Bayes factorsserves as
a major computing vehicle to implement this idea. In order to
examine the viability of the proposed approach, we have applied
it to recognition error detection in the Bell Labs Communicator
system, where we verify correct words against mis-recognized
words in the decoder’s outputs. The experimental results show
that the new method has dramatically improved verification
performance, relatively more than 20% reduction in equal
error rate (EER) when comparing with the standard approach,
which is likelihood ratio testing based on anti-models.

The remainder of the paper is organized as follows. At first, in
Section II, we introduce the structure of nested neighborhoods
in model space and how to use the neighborhood information to
perform utterance verification. Next, in Section III, we briefly
review how to use Bayes factors as a general tool to do statistical
hypothesis testing.Then,basedontheabovegeneral formulation,
we will investigate two particular neighborhood definitions
for HMM, a parametric neighborhood in Section IV and a
nonparametric one in Section V respectively. In Section VI,
we will report our experimental results on the Bell Labs
communicator system, where we verify mis-recognized words
against correctly recognized words in ASR outputs. Finally,
we conclude the paper with our findings in Section VII.
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II. UV B ASED ON NEIGHBORHOODINFORMATION

A. Nested Neighborhoods in Model Space

First of all, let us look at the model spaceof HMM. Sup-
pose we have different HMMs in the recognizer, denoted as

. Each can be viewed as a point in the model
space . Intuitively, for every given model , we are able to
enumerate a set of nested neighborhoods inwhich are all sur-
rounding the underlying model . For a given model , we
can define a set of nested neighborhoods , with in-
creasing neighborhood sizes as follows:

1) Zero neighborhood : consists of the center
only.

2) Tight neighborhood : is a very small neighbor-
hood which tightly surrounds the model. As indicated
in [6], this kind of neighborhood serves as a robust rep-
resentation of the original model . In other words, due
to estimation errors and any mismatched condition during
testing phase, the optimal model for any given test utter-
ance could slightly shift from the original position of the
estimated model, but it generally is considered that the
optimal model still resides somewhere within since
the resultant model shift can not be too large.

3) Medium neighborhood : has a medium size
and is significantly larger than . Thus, possibly
includes all of ’s potential competing models, which
are by definition close to in model space, no matter
whether they are used by the recognizer or not.

4) Large neighborhood : is even larger in size and
should cover all related speech models in model space.
Because the size of is much larger than the distance
among all models , the large neigh-
borhood of different models should overlap with each
other. On the other hand, a different modelshould have
its own , and .

5) Infinity neighborhood : has an infinity size and
it actually covers the entire model space. Therefore,
should include all models in model space which repre-
sents nonspeech events. In concept, these models are far
away from the original model .

The whole picture is illustrated in Fig. 1. A neighborhood
with a relatively small size, , contains all variants of the
original model due to estimation errors and possible mismatches
in testing. As the neighborhood size increases further, it starts to
cover all of its competing models in the model space, which by
definition should be close to the original model in some sense.
Then a larger neighborhood can include all meaningful models
in the model space, i.e., . Eventually it can cover the whole
model space, like .

B. UV Based on Neighborhood Information

In utterance verification, we usually have several different
scenarios, e.g., to detect recognition errors or to reject out-of-vo-
cabulary words or to reject no-speech noises. Based on the above
flexible “nested-neighborhood” structure, we will be able to se-
lect some neighborhoods with different sizes for different veri-

Fig. 1. Illustration of the structure of nested neighborhoods in HMM model
space.

fication purposes. In this work, we only concentrate on the first
scenario, namely detecting recognition errors in ASR.

For a given speech segment, assume that an ASR system
recognizes it as word which is represented by an HMM
model . We are interested in examining the reliability of this
decision in order to accept or reject it. Under the framework of
UV, we usually formulate it as a statistical hypothesis testing
problem. We test thenull hypothesis against the alternative
hypothesis as

(2)

The major difficulty with this conventional hypothesis testing
is that it is quite hard to model the alternative hypothesis
which obviously is composite and not well-defined.

Given the decision that is recognized as model , if is
not from the model , it is reasonable to consider thatprob-
ably comes from some competing model of . Based on the
concept described in Section II-A, we define two nested neigh-
borhoods in model space around the underlying model: i)
tight neighborhood : as a robust representation of the original
model ; ii) medium neighborhood : including all poten-
tial competing models of . Therefore, based on the above
discussions, we can translate the above hypothesis testing (
vs. ) into the following ones:

(3)

where denotes the holed region inside medium neigh-
borhood but excluding tight neighborhood , as shown in
Fig. 2. Now we formulate utterance verification as a new hy-
pothesis testing problem where we verify against to de-
cide the reliability of the original recognition result. Note that
here both hypotheses and are composite which makes
it hard to solve this verification problem under the traditional



428 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 5, SEPTEMBER 2003

Fig. 2. Illustration of hypothesis testing in the scenario of detecting speech
recognition errors based on the neighborhood information.

framework of likelihood ratio testing (LRT). Besides LRT, there
are several other tools available to solve verification problems.
In this paper, we will investigate how to useBayes factorsto
solve the above hypothesis testing problem.

III. B AYES FACTORS: A BAYESIAN TOOL

FOR VERIFICATION PROBLEMS

Bayes factors has its solid foundation from Bayesian theory.
As shown in [15], the Bayesian approach to hypothesis testing
involves the calculation and evaluation of the so-calledBayes
factors. Given the observation data along with two hy-
potheses and , Bayes factors is computed as

(4)

where, for , 1, is the model parameter under ,
is its prior density, and is the likelihood

function of under .
Bayes factors offers a way to evaluate evidence in favor of

the null hypothesis because the Bayes factors is the ratio
of the posterior odds of to its prior odds, regardless of the
value of the prior odds [15].1 Therefore, Bayes factors can be
used to compare with a threshold, just like the likelihood ratio
in Neyman-Pearson lemma, to make a decision with regards to

. In other words, if , where is a pre-set critical
threshold, then we accept , otherwise reject it.

In the above, we have presented a general framework to per-
form utterance verification based on neighborhood information
in HMM model space. As shown in Fig. 2, according to cer-
tain distance measurement between two HMMs conformable
with the decision rules used by speech recognition, we can de-
fine two nested neighborhoods around the underlying model.
The small one is viewed as a robust representation of the orig-
inal model and it contains all possible variants from the orig-
inal model due to mismatches and other estimation errors [6].
On the other hand, the large neighborhood includes all poten-

1Any probability can be converted to the odds scale, i.e.,odds =
probability=(1 � probability). Thus,(Pr(H jy))=(Pr(H jy)) is called
the posterior odds in favor ofH , and(Pr(H ))=(Pr(H )) is prior odds in
favor ofH .

tial competing models of the original model. And Bayes fac-
tors becomes an ideal computation tool to calculate the average
contributions from all models in these two neighborhoods. How-
ever, in order to use Bayes factors to solve the hypothesis testing
problem, i.e., vs. in (3), two important issues must be
addressed first: i) how to quantitatively define neighborhoods

and ; ii) how to properly choose prior distribution of
HMM model parameter for each hypothesis. Because of high
dimension in HMM model space, it is not straightforward to
define a proper neighborhood form for HMM. In this paper,
we have investigated two different ways to define neighborhood
form in HMM model space: i) Parametric (, ) neighborhood,
previously used for robust speech recognition [6], [21], where
two parameters and must be specified manually before-
hand to control the size and shape of the neighborhood. In this
case, a uniform distribution is chosen as prior p.d.f. to com-
pute Bayes factors; ii) Non-parametric neighborhood: we plot
all HMM models of the recognizer in the model space and adjust
the neighborhood size to include a certain number of models. In
this case, a mixture delta function is selected as the prior distri-
bution.

IV. CASE I: ( , ) NEIGHBORHOOD AND

CONSTRAINED UNIFORM PRIORS

Assume each HMM is an -state continuous density HMM
(CDHMM) with parameter vector , where is
an initial state distribution, is a state transition matrix, and

is a parameter vector composed of mixture parameters
, where denotes the parameters of-th

state in HMM. consists of several Gaussian mixtures, i.e.,
, where indicates the

mixture number in the state. The state observation p.d.f. is as-
sumed to be a mixture of multivariate Gaussian distributions
with diagonal precision matrix

(5)

where the mixture weights ’s satisfy the constraint
.

At first, following the work in [21], we define the neighbor-
hood form for both and as

(6)

where denotes the original
model parameter which is the central point of the neighbor-
hood, and and are used to control
the shape and size of the neighborhood. As shown in [21], the
neighborhood in (6) is derived based on an upper bound in cep-
stral domain of any small perturbation of speech signals. The
parameter is used to control the absolute neighborhood size
across all vector dimensions. The acceptable dynamic region
for C in speech recognition is usually [1, 10]. The parameter
is an exponential shrinking scale used to reflect the shrinkage
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of dynamic range of speech cepstral in high dimensions. The
acceptable dynamic range ofin speech recognition is [0.1,
0.9]. Generally speaking, the larger the absolute values of
and are, the larger the size of the underlying neighborhood
will be. For medium neighborhood , we choose larger values
for and . And for tight neighborhood , we choose smaller
values for and . Secondly, given the neighborhood, we
assume that the prior distribution of HMM parameter is a
uniform p.d.f. constrained in the neighborhood. Based on these
assumptions, the calculation of Bayes factors can be simplified
as

(7)

where is the normalization factor. Ob-
viously, Bayes factors is a ratio between two Bayesian predictive
densities so that we can calculate numerator and denominator
separately. The VBPC (Viterbi Bayesian predictive classifica-
tion) algorithm in [6] is used to compute each Bayesian predic-
tive density , e.g., and

.
Given an utterance , under the above

definition of prior distribution, the Bayesian predictive density
for the neighborhood is computed as follows:

(8)

where and denote a state sequence and mixture component
label sequence corresponding to. We term the path and
which maximize this integral as the optimal path, denoted as

, i.e.,

(9)

Given the input utterance , the underlying CDHMM , and
uniform prior distribution in the neighborhood, the optimal path

can be obtained by using the VBPC recursive search algo-
rithm described in [6]. The VBPC algorithm is a modified ver-
sion of the Viterbi search in speech recognition to implement
Viterbi approximation of calculating Bayesian predictive den-
sity in (8). In the VBPC algorithm, for every time instant, the
Bayesian predictive density, i.e., the integral in (8), is calculated
for all active partial paths survived in the search. Then, similar to
the Viterbi search, all partial paths are propagated in the search
network and their Bayesian predictive densities are re-computed
until the end of the utterance. In this way, we can get an ap-
proximate method to calculate Bayesian predictive density for
HMM. Meanwhile, the optimal paths can also be obtained
by backtracking search results. The readers can refer to [6] for

more details about VBPC algorithm. In this paper, in order to
balance contribution from different models in the neighborhood,
we introduce an exponential scale factor into the inte-
gral calculation. The exponential scale factoris important to
equalize the contributions from different models in the neigh-
borhood during the computation of Bayes factors. For example,
if we choose , the models with large likelihood values
are emphasized. On the other hand, if , the models with
smaller likelihood values will be put more weights. Therefore,
given the optimal path , the approximate Bayesian predic-
tive density is computed as follows:

(10)

where

(11)

(12)

(13)

In the above, denotes the Kronecker delta indicator with

and also represents the error function of Gaussian distri-
bution

(14)

The only issue left here is how to specify the parameters (,
) for various neighborhoods. In this work, we propose the fol-

lowing two different methods.

• Global setting: We manually select ( , ) for tight
neighborhood and ( , ) for medium neighborhood

, where and . In this case, we use
the same tight (or medium) neighborhood for all different
states and Gaussian mixtures in all HMMs.
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• State-dependent setting: Given a HMM state with pa-
rameter , we assume the neighborhood for this state
is defined as in (6), we calculate the maximum deviation
from the central point within the neighborhood in terms of
euclidean distance as

(15)

In reverse, when fixing , we can calculate based on a devi-
ation distance from the above equation. Thus, we first man-
ually select and for tight neighborhood and medium
one , then we define maximally allowed deviation distances
for tight and medium neighborhoods, i.e., and (usually

), finally we can calculate and for different
HMM states from and based on (15). In this case, we
can use different tight (or medium) neighborhoods for different
states in all HMMs.

V. CASE II: DELTA PRIORS

Given a model , we still define two neighborhoods around
: tight neighborhood and medium neighborhood . Then

for each neighborhood, to say , we construct a prior distribu-
tion as a mixture of delta functions. These delta functions are
centered at other models in the recognizer, which are located
inside neighborhood . That is,

(16)

where denotes the total number of models inside.
Similarly, we can build a prior distribution for the region

(17)

where denotes the total number of models located in the
region .

Based on these two priors, Bayes factors to verify hypotheses
and in (3) can be simplified as

(18)

To balance the contribution from different models, we can
similarly introduce a scale factor in the above sum-
mation. Then we have

(19)

At present, in many large-scale ASR systems, we usually use
state-tied CDHMMs as fundamental acoustic models for speech
recognition, which basically consists of a pool of distinct HMM
states, from which all HMMs in the system share their states.
Therefore, instead of building delta priors for each HMM model,

we also can set up delta priors in the level of HMM states. In
other words, for all distinct HMM states in the recognizer, we
can build the above delta priors separately for each state by using
the delta functions centering at all other HMM states in the pool.
Then Bayes factors is calculated for each state segment indepen-
dently and these scores are combined to obtain a verification
score for the HMM model, each recognized word, or even the
entire utterance, for the final utterance verification purpose.

VI. EXPERIMENTS

To examine the viability of the proposed methods, we
evaluate them on the Bell Labs Communicator system [19] to
detect recognition errors in final recognition results from the
decoder. The Bell Labs Communicator system is a travel reser-
vation system developed at Bell Labs under the sponsor of the
DARPA Communicator project. Users can talk and negotiate
with the system through telephone line with free spontaneous
speech to make their own travel plans, such as flight tickets
reservation, hotel booking, etc. In this work, we consider how
to reliably detect recognition errors, such as city-name and
other keywords, from the recognition output of the decoder.
The detection results and the resultant confidence scores will
be used to facilitate and improve the performance of speech un-
derstanding and dialogue management in the later stages. In our
experiments, the newly proposed utterance verification method
is compared with the traditional method, i.e., likelihood ratio
testing (LRT) based on standard anti-models, which are trained
from training data with the fixed segmentation (generated from
forced alignment against reference transcriptions).

A. Baseline System

In our recognition system, we used a 38-dimension fea-
ture vector, consisting of 12 Mel LPCCEP, 12 delta CEP,
12 delta-delta CEP, delta and delta-delta log-energy. In the
baseline system, the best acoustic HMMs are trained by using
the standard Baum-Welch ML estimation on a total of 46
hours of task-dependent speech data. The acoustic models are
state-tied, tri-phone CDHMM models, which consist of roughly
4K distinct HMM states with an average of 13.2 Gaussian
mixture components per state. Besides, a class-based, tri-gram
language model including 2600 words is used for decoding in
the system. The baseline system achieves 15.8% word error
rate (WER) in our independent evaluation set, which includes
in total 1395 utterances. In the experiments, we are interested
in detecting recognition errors from the decoder’s outputs.
We verify correctly recognized words against mis-recognized
words (only substitution and insertion errors). The recognition
result is first aligned against the reference transcription by
a standard dynamic programming procedure to label each
recognized word as either correct or wrong. In all recognizer’s
recognition outputs of the evaluation set, we totally have 3257
words labeled ascorrectand 520 words aswrong(not including
deletion errors). Based on the word and phoneme segmentations
generated by the recognizer, we calculate a confidence score for
every recognized word. According to the computed confidence
scores, we verify all correctly recognized words against other
mis-recognized words. As our baseline verification system, we
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use LRT based on a standard mono-phoneanti-models, which
are trained from all training data with fixed forced alignment
phoneme segmentation, generated from the standard forced
alignment procedure. That is, all phone segments of a phone
are collected to train the positive model for this phone and
all other phone segments are used to train an anti-model for
this phone. As shown in the first row of Table I, we achieve
40.0% equal error rate (EER) with this standard method in our
evaluation data set. The ROC curve is also shown in Fig. 3 with
the labelbaseline.

B. New Approach With Settings in Case I

In this section, we first investigate the Bayes factors methods
described in Section IV where we choose (, ) neighborhood
and constrained uniform prior distribution for Bayesian calcu-
lation. For all recognition results from the decoder, based on
the segmentation information, we calculate Bayes-factors-based
score for every phoneme segment as shown in (7). Then
these phone-level scores are combined to get the average score
per frame for each recognized word. Based on these scores, we
repeat the same UV experiments as in the baseline verification
system. Since we use static, delta, and delta-delta features, fol-
lowing [6], [8], we slightly modify the ( , ) neighborhood def-
inition in (6) to suit with delta and delta-delta features as

(20)

where for , ’s correspond to the static feature
part, ’s the delta feature part and ’s the
delta-delta feature part. Obviously, in the above definition, we
use the same neighborhood bound for static, delta and delta-
delta features.

In the case of global setting, we manually check the range:
and

. The best performance as well as its corresponding setting
is shown in the second row of Table I. We can see that the verifi-
cation score based on global setting obtains 36.7% in term
of EER, which is slightly better than our LRT-based baseline
performance (40.0% of EER). The performance is limited be-
cause in this case we are using the same neighborhoods for all
different HMM states.

As for the state-dependent setting, we first set upto a
small value, to say 0.1, and to a large value, to say 0.9. Ac-
cording to (15), once we fix the maximum deviation distance

, we can derive the parameter for different HMM states
from (15), where only static feature components are considered
in this calculation. In this case, we have manually checked the
range , and . The best perfor-
mance is shown in the third row of Table I, where we achieve
32.4% in terms of EER using the state-dependent setting.
This is a big improvement from the global setting. One possible

TABLE I
VERIFICATION PERFORMANCECOMPARISON(EQUAL ERRORRATE IN %) OF

BASELINE UV METHOD (LRT + ANTI-MODELS) WITH THE PROPOSEDNEW

APPROACH INSEVERAL DIFFERENTSETTINGS. IN EACH CASE, THE BEST

PERFORMANCE OF THENEW APPROACH AND ITSCORRESPONDINGPARAMETER

SETTING ARE GIVEN. HERE WE ALWAYS FIX � = 1:2

Fig. 3. Comparison of ROC curves for different methods when verifying
mis-recognized words against correctly recognized words in ASR outputs.

reason why state-dependent setting gives much better perfor-
mance is that we can use different neighborhood sizes for dif-
ferent HMM states based on certain deviation distance measure-
ment. Another reason is that it is much easier and more accurate
to specify the neighborhood size by using the distance deviation
introduced in (15) rather than using the original control param-
eters and . For both settings, we also plot the ROC curves in
Fig. 3, which also clearly show that both methods significantly
outperform the baseline system.

C. New Approach With Settings in Case II

In this part, we choose delta priors in (16) and (17) in the level
of HMM state for Bayes factors. At first, for each distinct state in
acoustic models, we calculate its distance from all other states
(roughly 4K). The distance between two HMM states is com-
puted as the minimum euclidean distance between every pos-
sible pair of Gaussian components from these two states. For
each state, we sort all other states according to their distances
from the underlying state. Then we save the sorted list and all
corresponding distances for every state in order to determine the
sizes of neighborhoods. In the first case, denoted asCase II-A,
for each underlying HMM state, we choose neighborhood sizes
to include exactly other states in and in .
In the second case, denoted asCase II-B, from the top 1500
states, we choose neighborhood sizes forto include all other
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Fig. 4. Verification performance, in terms of EER (in %), of the method
CaseII-A is shown as a function of parameterN when we fixN = 1 and
� = 1:2.

states with distance less than and ones’ distance between
and for . In Fig. 4, we plot the verification perfor-
mance in term of EER as a function of the mixture number
in large neighborhood when we fix the number of other states
in small neighborhoods , i.e., and the scale factor

. From the result, we can see that the verification perfor-
mance significantly improves as increases. But it requires a
pretty large number, e.g.,1000, to achieve a reasonably good
result. In the last part of Table I, we also give verification perfor-
mance in terms of EER, 31.5% forCase II-Aand 31.0%Case
II-B. Generally speaking, delta prior gives a slightly better per-
formance than uniform distribution based on (, ). However,
because it usually requires a very large number of delta com-
ponents, the computational complexity is much more expensive
than the parametric neighborhood in Case I. Finally, we also plot
the ROC curve forCase II-A(with ) in Fig. 3, which
clearly shows that it gives the best verification performance.

D. Discussions

Theoretically, the exponential scale factoris important to
equalize the contributions from different models in the neigh-
borhood when calculating Bayes factors. If we choose ,
the models with larger likelihood value are emphasized. On the
other hand, if , the models with smaller likelihood value
will be put more weights. However, in our experiments, we find
the verification performance is not very sensitive toin a cer-
tain range, to say [0.6, 1.5]. Thus, in our above experiments, we
have fixed , which gives a slightly better performance.

As for the parametric neighborhood parametersand , sim-
ilar to some previous works [6], [21], the use of (, ) neighbor-
hoodsuffersfromthedifficultyofhowtoautomaticallydetermine
the control parameters and . The general behavior is that the
method usually performs well in a certain range of (, ), usually
[1, 10] for and [0.1, 0.9] for . But optimal values of and
usually depend on the particular data set. In Table I, we give the
best performance and its corresponding parameter setting in the
test set. For other and values in the above region, the perfor-
mancewillbeslightlyworse.Toovercomethisdifficulty,wehave
proposed anonparametricneighborhood (case II) in thispaper. In
thiscase, it ismucheasiertospecifyparameters.Forexample,how

many other models are included in the neighborhood. As shown
in Fig. 4, the larger the number is, the better the performance will
be (of course, at expense of more computational cost). Generally,
if N is larger than 500, the performance will be reasonably good
for different data sets.

When we compare two investigated neighborhood defini-
tions, namely parametric method (case I) and nonparametric
one (case II), based on the above experiments, we can see that
the nonparametric method (case II) slightly outperforms the
parametric method (case I) in case we use a large number of
delta mixture components in the nonparametric method. But
the nonparametric method requires much higher computational
complexity to calculate confidence scores because a large
number of mixture components are involved in the delta prior
p.d.f., where we must repeat likelihood calculation for every
component in summation calculation of Bayes factors. On
the other hand, the parametric definition of neighborhood (or
the priors) is cheaper in terms of computational complexity
because an approximate closed-form solution usually is avail-
able to the integral calculation in Bayes factors. The problem
is that it is usually very hard to define a proper parametric
neighborhood (or prior distribution) for HMM models due to
the high dimension in HMM model space.

If we compare the proposed methods with the traditional anti-
model-based LRT approach, the new method is simple to use be-
cause it does not require to build separate verification models.
Once the neighborhood is defined, we can calculate confidence
score immediately. In contrast, in LRT-based approaches, we
usually have to follow a very complicated training procedure
in order to obtain some reasonable verification models, such as
in [9], [20]. When comparing with other confidence measures
which are proved to work reasonably well, such as word-graph-
based posterior methods [27], the neighborhood-based approach
is much faster and instant. In other words, in [27], in order to ob-
tain confidence scores of certain recognized words from a word
graph, we have to wait until the whole recognition process ends,
and then build a word graph for confidence measurement. The
confidence score calculation based on the word graph is also
very complex and relatively computationally expensive. On the
other hand, the neighborhood-based approach can calculate the
confidence score as soon as a recognition decision is made. For
instance, like in [9], the new method can even be used to cal-
culate confidence scores for all partial paths during the Viterbi
search procedure. Based on these scores, we will be able to
prune out some very unlikely hypotheses during the process of
Viterbi search for the purpose of speed and accuracy [9]. Even
though the lattice-based posterior probability could also be cal-
culated during the search procedure once an intermediate recog-
nition is made, backtracking a lattice and computing the poste-
rior probability over lattice are both complicated and expensive
when comparing with the methods proposed in this work (as
was pointed out by one reviewer).

VII. CONCLUSIONS

In this work, we have examined how to perform utterance
verification based on neighborhood information in model
space. The basic idea is to assume that all competing models



JIANG AND LEE: NEW APPROACH TO UTTERANCE VERIFICATION 433

of a given model sit inside one neighborhood of the underlying
model. Based on definition of the neighborhood, Bayes factors
is adopted as a major computation vehicle to calculate confi-
dence measures for utterance verification. In this paper, we have
investigated two particular neighborhood definitions: i) Para-
metric one: ( , ) neighborhood with constrained uniform prior
p.d.f.; ii) Non-parametric one: mixture delta prior p.d.f. with a
fixed number of mixtures included in the neighborhood. Based
on these two neighborhood definitions, Bayes-factors-based
confidence measures become quite easy to calculate for HMM.
From the experimental results in the Bell Labs communicator
system, we have found that it is a promising direction to use
neighborhood information in model space to perform utterance
verification for the purpose of confidence measurement. Some
preliminary studies based on two particular neighborhood
definition have shown that the new method works better than
the traditional anti-model-based LRT approach if we define
and choose the neighborhoods properly, which in turn proves
that the neighborhood information is very useful in calculating
confidence measures for speech recognition. In this paper, we
have proposed a systematical framework to perform utterance
verification based on the neighborhood information and Bayes
factors. Although we have investigated two different neighbor-
hood definitions, one parametric neighborhood and another
nonparametric one, we believe much more research works
are still needed to search for a better neighborhood definition
in high-dimension HMM model space. As another possible
research direction for future works, instead of Bayes factors,
other statistical hypothesis testing tools, such as generalized
likelihood ratio testing (GLRT), can also be used to implement
the neighborhood based UV described in this paper. At last, in
this work, the proposed methods are compared only with one
traditional approach in the literature [20], [23]. It will be very
interesting to compare with other popular methods, such as
[16], [26], [27].
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