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A Bayesian Approach to the Verification Problem:
Applications to Speaker Verification

Hui Jiang Member, IEEEand Li Deng Senior Member, IEEE

Abstract—in this paper, we study the general verification to many services and products, the role of utterance verifica-
problem from a Bayesian viewpoint. In the Bayesian approach, tion has become increasingly essential. Utterance verification is
the verification decision is made by evaluatingBayes factors especially important in the design of user-friendly systems be-

against a critical threshold. The calculation of theBayes factors h t hould be able t iect h utt
in turn requires the computation of several Bayesian predictive cause such systems shou € able 1o reject speech utterances

densities. As a case study, we apply the method to speaker verifi- €ither with no valid keywords or with valid keywords but are
cation based on the Gaussian mixture model (GMM). We propose incorrectly recognized by the speech recognizer.

an efficient algorithm to calculate the Bayes factordor the GMM, In principle, both speaker verification and utterance ver-
where the Viterbi approximation is adopted in the computation ification, as well as all other verification problems, can be

of joint Bayesian predictive densities. We evaluate the proposed - e ; .
method for the NIST98 speaker verification evaluation data. addressed in a unified theoretical framework. As we will

Experimental results show that new Bayesian approach achieves Show later, in theory, every verification problem can be cast
moderate improvements over a well-trained baseline system using as a problem of “statistical hypothesis testing.” According to
the conventional likelihood ratio test. Neyman—Pearson’s Lemma, under certain conditions, the op-
Index Terms—Bayes factors, Bayesian prediction, equal error timal solution to hypothesis testing is the so-called “likelihood
rate (EER), Gaussian mixture model (GMM), likelihood ratio test, ratio test” (LRT). Many researchers in speech technology have
outlier verification, speaker verification, sufficient statistics, veri-  jntroduced the LRT to utterance verification [19], [23] and
fication problem. speaker verification [15]. The LRT technique has achieved
significant success in both of these areas. The aim of the
|. INTRODUCTION research work presented in this paper is to extend the LRT to
the new, Bayesian framework.

URING the past few decades, the verification problem Generally speaking, automatic speech and speaker recogni-
has been attracting considerable research attention in H;Se

) . h aim to solve two different types of problentassification
speech research community. The verification problem encon.

asses all problems which require a binary ans o In dverification In the classification problem, the objective is
P P quire a binary yesorno. In- 44, classify an input speech segment or utterance into one of a
speech technology, speaker verification and utterance verifi

tion are two most active areas due to their increasing importa fedefined set of categorig€’|l = 1, ..., L} based on the
. . o easing imp ﬁ%ory of statistical pattern recognition. For a given speech seg-
in many practical applications. In speaker verification, based

entX, if the conditional probability (X |C;) and thea prior

auser's voice, the goal is to make the decision of whether to (ﬁ)babilityp(cl) are assumed known, then the optimal class de-
cept or to reject the identity claimed by the speaker. Successiyl.

P ; ) . ionC(X) that minimizes the classification error is the Bayes
speaker verification will enable an automatic device to use t

. ! S . cision rule that maximizes treeposteriori probability such
user’s voice to verify their identity and to control access to vaf: P P y

ious services. These applications include voice dialing, banking
over a telephone network, telephone shopping, database acce(Jst)
services, voice mail, security control for confidential informa-

tion, and remote access to computers. Utterance verification, on - ) o -~
the other hand, aims to equip speech recognition systems waipeech recognition and speaker identification are two classifica-

the ability to detect whether the input speech does not cont&f? Problems that have attracted much research effort [13]. The
any of the words in the recognizer's vocabulary set [19], [23 erification problem, on the other hand, generalizes all prob-

As speech recognition technology migrates from the laboratd®MS Which require a binary answer, and does not involve a pre-
defined set of categories. The verification problem is usually

formulated as a problem of “statistical hypothesis testing” [7],
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where 7 is a predefined critical threshold anf{-|Hy) and In Section Ill, we investigate the outlier verification problem
f(:|H1) denote the probability distributions under hypothesdeom both non-Bayesian and Bayesian viewpoints and show
Hy and Hy, respectively. that the Bayesian approach forms a novel solution to the
For testing simple hypotheses where the pdféfgfandH, Vverification problem. Next, in Section 1V, as an example, we
are known exactly, the LRT is known to be the most powerf@pply the Bayesian method to the speaker verification problem
test for a given level of significance. However, in any pragnd propose an efficient algorithm for the GMM-based speaker
tical speech-related verification problem (either speaker veferification. Then, we investigate some heuristic methods
ification or utterance verification), it is impossible to obtairto estimate prior pdfs for speaker verification, as reported
the exact pdfs for either the null hypothesis or the alternatiy@ Section V. Further, the proposed method is evaluated on
hypothesis. Under the practical condition of imprecise pdfs,iIST98speaker recognition data and the experimental setup
feasible strategy is to estimate boffX|Hy) and f(X|H,) and the results are reported in Section VI. Finally, we conclude
by assuming a parametric form of the distribution under eade paper with our findings in Section VII.
hypothesis. Clearly, any assumption of a parametric distribu-
tion may cause a mismatch between the “true” and estimated II. BAYES FACTOR
cond_itional Qistri_butions. This pos_sible_rrjismatc_hz as well 35S The verification problem has traditionally formulated as
po§5|ble estimation errors due to In_suff|c|ent training qata' Bstatistical hypothesis testing,” where two complementary
validate the comm,only held oppma_ht;(/‘ of the LR;I' implied by, pothesesH, and H, are used, each corresponding to one
Neyman—Pearson s Lemma. ltis th|_s mlsmgtch problgm th@ the yes and no answers accordingly. Within this traditional,
motivates us to search fgr a superior solution. A solution Ybn-Bayesian framework, under some conditions, which
found 'S under the Bayesian framewo_rl_<. ) _are often invalid in practice, the Neyman—Pearson’s Lemma
In this paper, we address the verification problem strictlyoyig give the optimal test as shown in (2). To remove these
under the Bayesian framework. The Bayesian approach to “fyypractical conditions, we are interested in investigating a
pothesis testing” involves evaluation of the so-caiayes fac- ngyel solution to the hypothesis testing problem strictly under
tors. The _calculatlon of theBaygs factor_sn. turn requires the the Bayesian framework.
computation of several queS|an predlctlve densities. Specnﬁ-AS shownin[12], the Bayesian approach to hypothesis testing
cally, we propose a Bayesian solution to the general outlier v@iyolyes the calculation of the so-callBdyes factorsGiven the
ification problem, where the judgment is made through evalgyseryation data, the Bayes factors are computed as
ating the value oBayes factoragainst some preset threshold.

Although the novel Bayesian approach is equally applicable to (vlEo) /f(y|/\07 Ho) - p(Ao|Ho) dAo

many practical verification problems, as a case study reported _ P _ 3)
in this paper, it is applied only to speaker verification based on p(y|Hy
the Gaussian mixture model (GMM). Due to tivéssing data Pt /f(y|A1’ Hy) - p(As|Hy) Ay
problem in the GMM, we adopt the Viterbi approximation as
in [10] to calculate thBayes factorand derive an efficient al- Where for
gorithm to perform speaker verification based on the Bayesian® = 0, 1, A« model parameter undef,.;
approach. This approach consists of the following three steps: 2(A|H1) prior density;
_ o o o ply|Ax, Hy) likelihood function ofA, underHj,.
1) coIIectlr?g'suffluent statistics for all GMMs from all avail- gayes factors offer a way to evaluate evidence in favor of the
able training data; o 3 null hypothesisH, because the Bayes factor is the ratio of the
2) computing Bayesian predictive densities based on the syfssterior odds of Hy to its prior odds, regardless of the value
ficient statistics only; of the prior odds [12].

3) performing Bayes-factors-based testing. Furthermore, Werherefore, during testing, Bayes factors can be compared
also study heuristic methods for estimating proper prigjith a preset threshold, much like the likelihood ratio in
pdfs used in speaker verification based on the empirigRkyman—Pearson Lemma, to make a decision with regards
Bayes method. to Hy. In other words, ifB > 7, wherer is a preset critical

threshold, then we acceply; otherwise we rejecH,,.

In order to examine the viability of the proposed algorithms,
they have been evaluated on tNéST98speaker recognition lIl. OUTLIER VERIFICATION

eral training and testing conditions, the proposed Bayesian Yneral hypothesis testing problems. In this section, we will
proach has been compared with the conventional LRT. The @gnsider a specific example of the outlier verification problem
perimental results demonstrate the effectiveness and efficiengystatistical pattern recognition, and we will investigate the
of the Bayesian approach. Some moderate improvements oygfimal solutions to this problem from the non-Bayesian and
a well-trained baseline system which is employing the convegayesian viewpoints, respectively.

tional LRT have been observed in all training and testing condi-

tions examined. 1Any_ _probability can _be converted to the odds sca}e, i.e., odds
Th ind f th . ized foll robability/(1 — probability). Thus, Pr(Hg|y)/ Pr(H.|y) is called the

e remainder of the paper Is organized as follows. V@%sterior odds in favor offy, andPr(H,)/ Pr(H,) is prior odds in favor of

briefly introduce the concept dBayes factorsn Section Il. H,.
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In a typical problem of statistical pattern recognition, givefeaving its parametet; to be estimated from the training sam-
L classe§Ci|l = 1, 2, ..., L} and an unknown observationplesX;. Thus, parameter4; are viewed as an estimator from
y, we consider categorizinginto one of these class€%(l = the samplesX, under the non-Bayesian framework. Because
1, 2, ..., L). If y actually arises from any one of these classebielihood functions play a central role in non-Bayesian sta-
the optimal solution is given in (1). However, in many practicdistics, all probability densities in (4) are viewed as the corre-
situationsy sometimes belongs to none of these classes, whigbonding likelihood functions of model parameters. If all data
is called arpoutlier in this case. The outliers should be rejectedre independent, the hypothesis testing problem expressed in (4)
in the practical application®(tlier rejectior). Most statistical reduces to the conventional LRT in Neyman—Pearson Lemma
pattern recognition techniques do not have an explicit mecha-
nism to determine whetheris an outlier or not. Therefore, a FXyA) - flylA) - fF(XolAo)  flylA)
verification process is proposed here to combine with conven-" — FXGIAY) - fly]Ao) - f(Xo|Ao) - f(y]Ao) >& )
tional pattern classification methods in order to detect outliers.

We will adopt a two-pass strategy for outlier rejection. In thﬁ/heref(-| ) denotes the likelihood function, arg andA, are
first phase, which we caflattern classificatiopwe first classify the estimators of the model parameters for the dasmndCy,
y into one most likely clqss, e.gp,l (1' <1< L) !n the second pased on the samplé§; andX,, respectively.
phase, which we cabutlier verification we verify whethery Therefore, the non-Bayesian method for outlier verification
actually comes from the clagg (accept) oty is just an outlier consists of two separate steps. First, we estimate the model pa-
(reject). The first stage is a typical pattern recognition problepameters for a certain data class and for the outlier class. Second,

which has been well studied. In this section, we will focus ofgrification is performed as an LRT based on the estimated
the second stage, namely outlier verification. model parameters.

In practice, we usually have no knowledge about each
classC; (1 < I < L) except we can collect a set ofp. Bayesian Approach
representative samples for each cla€%. Suppose, for
any classC;(1 < [ < L), we have collected samples
X, = {Xu, X2, ..., Xin, }, where M, denotes the total
number of samples for clags;. Meanwhile, we also assume

another special outlier class,, which includes all possible contalned_ n a prior .pd’ﬁl(Al) (=0, .1’ o L.)'
. - . According to Section Il, the Bayesian solution to the hypoth-
outliers. Usually it is possible to collect another set of samples

€sis testing of (4) involves the computation of the Bayes factor

In the Bayesian framework, all model parametags(i =
0,1, ..., L) are treated as random variables, and we assume
that all knowledge about each cla€s (I = 0,1, ..., L) is

of outliers: Xy = {Xo1, Xoz, ..., Xor, } for the outlier class
Co. R . .
Based on these assumptions, given an unknown observatipn— If(X” v, XolHo) _ ?’(X“ y|Cl)A'p°(X°|C°)
y, we first classify it to the most likely class, sa&y (1 < P(Xe, y, XolHy)  pu(Xi|Cr) - po(Xo, y|Cho)
[ < L), by using the conventional pattern classification method. X, ulA ANdA X IA AVdA
The problem here is to verify whether the observatioac- B FXa, yle) - pr(A) dAg - [ [(Xo[Ao) - po(Ao) do

tually comes from the class; or not. In general, this can be

formulated as a problem of hypothesis testing. By explicitly /f(Xl|Al) (M) A '/f(XOv ylA0) - po(Ao) dAo

taking into account the information available in the training data (6)

X; andXy, thenull hypothesis, which corresponds to the case

wherey is not an outlier, is proposed kk,: BothX; andy come

from C; while Xy comes fronCy. Accordingly, the alternative

hypothesis i#; : X; comes fronTC; while bothX, andy come

from Cj. The solution to this hypothesis testing problem is as

follows.
If

= p(Xy, v, Xo|Ho) _ p(Xq, y|Cy) - p(Xo|Co)
p(Xy, y, Xo|H1)  p(Xi|Cr) - p(Xo, y|Co)

then we accepy; otherwise, rejecyy as an outlier, wheré is
a fixed threshold, ang(:|-) denotes the conditional probability

where

o) joint Bayesian predictive density for clagy;

(- prior pdf;

f(-])  likelihood function.

Differing from the non-Bayesian approach, in the current

Bayesian approach we first estimate a prior pdf for each class.

Then the decision is made based on the value of Baiges

factor. As for the prior pdf estimation, we adopt the principle of

partial Bayes factors [18]. Concretely, the initial prior pdf is set

as a noninformative prior pdf at the beginning. Then, a portion

density of the samples are used to estimate the prior pdf based on
' Bayesian learning or according to the empirical Bayes method.

In the following, we wil stgdy this outher_ ver|f|cat|on Finally, the Bayes factor is calculated based on the remaining
problem from both non-Bayesian and Bayesian viewpoint

. . . . ) ?amples.
\'/I';/(\e/\(,)vpd(;fi“fnetrsent solutions will be derived from these differen As a remark, if we adopt the following incremental method

to calculate the joint predictive density

>& (4

A. Non-Bayesian Method (Neyman—Pearson Approach) y
1

In non-Bay(_asian statistics, we usuqlly assume that the form (X Ar) = H/f(Xli|Al) p (Az ‘Xgi—l)) dn, (7)
of a parametric model for each clagg is known in advance, i}
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where Xgi_l) = {Xu, X2, ..., X;;i—1} and the prior/pos- If we assume all precision matrices are diagonal, we have
terior pdf p(A1|X§z_l)) is calculated based on incremental

Bayesian learning at each step, then this hypothesis testing in

(6) can be significantly simplified to N (x‘m51)7 7,51)) H o~ (T /D (@a—my)?

[ i - padxpan (1<i<n) (10)
(®)

whereD is the dimension of the vector. Hereafter, for concise-
ness, we will omit all superscripf$) when no confusion occurs.
wherep(A;|X;) is the posteriori density after observing data When we observe an utteran&e= {z1, 2, ..., 7y With

X, which can be obtained from the Bayesian learning methddngth?’, the likelihood function of GMMA can be expressed
as

/]7 =
/ £(ulA0) - (Aol Xo) dA

IV. BAYESIAN APPROACH TOGMM-BASED
SPEAKER VERIFICATION F(X|A) = Zf (X, P|A) (11)

We have presented the general formulation of Bayesian

approach to the verification problem. As a specific case, in thighereP is called a path (over GMM), which is a sequence
section, the Bayesian approach is applied to text-independgfinixture component labels? = {P1, P2, ..., Pr}. This
speaker verification based on the GMM. We also derive &ummation is carried out over the entire path space.

efficient algorithm to perform Bayes-factors-based hypothesis|n this paper, among all of the GMM parameters, we assume,
testing for the GMM. Note that, although the algorithm in thigor simplicity purposes, that only Gaussian mean vectors are
section is derived for the GMM, it is straightforward to extengandom while the remaining parameters are deterministic and
it to the HMM case. known. We further adopt the idea of the natural conjugate prior

The typlC&' scenario in Speaker verification looks as fO”OW%Z]_], and choose the prior pdfs for each G[\M/[according to
User first claims an identity and the system prompts the user

to say some utterances in order to verify whether the user actu-

ally is the claimed identity or not. Obviously, speaker verifica- (A)
tion can be viewed as an outlier verification problem, where in

every verification step, the claimed speaker identity is the target

speaker and all other speakers are thought to be the outliers (or _ ﬁ 12[ /Tzd e~ (Tia/2)(mia—pia)?

N

=p(my, ma, ..., my) = [ [N (il s, 73)
=1

imposters). When building the system, each target speaker is (12)

required to provide some speech data to construct some models

for the speaker. In verification, the new utterances are used to

match with the target speaker’s model in order to make the vefihere{ a4, 7ia|l < ¢ < N, 1 < d < D} denote all hyperpa-
fication decision. Itis well known that GMM and/or HMM haverameters related to the GMM.

become the most effective models for speaker identification andThe Bayesian approach to hypothesis testing involves the cal-
speaker verification. In this paper, we adopt GMM as the bagiglation of Bayes factors. The computation of the Bayes factors
model for speaker verification, i.e., each speaker is represeni@durn requires the computation of several Bayesian predictive
by one GMM. We also use another GMM model to represefiensities, and this latter computation is not straightforward in

outliers for all nontarget speakers. many cases. As for the GMM, due to itsissing-datanature,
Suppose we havé target speakers in the pool, and a totsome approximations are needed to calculate the Bayesian pre-
of L + 1 GMM models, denoted aA®®|l = 0, 1, ..., L}, dictive value in a feasible way. Here we adopt the same Viterbi

whereA® (1 > 0) represents thith speaker model anf® the ~approximation to Bayesian prediction as that used in [10] and
outlier model. Given a feature vecter the likelihood function [11].

of GMM A® can be expressed as Given an utteranc& = {1, 2, ..., 27}, the Bayesian
predictive densityi( X ) for modelA is computed as follows:
‘ A® Zwa) N ‘ m®, O ©)
(o) = (= ) B0 = [ FXI) - pl8)dA
where _ / X. PIA
total number of Gaussians in the model; EP: K | &)

weight of ith mixture component with
the constraing>Y | wi” = 1; = Z/f(X PIA) - p(A)dA
N(x|m(l) (l)) :th multivariate Gaussian mixture com- P

ponent with the mean vectmgl) and the
precision matrix-(". ~ mgx/ (X, PIA) - p(A) dA. (13)
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We term the path which maximizes this integration as thdterance, the Bayes factor can be calculated strictly from these
optimal path denoted a®* = {P;, P;, ..., Py}, i.e., statistics only, without using the original data. Below, we first
present an algorithm to calculate the joint Bayesian predictive
value. Then, we present the Bayesian approach to verification
based on these joint Bayesian predictive values.

Given a set of (training) observatiod® = {X;, Xo, ...,
X}, atesting observatiol, and the prior pdfp(A) for the
model parameterg\, the algorithm for calculating the joint
Bayesian predictive densitiggX) andp(X, Y') is presented
as steps A and B in the following.

P = argmgx/f(X, PIA) - p(A) dA. (14)

Thus, the approximate Bayesian predictive dengi) can
be expressed as

p(X)

~ /f(X, PIA) - p(A)dA
A. Collect Sufficient Statistics

 Attach a set of “global” statistics to each Gaussian mix-

T
= /pr; -./\/(a:t|m7>;, 7‘7):) . p(A) dA
t=1

ture component in the model. For theith component

N . D Tild/ 2 7;(1/ 2 N(m;, r;), its “global” statistics consists of a scalr,
= 1:[1% H (27072 - (1ot raqui) 2 and three vectors denotedXs, X2;, and(X — )2, re-
= d=1 spectively.
Tid Vs —_—5 - _ . itiali “ ” isti
.exp{_ Z(Tid_indvi)[Tid(x_u)iQd—i_Tidvi(xiQd_xzzd):|} - Imtillze all “global” statistics
Where  For each observatioX; = {zs1, 52, ..., xs7, } (1 <
s < M) in X we do the following.
d . — Perform the Viterbi Bayesian predictive classification
vi= 8P —1) (16) (VBPC) search [10] foiX,, based om(A), and obtain
t;1 one optimal pati?* over the model\.
Z(“” )2 - 8(Pr — ) —Based on the patlP;, collect statistics for each
e ' Gaussian mixtureV'(m;, ;) (i = 1, 2, ..., N). As-
(z— i =" (17) suming its related prior pdf to be(m;) = N (. 7;)
25(7;;« — i) as in (1_2), we collect the following “local” statistics
= for all mixture components. Fer=1, 2, ..., N:
T T,
Y w-8(Pr ) vi= S 6(P, - i) (1)
== (18) =
1 &
S(Pr —14) o= . g
; T; ” ;xst 8(Ps — 1) (22)
T T,
fo 8(Pf =) ¥ = Ul ngt ~6(Pst — 1) (23)
2 t=1 i
z? = = (19) t;sl
>_o(Pr — i) == D (=i 6Pu 1) (24)
t=1 i =1
Here, we have obtained the result for the Viterbi approxima- where
tion to the Bayesian predictive density for a single observation 1. if path P, lies in the mixture
X. It is straightforward to extend the method to compute the . ’ o
joint Bayesian predictive density for multiple observatidfs 6(Psr — i) = component at time? (25)
as required in (6). From (6), we see that the brute-force calcula- 0, otherwise.
tion of the Bayes factor requires all training d&aThis means — Use these “local” statistics to update all “global” sta-
that we have to save all training data in order to verify any un- tistics as follows: foralk = 1,2, ..., N
known utterance with the Bayesian method. This obviously is - XY+
not practical for most applications. In the following, we derive X, < W (26)
an efficient algorithm to calculaayes factorgor multiple ob- T L
servationsX, which does not require using all training data in X7 - X2 T 422 27)
each verification step. ! T + v
In this algorithm we first collect the so-calledfficient statis- (X—2 NI e v U
tics for all models based on all available training d&aThen mi <= —nf Tt e o (28)
the sufficient statistics, as well as all prior pdfs, are stored in ’ T +v;
order to carry out verification. When presented with an unknown T, <71, +v. (29)
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B. Calculate Joint Bayesian Prediction Using Sufficient speaker-independent (SI) prior pdf as the initial step. Then the
Statistics data from a specific speaker are used to update the Sl priors to
obtain speaker-dependent (SD) priors for each speaker based on

* Calculate the Bayesian predictive vafi(& ) according to ] ,
Bayesian learning.

A A 2 L Given a total ofL speakers in a system pool, the collected
P(X) ~ sz ' H (2m)Ti/2 - (Tig+rig L) 1/2 dataX; (1 < I < L) correspond to each target speakér
=1 4=t (1 €1 < L) and the dataX, represent all other nontarget
Tid Ls speakers.

'exp{_2(ﬁd+7’idTi) . . )
A. Estimate Sl Prior Based on Empirical Bayes Method

. [Tid(X_N)Qid“l‘TidTi(Fid_X§d):| } First, all available datX; (I = 0, 1,2, ..., L) are used to
estimate a speaker-independent GMM madlet”) based on

(30)  the expectation-maximization (EM) method (see the Appendix
« Calculate the Bayesian predictive valif&, Y): for details). A5 consists Of{wESI_), mD B0 < <
— Keep all “global” statistics related t&X as collected V}. Then, we construct the Sl pri@g(A) from the SI model
from the previous step. AT based on the empirical Bayes method which proceeds as

—Collect the “local” statistics for ¥ alone follows.Assuming thatthe Slprigi{A) has the functional form
as in  (21)-(24), which are denoted a®f(12), then its hyperparameters are estimated as follows:

{Uia yiv yin (y_ N)2i|1 S [ S N} 7. = (ST) < g < < d<
— Calculatep(X, Y') as shown in (31) at the bottom of Hia =Mia (IsisNandl<d<D) (34)
the page. Fa=cr5D.¢  (1<i<Nandl<d<D) (35)
C. Hypothesis Testing wheree > 0 is a weighting coefficient for adjusting the shape

Let thenull hypothesis be that comes from théth speaker’s of thg prior pdf, and:; is a _vveight cogn_t accumulated for the
modelA® and let the alternative hypothesis be tis an out- ith mixture component during the training procedure for the Sl

SI) o L M T, . .
lier (A). The Bayesian solution to such a hypothesis testir I\Zile'A(d .)’ "ﬁ"f&_ Eé?o 251 2opty St (1), WhereGy. (i)
problem is then based on the following Bayes factor: IS"defined in the Appendix.

If B. Estimate SD Priors Based on Bayesian Learning

— I?I(Xl’ YA) ~Po(Xo) > ¢ (32) For every individual speakér= 1, ..., L, the dataX, from
Pi(Xe) - po(Xo, Y) that speaker are used to update the Sl gifdr) to obtain an SD
then we accept the claimed speaker identity, otherwise rejed®f{ors based on Bayesian learning. In other words, we treat Sl

as an imposter. If the training da, andX; are unchanged priorﬁ(A) as the prior pdfin Baye;ian Iearni.ng,.and the derived
during the verification procedure, given akiy this test can be posterior pdf becomes the SD prior pdf (which is needed for the

simplified to calculation of the Bayes factors). This gives
_ X Y) (33) pr(A) x p(A) - f(XilA) (36)
po(Xo, Y) where f(X,|A) is the likelihood function.

Due to themissing datgroblem in GMM, itis not possible to
implement this Bayesian learning accurately [9]. Some approx-
imations are needed. In this paper, we adopt the Viterbi approx-

imation to derive the so-called segmental Bayesian learning as
In this section, we consider estimating the prior pdfs for th@ [8], [9]. This approximation gives

calculation of Bayes factors in speaker verification. We assume

that all priors have the functional form as shown in (12) andet(A) < (A) - Y f(Xy, PIA) = B(A) - f(Xe, PIA) (37)
that their hyperparameters be estimated from the data. Here P

we propose to use the empirical Bayes method to estimatevlere’* is the optimal path as defined in (14).

where¢’ is a new threshold.

V. PRIOR ESTIMATION FOR SPEAKER VERIFICATION

D 12 (Titv;)/2
- i

N
~ ~ Ti+v; Tid P
(X, Y)~ Zl;[lwz (11;[1 @m) 00/ g + (0 + Yi)ria) /2

Coxpy  _ TiaTid LilX = 102 + riatiavi(y — )i + (T + v) (T X0 + vig?) — r2)(0XKoa + villia)?
P 2[7ia + (Ui + T)rid]

(1)
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Denoting X; = {Xi, Xo, ..., Xn}, and for eachs periments, only those data from 250 female speakers are used.
(s=1,..., M), X; ={xa, zs2, ..., zsT, }, WhereT, isthe These speakers serve both as target speakers and nontarget
length of X,. Because we choose the nature conjugate prior fdmpostor) speakers. The handset type label is supplied by
p(A) as in (12), the SD priop;(A) will have the same form NIST but we did not use this information in our experiments.
as that in the right hand side of (12). Then Bayesian learnihgthe experiments, we use two different training conditions for

gives the estimated hyperparameters of each target speaker:
. T * ok .  “One-sessiohtraining (denoted as1): The training data
Jiig = uZd?d—W (Isi<Nandl<d<D) are two minutes of the speech data taken from only one
T (38) conversation session.
» “Two-sessiof training (denoted as2) : Equal amounts
Ty =Tid + Ty (1<i<Nandl<d<D) (39) (two minutes) of training data are taken from two different
conversations collected from the same phone number. The
where training data consist of one-minute data from one conver-
M T, sation, plus additional one-minute data from a different
SN st 6(PE — 1) session, with the same phone number.
= S=13\71T (1<i< Nandl<d<D) Our experiments include three different testing conditions ac-
S . cording to different test speech segment durations. These dura-
ZZ‘S(PSt — 1) tions are approximately 3 s, 10 s, and 30 s, which are denoted
s=it=l (40) asT3, T10, andT30, respectively.
TheNIST98data include both training and testing sets. There
M T, is an average of about 10 test segments for each target speaker
Ta=riay_ Y 6(Py—i) (1<i<Nandl<d<D) andforeach test duration. This makes up a total of 2500 test
s=lt=1 segments for each of the three test durations. For each of the
(41) test segments, a total of ten speaker identities are assigned as
andé(-) is the Kronecker delta function. test hypotheses. Each of these hypotheses is then required to be
judged as true or false, and a decision score is also needed for
C. Priors for Outliers (Nontarget Speakers) each judgment.

In speaker verification, a simplest strategy which we ha
implemented is to use the Sl prior pdf as an approximation
the outlier prior pdf. A second method which we have imple- In both training and testing, the speech waveforms are digi-
mented is to collect all data which represent all possible otized and preprocessed by a front-end unit that extracts a set of
liers (imposters). In speaker verification, this data would include2 mel-frequency cepstral coefficients (MFCC) and log energy
{X;]0 <1 < L, 1 # I}, wherel is the target speaker. Then,from each frame of data. Cepstral mean normalization is ap-
the empirical Bayes method described in Section V-A can Ipéied to each utterance to eliminate some of the spectral shaping
used to construct the outlier prior directly from the data, or tHeccurring in the telephone channel. Each 39-dimension feature
previous data can be used to update the Sl priors to obtain #ggtor consists of 12 MFCCs and log-energy, as well as their

% Baseline System

outlier prior pdf based on Bayesian learning. delta and delta—delta coefficients.
In our baseline system, a single GMM is built for each
VI. SPEAKER VERIFICATION EXPERIMENTS speaker. The number of Gaussiamg, is the same for all

q . he viabil f th q speakers, and is fixed as 256 in all of our experiments. The
In or her to Examme T ed viability of the pliopose ” NeWonstruction of the SD GMMs for all speakers is made up of
approach, we have applied it to some speaker verificatigy, separate phases. First, we use all available training data

tasks. In this paper, we report the experimental results fr%m all speakers to train an S| GMM based on maximum
the NIST98speaker recognition evaluation data. In our eXperlli[keIihood [16]. The generation of GMM starts with a random
ments, the Bayesian approach was compared with the base

. ) _ BEtor guantization (VQ) codebook. The codebook is then iter-
system which uses the conventional LRT. Experimental resu ely updated using the LBG algorithm. After convergence

demonstr:gte the If ffectiv_;—;ne;s at?d ecfjficiency of the q Bayﬁsﬁ'% Gaussians are fitted to the codewords, and their parameters
approach in speaker verification based on GMM' Under a ﬂ?ﬁe adjusted using a few EM iterations (see the Appendix for
training and testing conditions we have examined, the Bayeswans) Second, starting from the S| GMM, the SD GMM for

approsch hﬁs a(_:hitzlvgd ml_oderate but consistent improvem%rétéh individual speaker is estimated from the specific speaker’s
over the well-trained baseline system. speech data based on maximarposteriori(MAP) estimation
. 8].
A. Datab d Evaluation Method [ . .
alabase and Evaiuation Metho When presented with a speech segm&niand a specific

TheNIST98evaluation data is used in all of our experimentspeaker, the verification decision in this baseline system is made
The NIST98data is drawn from the SwitchBoard-2 phase-Based on the conventional LRT, i.e., if

corpus, which includes a large amount of spontaneous con- .
versations between two speakers over telephone lines. There LR — / (X|A( )) > ¢ (42)
are 250 female and 250 male speaker&IST98 In our ex- - f(X|AGD)
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then we accept the speaker identity, and otherwise reject it; TABLE |
f(-]-) denotes the likelihood function ardis the preset crit- COMPAARATIVE RESULTS OFEQUAL ERRORRATE (EER) BETWEEN BAYESIAN
. PPROACH(BAYES) AND THE LIKELIHOOD-RATIO-TEST-BASED
ical threshold. BASELINE SYSTEM (LRT)
C. Bayesian Approach to Speaker Verification training condition | test condition | LRT | Bayes

We use identical feature vectors and the GMM structure in sl T3 23.2% | 22.0%
the new Bayesian approach to those in the baseline system. A 1 T10 18.8% | 17.6%
speakgr venﬂ_cayon system baseq on the Baye§|an approac_h is 0 T30 16.0% | 12.6%
established similarly as the baseline system. First, an Sl prior
pdfis constructed from all available data from all speakers based s2 T3 21.6% | 20.8%
on the empirical Bayes method described in Section V-A. Here s2 T10 19.0% | 17.2%
we set the control parameter= 1/M, whereAM denotes the 52 T30 16.0% | 14.4%
total number of utterances in the training set. Second, based on
the Bayesian learning method described in Section V-B, the &! Speaker verification ROG Gurve (Fermale,S1,T30)
prior pdf is updated by using the speech data from each ind ot: _ Bayes —

vidual speaker to obtain an SD prior pdf for that speaker. The ¢
prior pdfis used as the prior pdf for outliers (nontarget speaker:e
in our experiments. Third, for each speaker, in addition to its SIg os b
prior pdf, we also collect a set of “sufficient statistics” based org o2s |

the training speech data from the speaker as described in Si™ o2 | paa
tion IV-A. As for the outlier class, the Sl prior pdf is used as 0.5 |
its prior pdf and a corresponding set of “sufficient statistics” is 01 o o5
similarly collected from all available data of all speakers.

When given a test speech segment and a speaker ideniy,1. comparison of speaker verification ROC curves for female speakers
without using all original data set, the verification decision ignder training conditios1and test conditio30. Dotted-line: likelihood ratio
based on Bayes factors which are easily computed from the cift (LRT). solid-line: Bayesian approach (Bayes).
responding prior pdfs and the sufficient statistics.

o4 |

0.35 |

0.1 0.12 0.1 0.16 0.18
False Rejection rate

Speaker verification ROC Curve (Female,S1,T10)

0.3
Bayes ———

D. Experimental Results and Discussions 0.5 Pl S —

In the experiments, for each testing condition we randomly . |
selected 500 test segments out of the total 2500 segments whict_ | _ |
NIST supplies for the 1998 evaluation. For each test segment,
ten speaker identities are provided as hypotheses. Thus, for eact ot
testing condition, we have a total of 5000 pairs of test speech °©-°%
segments and hypothesized speakers which require 5000 veri- o = 53 o5 53 oas
fication decisions. We classify these 5000 pairs into two cate- Faise Rejection rate
gories: the first class is calledri-set where the speech Seg'Fig. 2. Comparison of speaker verification ROC curves for female speakers
ment is actually uttered by the hypothesized speaker. The otheder training conditios1and test conditiof 10. Dotted-line: likelihood ratio
class is calleddut-set where the speech segment is not uttere@st (LRT), solid-line: Bayesian approach (Bayes).
by the hypothesized speaker, who is an imposter. We count the
false rejection error inih-set and the false acceptance errothe threshold, which is also called an operating point. The ROC
in “out-set” The comparative results of equal error rate (EERjurves obtained for all the experiments we have conducted are
between the new Bayesian method and the baseline systemsti@vn in Figs. 1-6.
given in Table I. From these ROC curves, we observe that generally the

From these results, we observe that$Béraining condition Bayesian approach is superior to the baseline system under
generally gives better performance theh The main reason all examined conditions. In particular, the advantage of the
is that the enrollment data comes from different conversati@ayesian approach is larger for the training conditionsf
sessions undes2 training condition, which may include morethan that o62 The possible reason is that the GMMs estimated
information about the telephone channel variations. In addition, the condition ofs1 are relatively poor due to the telephone
for the same training condition, the longer test segment duratioannel variations in the speech data, and it is well known that
gives better verification performance. We also observe that the Bayesian approach usually achieves larger gains than the
use of the novel Bayesian approach, moderate improvemelikslihood-based non-Bayesian method when the estimated
have been achieved in the EER over the baseline system fomatidel is not sufficiently accurate.
the training and test conditions we have examined as listed inin general, the advantage of the Bayesian approach lies in the
Table I. following two aspects. First, the “mismatch” problem caused by

The next set of results are obtained when we change the cirisorrect model assumptions and by insufficient training data
ical threshold continuously, and then draw the verification RO@ften invalidates the optimality of the LRT procedure implied
curve. Each pointin the ROC curve represents a certain valueogfNeyman—Pearson’s Lemma. The Bayesian approach is much
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Fig. 3. Comparison of speaker verification ROC curves for female speak
under training conditiois1 and test conditioff 3. Dotted-line: likelihood ratio

False Rejection rate

test (LRT), solid-line: Bayesian approach (Bayes).
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log valueln p(X) can be decomposed into two terms, namely
Tia(X — p)? andr;g ¥, (X 2,4 — de). The first term represents
the information from the model and the second term represents
the information obtained directly from the data. The Bayesian
approach optimally combines the two different sources of infor-
mation in making the verification decision. The optimal balance
between these two sources is automatically adjusted by the prior
pdf; that is, the decision is made to rely more on the data if the
model is less accurate and more on the model if the model is
more precise. Both aspects of the strength of the Bayesian ap-
Proach over the conventional likelihood based approach have
been demonstrated in the experimental results presented in this
section.

As far as the computational complexity is concerned, in com-
parison with the Gaussian density computation in the conven-
tional method, the Bayesian approach requires slightly more
computation in calculating the predictive density, as shown in
(31). However, this does not cause any significant computation
increase in the overall computing loads of the system. One major
weakness of the Bayesian approach, compared with the conven-
tional method, is the relatively large requirement in storage, ei-
ther in memory or in disc, for saving the sufficient statistics for
all model parameters.

Fig. 4. Comparison of speaker verification ROC curves for female speakers

under training conditios2and test conditiof 30. Dotted-line: likelihood ratio

test (LRT), solid-line: Bayesian approach (Bayes).
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VIl. SUMMARY AND CONCLUSION

The non-Bayesian approach based on the LRT has dominated
speech technology while dealing with the verification problem.
In this paper, we present a novel approach to solving the ver-
ification problem. We address the verification problem from
a Bayesian viewpoint. The Bayesian approach to verification
involves the evaluation of a quantity called tBayes factor
against a critical threshold. The calculation of Beyes factor
involves evaluating several Bayesian predictive densities.

Specifically, we report in this paper our study of the out-
lier verification problem in pattern recognition. While the ap-
proach presented is applicable to many practical verification

Fig. 5. Comparison of speaker verification ROC curves for female speakdtkoblems, in this study, we apply it to speaker verification based
under training conditios2and test conditio 10. Dotted-line: likelihood ratioc  on the GMM. For this application, we propose an efficient al-
test (LRT), solid-line: Bayesian approach (Bayes).
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gorithm to calculate th&ayes factofor the GMM and an ef-
fective strategy to perform speaker verification based on the
Bayes factorThe proposed approach is investigated and evalu-
ated using th&lIST98speaker recognition evaluation data. Ex-
perimental results demonstrate the consistent effectiveness and
efficiency of the Bayesian approach in speaker verification.
Finally, we discuss some possible future research directions
along the line of the work described in this paper. First, although
the work in the paper is derived for speaker verification based
on the GMM, itis straightforward to extend it to the HMM. The
basic verification principle is also applicable to all other types of
verification problems. Thus, as a direct extension, we also can

Fig. 6. Comparison of speaker verification ROC curves for female speak@pply the Bayesian approach to another important verification

under training conditiois2 and test conditioff3. Dotted-line: likelihood ratio problem in speech recognition i.e.. utterance verification based
test (LRT), solid-line: Bayesian approach (Bayes). T

on HMM. Second, as discussed in Section IlI-B, using the ap-
proximation of (7), we can obtain a much simpler method for

less sensitive to model inaccuracy because the model paraomputing theBayes factor It will be very interesting to see
eters are integrated over the entire space based on the phimw well this highly efficient approximate method will work in
pdf. Second, as shown in (30), the joint Bayesian predictiygactice.
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APPENDIX
ESTIMATION OF GMM BASED ONEM ALGORITHM

Thus

We consider the parameter estimation problem of the GMM

A = {m;, r, w]1 < ¢ < N} from multiple observations

X by using the EM algorithm. We denol& =
1,2,
by Xs - {xslv Ls2y - -

{Xsls =

y LT }

Given the initial GMM parametera® = {m?, ¢, wd|1 <
i < N}
E-Step:
Q(AJA®) = Ep[ln f(X, P|A)X, A”)]
M T, N
s=1t=1i=1
D T4 1
Z [—éd (25t —mia)® + 3 Inrg| +Inw;
d=1

- &s1(7) + const. (43)

whereé, () denotes the probability of,; residing in the:ith
mixture component, i.e.,

wd - N(zse|m?, 79)

Sull) = - o (44)
szo “N(zgt|m?, r?)
i=1
M-Step: Fori =1,2,..., Nandd =1, 2, ..., D,
IQAIN) _ Y- NN
Tid - Sz::l ;(-/Est - mzd) - Sst(l,) =0 (45)
Thus
M T
szﬁ : Sst(i)
Mid = 5=1;4=1TS )
Do Euli)
s=1t=1
IO LI 1 2
Tzd_;; a (.’L’ mzd) 'gsf()_
(47)
Thus
M T,
DD Eald)
Tid = T s=1t=1 (48)
ZZS“(L) : (-/Eef - mid)Q
s=1t=1

As for w;, we have the constraint §F »_, w; = 1. Using the
Lagrange multiplier method, we have

M T

A=Y

s=1t= 1

aQ(AIA

Sst =0. (49)

, M}, where each observation is a sequence denoted

(1]
(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]
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M T,

DD (i)
s=1t=1
N M T

DD Eald)

i=ls=1t=1

(50)

w; =
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