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A Robust Compensation Strategy for
Extraneous Acoustic Variations in Spontaneous

Speech Recognition
Hui Jiang, Member, IEEE,and Li Deng, Senior Member, IEEE

Abstract—In this paper, we propose a robust compensation
strategy to deal effectively with extraneous acoustic variations for
spontaneous speech recognition. This strategy extends speaker
adaptive training, and uses hidden Markov models (HMM)
parameter transformations to normalize the extraneous variations
in the training data according to a set of predefinedconditions.
A “compact” model and the associated prior probability density
functions (PDFs) of transformation parameters are estimated
using the maximum likelihood criterion. In the testing phase, the
generic model and the prior PDFs are used to search for the un-
known word sequence based on Bayesian prediction classification
(BPC). The proposed strategy is evaluated in the switchboard task,
and is used to deal with three types of extraneous variations and
mismatch in conversational speech recognition: pronunciation
variations, inter-speaker variability, and telephone handset mis-
match. Experimental results show that moderate word error rate
reduction is achieved in comparison with a well-trained baseline
HMM system under identical experimental conditions.

Index Terms—Bayesian predictive classification (BPC), extra-
neous variation, generic (or compact) model, prior PDF, speaker-
adaptive training (SAT).

I. INTRODUCTION

I N the past few decades, statistical models, such as hidden
Markov models (HMM), have achieved significant success

in automatic speech recognition (ASR); see some recent
review papers in [15]. In the conventional statistical paradigm
of ASR, statistical models are usually estimated based on
a large amount of training data. Then the estimated models
are used to recognize unknown utterances. The training data
are usually collected under as many different conditions as
possible for the purpose of properly representing all possible
incoming speech data in the future use. Even though the data
collection conditions may greatly differ due to a wide range
of factors, the conventional paradigm treats all training data
collected in different conditions in an identical manner by
simply pooling them together. The model parameters are then
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determined from the pooled data set via parameter estimation
techniques, e.g., maximum likelihood (ML) or discriminant
training. The variations contained in the data come from many
different sources, and some of these sources are germane to the
recognition problem or task while the others are extraneous.
An apparent shortcoming of the above training paradigm is
that the large amount of pooled training data not only include
the pertinent variability (such as phonetic distinction), but also
involve many other extraneous variations which are irrelevant
to our modeling or recognition purpose and should therefore be
compensated for. In this paper, we call those variations existing
in the data which are not directly related to our modeling
or recognition purpose asextraneous variations. Obviously,
extraneous variation varies from problem to problem. For
instance, in a typical case of speech recognition, it is important
to model the phonetically relevant variation sources. All other
variabilities are considered to be extraneous, including those
arising from speaker, transducer, telephone channel, speaking
style, speaking rate, pronunciation change, etc. On the other
hand, for the speaker recognition problem, speaker variations
become pertinent while other variations are extraneous. The
extraneous variations have several realization levels. In this
paper we consider the extraneous variations at the acoustic
level only. All other issues related to phonetic or higher levels
will be beyond the scope of this paper.

In conventional implementation of speech recognizers, one
does not have an explicit mechanism to compensate the extra-
neous variations in the training procedure. In particular, when
we recognize spontaneous speech, where many types of extra-
neous variations abound, the performance of speech recognition
can be significantly affected. In the training phase, due to the ex-
traneous variations, the training data may diverge substantially
from what is assumed in the model. This would make the esti-
mated models diverge from the desired behavior. In the testing
phase, the deviation due to the extraneous variations can also be
viewed as a special kind of mismatch between the models and
the testing data. In this paper, we describe a robust strategy to
deal with the extraneous acoustic variations in the training phase
in order to achieve a “generic” (or compact) model which better
reflects the pertinent variations in the speech recognition tasks.

Recently, researchers began to realize the importance of
compensating the extraneous variations in the training phase in
order to improve the modeling capability of the models. In [1],
the “speaker-adaptive training” (SAT) by Anastasakos et al. is
one of important steps along the direction of the robust training
strategy. In SAT, some linear regression transformations are
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used to normalize the inter-speaker variations in the speech
data to construct a “compact” model. In [1], an iterative
algorithm has been proposed to estimate the parameters of both
transformation and compact models in a sequential mode based
on the ML criterion. The work reported in [8] shows another
way to normalize “irrelevant variability” in the training phase
for the purpose of learning a model structure (HMM state
tying). Further, in [5], [6], another interesting robust training
method was proposed for the same purpose as aimed by the
work reported in this paper. In that work, several clusters are
pre-defined and a canonical model is estimated for each cluster
based on the ML criterion in the training phase. During testing,
an interpolated model of all cluster-specific canonical models
is constructed for each separate test utterance. The interpolating
weights are estimated on-line from each current utterance.

In this paper, we propose and evaluate a new robust training
strategy to compensate and normalize the extraneous variations,
with a solid theoretical foundation and with practical effective-
ness. It differs from the previous work discussed above in its
novel use of thedistribution of the transformation parameters
in a Bayesian framework. Briefly, we label each utterance in the
training set with one of pre-definedconditions, depending on
the nature of the extraneous variation to be compensated, such
as speakerid, speaking style, pronunciation, transducer, trans-
mission channel, etc. The data from different conditions are first
normalized by using some appropriate transformations before
they are pooled to estimate a “generic” (or compact) model.
Meanwhile, a prior distribution of transformation parameters
is also automatically estimated from the data to represent the
knowledge of all possible transformations used across the var-
ious “conditions” in the training phase. In this way, the extra-
neous variation is adequately compensated for and the generic
model will converge properly to represent the pertinent varia-
tions in question. In the testing/decoding phase, based on the
generic model and the prior distribution of transformation pa-
rameters, we use a new search algorithm to decode the unknown
input utterance according to Bayesian predictive classification
(BPC) [9], [10].

In order to obtain the “generic” acoustic models which can
adequately describe phonetically relevant variation sources,
the proposed strategy is used to normalize and/or compensate
several types of major extraneous variations in spontaneous
speech recognition. Throughout this paper, we take the switch-
board corpus as our evaluation data set. There are several
interesting aspects in this corpus for the evaluation of our new
robust training strategy. Firstly, in the switchboard task, the
pronunciation variation in conversational speech is shown to
be one major extraneous variation source hampering speech
recognition. Thus, we can justifiably define the “condition”
which characterizes the pronunciation variation, and in this
case the proposed strategy can be employed to compensate for
the pronunciation variation. Secondly, like SAT, we utilize our
robust training strategy to normalize the inter-speaker differ-
ences that also clearly exhibit themselves in the switchboard
corpus. Here, the “condition” is defined based on the speaker
id. Thirdly, the robust training strategy is also used to normalize
the extraneous variation related to the mismatches caused by
different telephone handsets in the switchboard corpus. Here,

the information about the telephone number of each participant
in both conversation sides in the switchboard corpus is used
to define the “condition”. To facilitate the implementation,
we choose a very simple transformation, i.e., piecewise linear
functions, to normalize and/or compensate all of these three
types of extraneous acoustic variations in the conversational
telephony speech data of the switchboard corpus. Experimental
results show that the proposed method has achieved some
moderate improvement in recognition performance, i.e., nearly
1% absolute reduction in word error rate (WER) for each type
of extraneous variations, over a well-trained baseline HMM
system.

The remainder of the paper is organized as follows. First, the
basic ideas underlying the proposed robust training strategy are
presented in Section II. Next, the robust training and decoding
algorithms are presented in detail in Sections III and IV, respec-
tively. In Section V, the experiments on the switchboard task are
reported and the results are discussed. Finally, the paper is con-
cluded with a summary of our findings in Section VI.

II. OVERVIEW OF THE NEW STRATEGY

Following the idea originally presented in [1], suppose we
have a generic (or compact) mixture Gaussian HMM

for each speech unit we desire to model, where
is the initial state distribution,

is the transition matrix, and is the parameter vector com-
posed of mixture parameters
for each state, where denotes the number of Gaussian mix-
ture components in each state. The state observation probability
denisity functions (PDF) is assumed to be a mixture of multi-
variate Gaussian PDFs with diagonal precision matrices

(1)

where denotes the dimension of feature vectors. We denote
all training data for as , where

stands for those data collected under conditionand we
have a total of different conditions. The condition is defined
according to the extraneous variations to be normalized, which
will be explained for the specific examples in detail in the fol-
lowing sections. Then, we aim to choose some proper transfor-
mations to normalize/compensate the extraneous variations in
speech signals. In other words, we need to choose a set of trans-
formations , for the generic model

. Each transformation , which is parameterized by,
corresponds to a specific conditionso that for each condi-
tion the transformed model gives a better descrip-
tion for the data which are collected under this condition

. The same SAT algorithm in [1] could be
used to estimate the compact modeland the corresponding
transformations according to the ML criterion. How-
ever, in the testing phase, it would not be appropriate to use
the compact model to evaluate the testing data directly be-
cause would not match the original data due to the involved
transformations. Furthermore, we do not know which transfor-
mation should be used for each testing utterance because we
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have no idea of whichcondition the test data come from. In
this paper, the idea of Bayesian prediction is proposed to solve
this problem. The specific transformation parametersfor dif-
ferent “conditions” are viewed as some sampling outcomes from
a prior PDF for the transformation parameters, denoted as.
In the training stage, the prior is simultaneously estimated
to represent the knowledge of all transformations possibly used
in the training stage. In the testing phase, the BPC algorithm
helps to make an optimal decision given the information sup-
plied by the prior .

Before we derive the robust training and testing algorithms,
we have to carefully determine the functional form for the trans-
formation and that for the prior PDF of transforma-
tion parameters . Firstly, as for the transformation ,
the requirements are 1) the transformation is sufficiently pow-
erful to normalize the acoustic difference caused by extraneous
variations and 2) The transformation form is simple enough
so that Bayesian prediction is tractable in the decoding phase.
One possible choice is the piecewise linear transformation. In
this work, as a first step, we choose the simplest transformation
form, namely the bias vector plus the mean vector of an HMM

(2)

where denotes the transformation param-
eters. We assume that all other HMM parameters remain un-
changed. In principle, each transformation could be related or
tied to any different segments of speech signal. In this paper,
we suppose that each transformation is HMM state-dependent,
i.e., we use different transformations for different HMM states
and the transformations of various states are tied based on the
triphone state-tying in the entire HMM set. Secondly, as for the
prior PDF of transformation parameters, i.e., in this case,
in order to have a simple form in the decoding stage, we choose
the following prior PDF based on the concept of natural conju-
gate prior[3]

(3)

where are the hyperparameters.1

III. ROBUST TRAINING ALGORITHM

In this section, we integrate the above robust training ideas
into the conventional acoustic modeling method used in a large
vocabulary speech recognition system, i.e., triphone model
state tying based on the phonetic decision tree [20]. Our robust
training strategy consists of the following steps.

1) Define a set of “conditions” according to the specific
extraneous variations to be normalized or compensated.
Specifically, we define a total of different “conditions,”
and each is indexed by .

1It is also possible to use a finite mixture form for the prior distribution as in
[11] to supply a more accurate description of the prior information. In the work
described in this paper, we have implemented the simpler Gaussian form only.

2) Build a baseline system based on the conventional HMM
approach.

3) Align all speech utterances in the whole training set to
obtain the Viterbi segmentation for each utterance at the
HMM’s state level; Then, label each frame of feature vec-
tors with one of the “condition” where the
feature vector belongs.

4) Tying states of all triphone models and parameter estima-
tion: build a single decision-tree for each state of phone
models based on all data belonging to its corresponding
triphone states. For each tied state of the tri-phone models
(i.e., every leaf node in the decision tree).

a) According to the above alignment results, pool
all labeled data together,

, where denotes all data la-
beled with condition . Use the state distribution
in the current leaf node as the initial estimate
of the compact model for this tied state.
Here, is a mixture Gaussian model, i.e.,

.
b) Given the current , estimate all transformations

for each condition
based on the data
(See Appendix for derivation):
For each dimension (use

as initialization)

(4)

where denotes the probability of re-
siding in the mixture component , i.e.,

(5)

c) Re-estimate the compact model (See Appendix
for derivation):
For and

(6)

(7)

(8)
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d) Goto step (4b) unless some convergence conditions
are met.

e) Estimate the hyperparameters
of the prior PDF for the current tied state:

For

(9)

(10)

where are tied for all HMM
states related to the current leaf node.

IV. ROBUST DECODING BASED ON

BAYESIAN PREDICTIVE CLASSIFICATION

According to [10], the BPC decision rule makes a speech rec-
ognizer minimize the overall recognition error when the expec-
tation is taken with respect to the uncertainty described by the
prior PDF. Assume that the functional form of the parameter
transformation is exactly known and all available information
about the transformation parameters is completely contained in
the prior PDF , given unknown observation , then such
an optimal recognition result can be expressed as

(11)

where denote the HMM state sequence and the Gaussian
component label sequence, respectively. In this equation, the
Viterbi approximation [10] has been adopted to make the
integral tractable. Based on the work in [10], where we have
prior PDFs of all HMM parameters and the integral is taken
with respect to the HMM parameters, this paper introduces new
transformation-based structure constraint into the BPC method.
Therefore, (11) can be thought as a kind of “constraint-based”
BPC.

In this improved BPC, the optimal HMM parameters for
each testing utterance are assumed to follow some constraints,
which are established by applying transformations into a known
“generic” HMM . The transformations are known exactly
except for a small set of parameterstreated as random vari-
ables. It is further assumed that our prior knowledge about the

transformation parametersis contained in a prior PDF .
Under these assumptions, the optimal decision rule will be the
“constraint-based” BPC shown in (11). When the number of
the transformation parameters is much fewer than that of HMM
ones, the “constraint-based” BPC makes it easier to determine
the prior PDF. An additional contribution of this work is that
we significantly simplified the estimation of the prior PDF for
the transformation parameters by incorporating the SAT in our
training stage, as shown in step (4e) of Section III.

After we adopt the linear transformation as shown in (2) for
where each transformation is associated with a HMM

state, we now present a frame-synchronous search algorithm to
implement the above “constraint-based” BPC rule. The search
algorithm has been modified from the general VBPC algorithm
presented in [10]. According to (11), the value of the integral de-
pends on the path in the HMM. This makes it difficult to derive a
recursive algorithm to compute an accurate value of the integral.
The solution to this difficulty we have adopted is to incorporate
the calculation of the integral in the Viterbi search. For each
time frame, we compute the integration over the transformation
parameters for all active hypothesized partial paths. Then, for
each node in the search network, we merge all incoming par-
tial paths by selecting the one with the largest integral value.
The selected path is propagated and the integral is recomputed
according to the extended partial path. The search procedure is
repeated until the end of the utterance. In this way, we are able
to achieve a Viterbi approximation of the integral.

Given a test utterance , the generic
model , and the prior PDF shown in (3) (with the
hyperparameters estimated from (9) and (10)), the recursive
search procedure for accomplishing the computation in (11) is
described as follows.

1) Initialization

(12)

(13)

where (for )

where denotes the transformation parameters related
to state . Here, denotes the partial predictive value
based on the optimal partial path arriving at stateat the
time instant . The corresponding best partial path is rep-
resented by a chain of points starting from .



JIANG AND DENG: ROBUST COMPENSATION STRATEGY FOR EXTRANEOUS ACOUSTIC VARIATIONS 13

2) Recursion: for , do

1) path-merging in state

(14)

(15)

2) Update the partial predictive value:
If (it is the first time to involve state in the com-
putation of )2 , then

(16)

else

(17)

where is the accumulated number of fea-
ture vectors belonging to state based on the
optimal partial path up to the time instant

denotes the th vector in the state ; and
denotes the contribution of

data , residing in state , to
the partial predictive value

(18)

3) Termination

(19)

(20)

4) Path (state sequence) backtracking

(21)

In (18), can be approximated based on
the “closest” mixture component label sequence corresponding
to the data

(22)

2Including all states tied to statej.

where denote feature vectors belonging to
state in , among which denote labels of the vectors
“closest” to the mixture componentof state . Then, we have

where

(23)

and

(24)

In the above VBPC, we search for a single best path to com-
pute the integral-based Bayesian prediction instead of calcu-
lating the integral over all possible paths, as shown in (11) and
(22). As in [10], we have found that the VBPC generally leads
to a rather good approximation because the contribution from
the best path almost always dominates the entire Bayesian pre-
diction.

V. EXPERIMENTS: SWITCHBOARD TASK

In order to examine the viability of the proposed robust
training strategy, we apply it to several types of extraneous
acoustic variations in spontaneous speech recognition. In this
paper, we choose a fast evaluation set of the switchboard
corpus used in Workshop 1996 (WS96) at Johns Hopkins
University, Baltimore, MD, which is approximately 10 h in
duration. It is called “10-h” set hereafter. In the following
recognition experiments, we first build a baseline system from
the “10-h” training data according to the conventional training
method. Then, starting from the baseline system, the new
training method is used to deal separately with three different
types of the extraneous variations in the switchboard task, i.e.,
the pronunciation variation, speaker difference and handset
mismatch. The experimental setup and comparative results will
be reported in this section, together with some discussions on
the experimental results and on the computation complexity of
the algorithm used.

A. The 10-h Baseline System

We use HTK v2.2 to implement our baseline system. In
the baseline system, we use the 39-dimension feature vector
which is composed of 12 MFCCs with log-energy, and delta
and acceleration coefficients. The cepstral mean normalization
is performed in the utterance level for both training and testing
data. The acoustic models are three-state five-mixture-per-state
word-internal triphone HMMs. The standard phonetic deci-
sion-tree method is used for state-tying. After the tying, the total
number of all distinct tied-states is reduced to approximately
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TABLE I
PERFORMANCE(IN %) COMPARISONWITH THE 10-h BASELINE SYSTEM WHEN

THE ROBUSTMETHOD IS USED TODEAL WITH PRONUNCIATION VARIATIONS

2000. The dictionary consists of all words (about 6474 words)
occurring in the “10-h” training set. Multiple pronunciations
are used for some words. The language model is the back-off
bigram model trained only on the transcriptions of all utterances
in the “10-h” set. The test set consists of 200 utterances (a total
of 1948 words) randomly selected from the evaluation test set
in WS96, which is disjointed from the “10-h” set.

The recognition performance of the baseline system with
these 200 test utterances is shown in the first line of the Table I,
i.e., with 65.39% word error rate (WER). The performance is
close to the best baseline results which were reported under
identical conditions in WS96.

B. Dealing With Pronunciation Variations

According to [2] and [17], in the switchboard task, pronun-
ciation variations in conversational speech is one major extra-
neous variation source hampering speech recognition perfor-
mance. How to cope with pronunciation variations in conversa-
tional speech recognition has been studied by many researchers,
e.g., [2]. It is straightforward to incorporate multiple pronun-
ciations in the search network for some words. However, this
strategy also increases the perplexity of the search network and
makes it more confusable. In this section, we attempt to deal
with the pronunciation variations by using our robust training
strategy. In principle, the speech data which come from the same
word may be treated as from different “conditions” if the word
is pronounced differently. That is, the set of all “conditions” can
be defined by all distinct pronunciations of all words in the vo-
cabulary. In this way, the above robust training approach can be
directly used to normalize the acoustic variations caused by pro-
nunciation differences.

One most important implementation issues here is how to de-
fine the condition and partition the data into different conditions.
It is crucial to have a good tradeoff between the number of con-
ditions and the amount of data used for each condition. In order
to obtain reliable estimation for the transformation parameters
for each condition, it is important to ensure that there is enough
data for each condition. In this work, we use the baseline recog-
nition system and a phoneme recognizer to automatically deter-
mine pronunciation of every word in the training data. We have
explored the following two methods in defining aconditionfor
pronunciation variations.

1) Each utterance in the training set is force-aligned at
the word level based on its transcription by using the
baseline system to obtain the segmentation information
for every single word. Then, phone recognition based
on free-phone looping is performed on acoustic phone
models in the baseline system for each word according

to the above alignment boundary. The phoneme recog-
nition results are viewed as the pronunciation of this
word. However, this method usually causes too many
pronunciations for each word. Thus, we use a very
simple distance measure between two pronunciations,
e.g., number of different phoneme, to cluster all dif-
ferent pronunciations of each word into four classes
or fewer. In training stage (4a), all data from the same
word and the same pronunciation class are treated as
from the same condition. This method is denoted as
RobustPhon-Ihereafter.

2) Phoneme recognition is directly performed for each
utterance in the training set to obtain the phoneme se-
quence for the sentence by using the baseline system,
where phoneme HMMs are used without any language
model. In training stage (3) described in Section III,
each feature vector is labeled with the recognized
phoneme where the vector belongs. When doing
decision-tree state-tying in training stage (4a), all data
in this state which corresponds to the same recognized
phoneme is treated as from the same condition. This
method is denoted asRobustPhon-IIhereafter.

The RobustPhon-Iand RobustPhon-IImethods are imple-
mented under the same experimental conditions as that of the
baseline system. From the comparative experimental results in
Table I, whereSub, Del, andIns denote the substitute, deletion,
and insertion error rate, respectively, we observe that the robust
training method gives close to 1% reduction in word error rate
(WER) over the baseline system. We also note that, for the 10-h
data set, theRobustPhon-IIachieves somewhat better results be-
causeRobustPhon-Iusually causes too many conditions and in
turn too few training data for the some conditions.

In both RobustPhon-Iand RobustPhon-II, we can identify
several factors which influence the final performance. The first
factor is the poor phoneme recognition results when transcribing
the switchboard data by using the baseline system. The high
error rate in phoneme recognition causes the conditions related
to pronunciation variations not to be well defined. The second
factor is that the functional form (2) for transformation may not
be powerful enough to normalize the acoustic variations caused
by the pronunciation changes. Furthermore, the acoustic vari-
ation is only one aspect of pronunciation variations. In partic-
ular, phonetic reduction has been found to be one major cause of
variability for spontaneous speech, which requires new dynamic
modeling methodologies beyond the conventional HMMs that
we have used in this work [4].

C. Dealing With Inter-Speaker Differences

The inter-speaker difference is another major source of extra-
neous variations for any speaker-independent speech recogni-
tion system. In this section, we report experimental results using
our robust training strategy to compensate/normalize the inter-
speaker difference in the switchboard data. Here, each “con-
dition” in training stage (1) is related to each speaker in the
training set. Then, in training stage (3), we label every feature
vector in the entire training set with the speaker who utters the
current sentence. In stage (4a), for every tied state, all speech
data which come from the same speaker is considered under
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TABLE II
PERFORMANCE(IN %) COMPARISONWITH THE 10-h BASELINE SYSTEM WHEN

THE ROBUST METHOD IS USED TODEAL WITH SPEAKERDIFFERENCE

the same condition. This method is denoted asRobustSpkhere-
after. Recognition performance comparison ofRobustSpkwith
the baseline system is shown in the Table II. From the results,
we note that when the robust training strategy is used to nor-
malize the inter-speaker difference, 1.2% WER reduction over
the baseline system has been achieved. We also see that the per-
formance improvement here is somewhat larger than bothRo-
bustPhon-IandRobustPhon-II. One possible reason is that the
condition here is well-defined because the condition is decided
solely by the speaker id and is independent of the performance
of the baseline system.

D. Dealing With Handset Mismatches

The switchboard data consist of recorded telephone conversa-
tions among a set of registered participants. A participant would
initiate a conversation by calling an automaton that would find
another participant to receive the call. The automaton would
note the telephone numbers used by both participants. We gen-
erally assume that when the phone numbers are the same, the
handsets are also the same, though there may be exceptions.
In this section, based on the information of telephone numbers,
the robust training strategy presented in Sections III and IV is
similarly used to normalize the acoustic variations caused by
handset mismatch. Here, each condition is related to one tele-
phone number recorded in the training set. In training stage (4a),
all training data from the same telephone number are considered
to be under the same condition. This method is denoted asRo-
bustHandsethereafter. The comparative results in Table III show
that the robust training methodRobustHandsetachieves nearly
1% WER reduction over the baseline system.

E. Discussion

Although we have observed some moderate WER reduction
for the switchboard task from all above promising experimental
results, the performance improvement is smaller than what we
had expected. One possible reason is that the switchboard task
is an extremely difficult one, and the data contains many other
types of variabilities which have not been addressed in this
work.

One important issue here is the computational complexity of
the new robust training approach introduced in this paper. Com-
pared with the conventional training method and SAT, the ro-
bust training algorithm here does not significantly increase the
computational complexity. However, as discussed in [10], the
decoding algorithm based on BPC demands much more compu-
tation or memory overload than the normal Viterbi search algo-
rithm. As shown in [10] and [12], this usually does not cause any
problem for small-vocabulary tasks. For the switchboard task,
where the search network is constructed from several thousand

TABLE III
PERFORMANCE(IN %) COMPARISONWITH THE 10-h BASELINE SYSTEM WHEN

THE ROBUST METHOD IS USED TODEAL WITH HANDSET MISMATCH

words, a fast implementation version of the VBPC search algo-
rithm usually requires a memory greater than 1000 megabytes.
Although the fast version of the VBPC search has a similar run-
ning speed as the normal Viterbi search, memory requirement
is not affordable in most current machines. Thus, it is very im-
portant to have a good programming design to achieve a good
tradeoff between the speed and memory. Even so, in most cases,
in order to have an acceptable speed of response, heavy pruning
is necessary in the search algorithm.

From the experimental results reported in this section, we have
observed over 1% WER reduction (absolute) separately for each
type of extraneous variations. It will be interesting to see whether
we can have additive improvements when the method is used to
jointly deal with all three types of variations. However, we will
face a serious problem of “sparse data” when jointly normalizing
three types of variations. For example, we usually have the total
number of “conditions” from several tens to several hundreds in
Sections V-B,C, andD. If we jointlydeal with three typesof vari-
ations, the totalnumberof “conditions”will increaseuptoaround
one million. The training data will not be enough for most “con-
ditions” unless we have a good method to tie some “conditions”
together. This issue is a subject of future research.

VI. CONCLUSION

In this paper, we have proposed a robust training strategy
to deal with extraneous acoustic variations in building robust
speech recognition systems. In this strategy, we first define some
“conditions” for the training data according to the extraneous
variations to be compensated. Then, the data under different
conditions are normalized prior to pooling them together to es-
timate the “compact” model. The corresponding decoding algo-
rithm based on the BPC is also presented in the paper. The new
approach can be used to deal with any type of extraneous vari-
ations in the speech recognition problem. This paper provides
some examples of using this approach to deal with three types of
extraneous variations: the pronunciation variation, inter-speaker
difference, and handset mismatches, in the switchboard task for
spontaneous speech recognition. The experimental results have
provided evidence that the proposed robust training strategy is
effective to deal with some extraneous acoustic variations in
speech recognition. For all three types of extraneous variations
we have examined, moderate performance improvements over a
well-trained baseline system have been achieved. From our ex-
periments, we also note that the performance gain of the new
approach depends on several factors including 1) whether the
functional form of the transformation we have chosen is pow-
erful enough for the extraneous variations and 2) whether we
have properly defined the “condition” so that we have an ade-
quate amount of training data for each condition.
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In this paper, we have only investigated a very simple
functional form of the transformation: a piecewise shift trans-
formation on the HMM mean vectors. We plan to extend this
work to other more powerful transformation forms, such as
the affine transformation involving all HMM parameters. Also
the parameters of the prior PDF has been estimated from the
training data based on the ML criterion. The method of moment
in [7] is an alternative, over the ML method, to estimating
the priors. This may be superior in performance. Moreover, it
will be interesting and informative to experimentally compare
the proposed method with other well-known techniques in
terms of compensating acoustic variations, such as cluster
adaptive training (CAT) in [6], bias removal in [14] and [18]
and stochastic matching in [13] and [19]. Finally, our current
robust training strategy can be further developed for new
dynamic models of spontaneous speech intended to incorporate
phonetic reduction (target undershoot) as well as pronunciation
variations. In particular, phonetic reduction has been found
to be one major cause of variability for spontaneous speech
which requires dynamic modeling methodologies beyond the
conventional HMMs [4].

APPENDIX

DERIVATION OF (4)–(8)IN THE ROBUSTTRAINING ALGORITHM

In this Appendix, we provide the derivation of (4)–(8) in ro-
bust training algorithm presented in Section III.

Assume that we adopt the functional form (2) for
the transformation and we have the generic model

for one tied state in
a leaf node of the decision tree. Following , [1] and [19]
given the data , where

denotes all data labeled with the
condition and denotes a single feature vector belonging
to condition , the EM algorithm is used to estimate the generic
model and the transformation parameters sequentially. Here
the mixture component label is themissing datawhile using
the EM algorithm.

Firstly, given the generic model , we estimate the transfor-
mation parameter for each condition based on .

E-Step:

const (25)

where denotes the probability of residing in mixture
component , i.e.,

(26)

M-Step:

(27)

Thus,

(28)

Secondly, given the generic model and transformation
, we re-estimate the generic model

based on the data .
E-Step:

const (29)

M-Step:

(30)

Thus,

(31)

(32)

Thus,

(33)

(34)

where Lagrange multiplier is used. Based on the constraint
, we have

(35)
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