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A Bayesian Approach to the Verification Problem:
Applications to Speaker Verification

Hui Jiang, Member, IEEE,and Li Deng, Senior Member, IEEE

Abstract—In this paper, we study the general verification
problem from a Bayesian viewpoint. In the Bayesian approach,
the verification decision is made by evaluatingBayes factors
against a critical threshold. The calculation of theBayes factors
in turn requires the computation of several Bayesian predictive
densities. As a case study, we apply the method to speaker verifi-
cation based on the Gaussian mixture model (GMM). We propose
an efficient algorithm to calculate theBayes factorsfor the GMM,
where the Viterbi approximation is adopted in the computation
of joint Bayesian predictive densities. We evaluate the proposed
method for the NIST98 speaker verification evaluation data.
Experimental results show that new Bayesian approach achieves
moderate improvements over a well-trained baseline system using
the conventional likelihood ratio test.

Index Terms—Bayes factors, Bayesian prediction, equal error
rate (EER), Gaussian mixture model (GMM), likelihood ratio test,
outlier verification, speaker verification, sufficient statistics, veri-
fication problem.

I. INTRODUCTION

DURING the past few decades, the verification problem
has been attracting considerable research attention in the

speech research community. The verification problem encom-
passes all problems which require a binary answer:yesor no. In
speech technology, speaker verification and utterance verifica-
tion are two most active areas due to their increasing importance
in many practical applications. In speaker verification, based on
a user’s voice, the goal is to make the decision of whether to ac-
cept or to reject the identity claimed by the speaker. Successful
speaker verification will enable an automatic device to use the
user’s voice to verify their identity and to control access to var-
ious services. These applications include voice dialing, banking
over a telephone network, telephone shopping, database access
services, voice mail, security control for confidential informa-
tion, and remote access to computers. Utterance verification, on
the other hand, aims to equip speech recognition systems with
the ability to detect whether the input speech does not contain
any of the words in the recognizer’s vocabulary set [19], [23].
As speech recognition technology migrates from the laboratory
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to many services and products, the role of utterance verifica-
tion has become increasingly essential. Utterance verification is
especially important in the design of user-friendly systems be-
cause such systems should be able to reject speech utterances
either with no valid keywords or with valid keywords but are
incorrectly recognized by the speech recognizer.

In principle, both speaker verification and utterance ver-
ification, as well as all other verification problems, can be
addressed in a unified theoretical framework. As we will
show later, in theory, every verification problem can be cast
as a problem of “statistical hypothesis testing.” According to
Neyman–Pearson’s Lemma, under certain conditions, the op-
timal solution to hypothesis testing is the so-called “likelihood
ratio test” (LRT). Many researchers in speech technology have
introduced the LRT to utterance verification [19], [23] and
speaker verification [15]. The LRT technique has achieved
significant success in both of these areas. The aim of the
research work presented in this paper is to extend the LRT to
the new, Bayesian framework.

Generally speaking, automatic speech and speaker recogni-
tion aim to solve two different types of problems:classification
andverification. In the classification problem, the objective is
to classify an input speech segment or utterance into one of a
predefined set of categories based on the
theory of statistical pattern recognition. For a given speech seg-
ment , if the conditional probability and thea prior
probability are assumed known, then the optimal class de-
cision that minimizes the classification error is the Bayes
decision rule that maximizes thea posterioriprobability such
that

(1)

Speech recognition and speaker identification are two classifica-
tion problems that have attracted much research effort [13]. The
verification problem, on the other hand, generalizes all prob-
lems which require a binary answer, and does not involve a pre-
defined set of categories. The verification problem is usually
formulated as a problem of “statistical hypothesis testing” [7],
where the problem formulation is to test thenull hypothesis
against the alternative hypothesis. If the probabilities of the
null and the alternative hypotheses are known exactly, according
to Neyman–Pearson’s Lemma, the optimal hypothesis test in-
volves the evaluation of a likelihood ratio such that the null hy-
pothesis, , is accepted if

(2)
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where is a predefined critical threshold and and
denote the probability distributions under hypotheses

and , respectively.
For testing simple hypotheses where the pdfs ofand

are known exactly, the LRT is known to be the most powerful
test for a given level of significance. However, in any prac-
tical speech-related verification problem (either speaker ver-
ification or utterance verification), it is impossible to obtain
the exact pdfs for either the null hypothesis or the alternative
hypothesis. Under the practical condition of imprecise pdfs, a
feasible strategy is to estimate both and
by assuming a parametric form of the distribution under each
hypothesis. Clearly, any assumption of a parametric distribu-
tion may cause a mismatch between the “true” and estimated
conditional distributions. This possible mismatch, as well as
possible estimation errors due to insufficient training data, in-
validate the commonly held optimality of the LRT implied by
Neyman–Pearson’s Lemma. It is this “mismatch” problem that
motivates us to search for a superior solution. A solution we
found is under the Bayesian framework.

In this paper, we address the verification problem strictly
under the Bayesian framework. The Bayesian approach to “hy-
pothesis testing” involves evaluation of the so-calledBayes fac-
tors. The calculation of theBayes factorsin turn requires the
computation of several Bayesian predictive densities. Specifi-
cally, we propose a Bayesian solution to the general outlier ver-
ification problem, where the judgment is made through evalu-
ating the value ofBayes factorsagainst some preset threshold.
Although the novel Bayesian approach is equally applicable to
many practical verification problems, as a case study reported
in this paper, it is applied only to speaker verification based on
the Gaussian mixture model (GMM). Due to themissing data
problem in the GMM, we adopt the Viterbi approximation as
in [10] to calculate theBayes factorsand derive an efficient al-
gorithm to perform speaker verification based on the Bayesian
approach. This approach consists of the following three steps:

1) collecting sufficient statistics for all GMMs from all avail-
able training data;

2) computing Bayesian predictive densities based on the suf-
ficient statistics only;

3) performing Bayes-factors-based testing. Furthermore, we
also study heuristic methods for estimating proper prior
pdfs used in speaker verification based on the empirical
Bayes method.

In order to examine the viability of the proposed algorithms,
they have been evaluated on theNIST98speaker recognition
evaluation data under the NIST evaluation framework. For sev-
eral training and testing conditions, the proposed Bayesian ap-
proach has been compared with the conventional LRT. The ex-
perimental results demonstrate the effectiveness and efficiency
of the Bayesian approach. Some moderate improvements over
a well-trained baseline system which is employing the conven-
tional LRT have been observed in all training and testing condi-
tions examined.

The remainder of the paper is organized as follows. We
briefly introduce the concept ofBayes factorsin Section II.

In Section III, we investigate the outlier verification problem
from both non-Bayesian and Bayesian viewpoints and show
that the Bayesian approach forms a novel solution to the
verification problem. Next, in Section IV, as an example, we
apply the Bayesian method to the speaker verification problem
and propose an efficient algorithm for the GMM-based speaker
verification. Then, we investigate some heuristic methods
to estimate prior pdfs for speaker verification, as reported
in Section V. Further, the proposed method is evaluated on
NIST98speaker recognition data and the experimental setup
and the results are reported in Section VI. Finally, we conclude
the paper with our findings in Section VII.

II. BAYES FACTOR

The verification problem has traditionally formulated as
“statistical hypothesis testing,” where two complementary
hypotheses, and , are used, each corresponding to one
of the yes and no answers accordingly. Within this traditional,
non-Bayesian framework, under some conditions, which
are often invalid in practice, the Neyman–Pearson’s Lemma
would give the optimal test as shown in (2). To remove these
impractical conditions, we are interested in investigating a
novel solution to the hypothesis testing problem strictly under
the Bayesian framework.

As shown in [12], the Bayesian approach to hypothesis testing
involves the calculation of the so-calledBayes factors. Given the
observation data, the Bayes factors are computed as

(3)

where for
, model parameter under ;

prior density;
likelihood function of under .

Bayes factors offer a way to evaluate evidence in favor of the
null hypothesis because the Bayes factor is the ratio of the
posterior odds1 of to its prior odds, regardless of the value
of the prior odds [12].

Therefore, during testing, Bayes factors can be compared
with a preset threshold, much like the likelihood ratio in
Neyman–Pearson Lemma, to make a decision with regards
to . In other words, if , where is a preset critical
threshold, then we accept ; otherwise we reject .

III. OUTLIER VERIFICATION

In Section II, we have outlined the Bayesian approach to
general hypothesis testing problems. In this section, we will
consider a specific example of the outlier verification problem
in statistical pattern recognition, and we will investigate the
optimal solutions to this problem from the non-Bayesian and
Bayesian viewpoints, respectively.

1Any probability can be converted to the odds scale, i.e., odds=
probability=(1 � probability). Thus, Pr(H jy)=Pr(H jy) is called the
posterior odds in favor ofH , andPr(H )=Pr(H ) is prior odds in favor of
H .
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In a typical problem of statistical pattern recognition, given
classes and an unknown observation

, we consider categorizing into one of these classes
. If actually arises from any one of these classes,

the optimal solution is given in (1). However, in many practical
situations, sometimes belongs to none of these classes, which
is called anoutlier in this case. The outliers should be rejected
in the practical applications (outlier rejection). Most statistical
pattern recognition techniques do not have an explicit mecha-
nism to determine whether is an outlier or not. Therefore, a
verification process is proposed here to combine with conven-
tional pattern classification methods in order to detect outliers.

We will adopt a two-pass strategy for outlier rejection. In the
first phase, which we callpattern classification, we first classify

into one most likely class, e.g., ( ). In the second
phase, which we calloutlier verification, we verify whether
actually comes from the class (accept) or is just an outlier
(reject). The first stage is a typical pattern recognition problem
which has been well studied. In this section, we will focus on
the second stage, namely outlier verification.

In practice, we usually have no knowledge about each
class ( ) except we can collect a set of
representative samples for each class. Suppose, for
any class , we have collected samples

, where denotes the total
number of samples for class . Meanwhile, we also assume
another special outlier class , which includes all possible
outliers. Usually it is possible to collect another set of samples
of outliers: for the outlier class

.
Based on these assumptions, given an unknown observation

, we first classify it to the most likely class, say (
), by using the conventional pattern classification method.

The problem here is to verify whether the observationac-
tually comes from the class or not. In general, this can be
formulated as a problem of hypothesis testing. By explicitly
taking into account the information available in the training data

and , thenull hypothesis, which corresponds to the case
where is not an outlier, is proposed as : Both and come
from while comes from . Accordingly, the alternative
hypothesis is : comes from while both and come
from . The solution to this hypothesis testing problem is as
follows.

If

(4)

then we accept ; otherwise, reject as an outlier, where is
a fixed threshold, and denotes the conditional probability
density.

In the following, we will study this outlier verification
problem from both non-Bayesian and Bayesian viewpoints.
Two different solutions will be derived from these different
viewpoints.

A. Non-Bayesian Method (Neyman–Pearson Approach)

In non-Bayesian statistics, we usually assume that the form
of a parametric model for each class is known in advance,

leaving its parameters to be estimated from the training sam-
ples . Thus, parameters are viewed as an estimator from
the samples under the non-Bayesian framework. Because
likelihood functions play a central role in non-Bayesian sta-
tistics, all probability densities in (4) are viewed as the corre-
sponding likelihood functions of model parameters. If all data
are independent, the hypothesis testing problem expressed in (4)
reduces to the conventional LRT in Neyman–Pearson Lemma

(5)

where denotes the likelihood function, and and are
the estimators of the model parameters for the classand ,
based on the samples and , respectively.

Therefore, the non-Bayesian method for outlier verification
consists of two separate steps. First, we estimate the model pa-
rameters for a certain data class and for the outlier class. Second,
verification is performed as an LRT based on the estimated
model parameters.

B. Bayesian Approach

In the Bayesian framework, all model parameters
are treated as random variables, and we assume

that all knowledge about each class is
contained in a prior pdf .

According to Section II, the Bayesian solution to the hypoth-
esis testing of (4) involves the computation of the Bayes factor

(6)

where
joint Bayesian predictive density for class;
prior pdf;
likelihood function.

Differing from the non-Bayesian approach, in the current
Bayesian approach we first estimate a prior pdf for each class.
Then the decision is made based on the value of thisBayes
factor. As for the prior pdf estimation, we adopt the principle of
partial Bayes factors [18]. Concretely, the initial prior pdf is set
as a noninformative prior pdf at the beginning. Then, a portion
of the samples are used to estimate the prior pdf based on
Bayesian learning or according to the empirical Bayes method.
Finally, the Bayes factor is calculated based on the remaining
samples.

As a remark, if we adopt the following incremental method
to calculate the joint predictive density

(7)
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where and the prior/pos-
terior pdf is calculated based on incremental
Bayesian learning at each step, then this hypothesis testing in
(6) can be significantly simplified to

(8)

where is theposteriori density after observing data
, which can be obtained from the Bayesian learning method.

IV. BAYESIAN APPROACH TOGMM-BASED

SPEAKER VERIFICATION

We have presented the general formulation of Bayesian
approach to the verification problem. As a specific case, in this
section, the Bayesian approach is applied to text-independent
speaker verification based on the GMM. We also derive an
efficient algorithm to perform Bayes-factors-based hypothesis
testing for the GMM. Note that, although the algorithm in this
section is derived for the GMM, it is straightforward to extend
it to the HMM case.

The typical scenario in speaker verification looks as follows:
User first claims an identity and the system prompts the user
to say some utterances in order to verify whether the user actu-
ally is the claimed identity or not. Obviously, speaker verifica-
tion can be viewed as an outlier verification problem, where in
every verification step, the claimed speaker identity is the target
speaker and all other speakers are thought to be the outliers (or
imposters). When building the system, each target speaker is
required to provide some speech data to construct some models
for the speaker. In verification, the new utterances are used to
match with the target speaker’s model in order to make the veri-
fication decision. It is well known that GMM and/or HMM have
become the most effective models for speaker identification and
speaker verification. In this paper, we adopt GMM as the basic
model for speaker verification, i.e., each speaker is represented
by one GMM. We also use another GMM model to represent
outliers for all nontarget speakers.

Suppose we have target speakers in the pool, and a total
of GMM models, denoted as ,
where represents theth speaker model and the
outlier model. Given a feature vector, the likelihood function
of GMM can be expressed as

(9)

where
total number of Gaussians in the model;
weight of th mixture component with
the constraint ;
th multivariate Gaussian mixture com-

ponent with the mean vector and the
precision matrix .

If we assume all precision matrices are diagonal, we have

(10)

where is the dimension of the vector. Hereafter, for concise-
ness, we will omit all superscripts when no confusion occurs.

When we observe an utterance with
length , the likelihood function of GMM can be expressed
as

(11)

where is called a path (over GMM ), which is a sequence
of mixture component labels: . This
summation is carried out over the entire path space.

In this paper, among all of the GMM parameters, we assume,
for simplicity purposes, that only Gaussian mean vectors are
random while the remaining parameters are deterministic and
known. We further adopt the idea of the natural conjugate prior
[4], and choose the prior pdfs for each GMMaccording to

(12)

where denote all hyperpa-
rameters related to the GMM.

The Bayesian approach to hypothesis testing involves the cal-
culation of Bayes factors. The computation of the Bayes factors
in turn requires the computation of several Bayesian predictive
densities, and this latter computation is not straightforward in
many cases. As for the GMM, due to itsmissing-datanature,
some approximations are needed to calculate the Bayesian pre-
dictive value in a feasible way. Here we adopt the same Viterbi
approximation to Bayesian prediction as that used in [10] and
[11].

Given an utterance , the Bayesian
predictive density for model is computed as follows:

(13)
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We term the path which maximizes this integration as the
optimal path, denoted as , i.e.,

(14)

Thus, the approximate Bayesian predictive density can
be expressed as

(15)

where

(16)

(17)

(18)

(19)

Here, we have obtained the result for the Viterbi approxima-
tion to the Bayesian predictive density for a single observation

. It is straightforward to extend the method to compute the
joint Bayesian predictive density for multiple observations,
as required in (6). From (6), we see that the brute-force calcula-
tion of the Bayes factor requires all training data. This means
that we have to save all training data in order to verify any un-
known utterance with the Bayesian method. This obviously is
not practical for most applications. In the following, we derive
an efficient algorithm to calculateBayes factorsfor multiple ob-
servations , which does not require using all training data in
each verification step.

In this algorithm we first collect the so-calledsufficient statis-
tics for all models based on all available training data. Then
the sufficient statistics, as well as all prior pdfs, are stored in
order to carry out verification. When presented with an unknown

utterance, the Bayes factor can be calculated strictly from these
statistics only, without using the original data. Below, we first
present an algorithm to calculate the joint Bayesian predictive
value. Then, we present the Bayesian approach to verification
based on these joint Bayesian predictive values.

Given a set of (training) observations
, a testing observation , and the prior pdf for the

model parameters , the algorithm for calculating the joint
Bayesian predictive densities and is presented
as steps A and B in the following.

A. Collect Sufficient Statistics

• Attach a set of “global” statistics to each Gaussian mix-
ture component in the model. For the th component

, its “global” statistics consists of a scalar ,
and three vectors denoted as, , and , re-
spectively.

• Initialize all “global” statistics

(20)

• For each observation
in we do the following.

— Perform the Viterbi Bayesian predictive classification
(VBPC) search [10] for , based on , and obtain
one optimal path over the model .

— Based on the path , collect statistics for each
Gaussian mixture . As-
suming its related prior pdf to be
as in (12), we collect the following “local” statistics
for all mixture components. For :

(21)

(22)

(23)

(24)

where

if path lies in the mixture
component at time

otherwise.

(25)

— Use these “local” statistics to update all “global” sta-
tistics as follows: for all

(26)

(27)

(28)

(29)
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B. Calculate Joint Bayesian Prediction Using Sufficient
Statistics

• Calculate the Bayesian predictive value according to

(30)

• Calculate the Bayesian predictive value :
— Keep all “global” statistics related to as collected

from the previous step.
— Collect the “local” statistics for alone

as in (21)–(24), which are denoted as
.

— Calculate as shown in (31) at the bottom of
the page.

C. Hypothesis Testing

Let thenull hypothesis be that comes from theth speaker’s
model and let the alternative hypothesis be thatis an out-
lier ( ). The Bayesian solution to such a hypothesis testing
problem is then based on the following Bayes factor:

If

(32)

then we accept the claimed speaker identity, otherwise reject it
as an imposter. If the training data and are unchanged
during the verification procedure, given any, this test can be
simplified to

(33)

where is a new threshold.

V. PRIOR ESTIMATION FOR SPEAKER VERIFICATION

In this section, we consider estimating the prior pdfs for the
calculation of Bayes factors in speaker verification. We assume
that all priors have the functional form as shown in (12) and
that their hyperparameters be estimated from the data. Here
we propose to use the empirical Bayes method to estimate a

speaker-independent (SI) prior pdf as the initial step. Then the
data from a specific speaker are used to update the SI priors to
obtain speaker-dependent (SD) priors for each speaker based on
Bayesian learning.

Given a total of speakers in a system pool, the collected
data correspond to each target speaker

and the data represent all other nontarget
speakers.

A. Estimate SI Prior Based on Empirical Bayes Method

First, all available data are used to
estimate a speaker-independent GMM model based on
the expectation-maximization (EM) method (see the Appendix
for details). consists of

. Then, we construct the SI prior from the SI model
based on the empirical Bayes method which proceeds as

follows. Assuming that the SI prior has the functional form
of (12), then its hyperparameters are estimated as follows:

and (34)

and (35)

where is a weighting coefficient for adjusting the shape
of the prior pdf, and is a weight count accumulated for the
th mixture component during the training procedure for the SI

GMM , i.e., , where
is defined in the Appendix.

B. Estimate SD Priors Based on Bayesian Learning

For every individual speaker , the data from
that speaker are used to update the SI prior to obtain an SD
priors based on Bayesian learning. In other words, we treat SI
prior as the prior pdf in Bayesian learning, and the derived
posterior pdf becomes the SD prior pdf (which is needed for the
calculation of the Bayes factors). This gives

(36)

where is the likelihood function.
Due to themissing dataproblem in GMM, it is not possible to

implement this Bayesian learning accurately [9]. Some approx-
imations are needed. In this paper, we adopt the Viterbi approx-
imation to derive the so-called segmental Bayesian learning as
in [8], [9]. This approximation gives

(37)

where is the optimal path as defined in (14).

(31)
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Denoting , and for each
, , where is the

length of . Because we choose the nature conjugate prior for
as in (12), the SD prior will have the same form

as that in the right hand side of (12). Then Bayesian learning
gives the estimated hyperparameters of

and

(38)

and (39)

where

and

(40)

and

(41)

and is the Kronecker delta function.

C. Priors for Outliers (Nontarget Speakers)

In speaker verification, a simplest strategy which we have
implemented is to use the SI prior pdf as an approximation to
the outlier prior pdf. A second method which we have imple-
mented is to collect all data which represent all possible out-
liers (imposters). In speaker verification, this data would include

, where is the target speaker. Then,
the empirical Bayes method described in Section V-A can be
used to construct the outlier prior directly from the data, or the
previous data can be used to update the SI priors to obtain the
outlier prior pdf based on Bayesian learning.

VI. SPEAKER VERIFICATION EXPERIMENTS

In order to examine the viability of the proposed new
approach, we have applied it to some speaker verification
tasks. In this paper, we report the experimental results from
theNIST98speaker recognition evaluation data. In our experi-
ments, the Bayesian approach was compared with the baseline
system which uses the conventional LRT. Experimental results
demonstrate the effectiveness and efficiency of the Bayesian
approach in speaker verification based on GMM. Under all the
training and testing conditions we have examined, the Bayesian
approach has achieved moderate but consistent improvements
over the well-trained baseline system.

A. Database and Evaluation Method

TheNIST98evaluation data is used in all of our experiments.
The NIST98data is drawn from the SwitchBoard-2 phase-2
corpus, which includes a large amount of spontaneous con-
versations between two speakers over telephone lines. There
are 250 female and 250 male speakers inNIST98. In our ex-

periments, only those data from 250 female speakers are used.
These speakers serve both as target speakers and nontarget
(impostor) speakers. The handset type label is supplied by
NIST but we did not use this information in our experiments.
In the experiments, we use two different training conditions for
each target speaker:

• “One-session” training (denoted ass1): The training data
are two minutes of the speech data taken from only one
conversation session.

• “Two-session” training (denoted ass2) : Equal amounts
(two minutes) of training data are taken from two different
conversations collected from the same phone number. The
training data consist of one-minute data from one conver-
sation, plus additional one-minute data from a different
session, with the same phone number.

Our experiments include three different testing conditions ac-
cording to different test speech segment durations. These dura-
tions are approximately 3 s, 10 s, and 30 s, which are denoted
asT3, T10, andT30, respectively.

TheNIST98data include both training and testing sets. There
is an average of about 10 test segments for each target speaker
and for each test duration. This makes up a total of 2500 test
segments for each of the three test durations. For each of the
test segments, a total of ten speaker identities are assigned as
test hypotheses. Each of these hypotheses is then required to be
judged as true or false, and a decision score is also needed for
each judgment.

B. Baseline System

In both training and testing, the speech waveforms are digi-
tized and preprocessed by a front-end unit that extracts a set of
12 mel-frequency cepstral coefficients (MFCC) and log energy
from each frame of data. Cepstral mean normalization is ap-
plied to each utterance to eliminate some of the spectral shaping
occurring in the telephone channel. Each 39-dimension feature
vector consists of 12 MFCCs and log-energy, as well as their
delta and delta–delta coefficients.

In our baseline system, a single GMM is built for each
speaker. The number of Gaussians,, is the same for all
speakers, and is fixed as 256 in all of our experiments. The
construction of the SD GMMs for all speakers is made up of
two separate phases. First, we use all available training data
from all speakers to train an SI GMM based on maximum
likelihood [16]. The generation of GMM starts with a random
vector quantization (VQ) codebook. The codebook is then iter-
atively updated using the LBG algorithm. After convergence,
the Gaussians are fitted to the codewords, and their parameters
are adjusted using a few EM iterations (see the Appendix for
details). Second, starting from the SI GMM, the SD GMM for
each individual speaker is estimated from the specific speaker’s
speech data based on maximuma posteriori(MAP) estimation
[8].

When presented with a speech segmentand a specific
speaker, the verification decision in this baseline system is made
based on the conventional LRT, i.e., if

(42)
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then we accept the speaker identity, and otherwise reject it;
denotes the likelihood function andis the preset crit-

ical threshold.

C. Bayesian Approach to Speaker Verification

We use identical feature vectors and the GMM structure in
the new Bayesian approach to those in the baseline system. A
speaker verification system based on the Bayesian approach is
established similarly as the baseline system. First, an SI prior
pdf is constructed from all available data from all speakers based
on the empirical Bayes method described in Section V-A. Here
we set the control parameter , where denotes the
total number of utterances in the training set. Second, based on
the Bayesian learning method described in Section V-B, the SI
prior pdf is updated by using the speech data from each indi-
vidual speaker to obtain an SD prior pdf for that speaker. The SI
prior pdf is used as the prior pdf for outliers (nontarget speakers)
in our experiments. Third, for each speaker, in addition to its SD
prior pdf, we also collect a set of “sufficient statistics” based on
the training speech data from the speaker as described in Sec-
tion IV-A. As for the outlier class, the SI prior pdf is used as
its prior pdf and a corresponding set of “sufficient statistics” is
similarly collected from all available data of all speakers.

When given a test speech segment and a speaker identity,
without using all original data set, the verification decision is
based on Bayes factors which are easily computed from the cor-
responding prior pdfs and the sufficient statistics.

D. Experimental Results and Discussions

In the experiments, for each testing condition we randomly
selected 500 test segments out of the total 2500 segments which
NIST supplies for the 1998 evaluation. For each test segment,
ten speaker identities are provided as hypotheses. Thus, for each
testing condition, we have a total of 5000 pairs of test speech
segments and hypothesized speakers which require 5000 veri-
fication decisions. We classify these 5000 pairs into two cate-
gories: the first class is called “in-set” where the speech seg-
ment is actually uttered by the hypothesized speaker. The other
class is called “out-set” where the speech segment is not uttered
by the hypothesized speaker, who is an imposter. We count the
false rejection error in “in-set” and the false acceptance error
in “out-set.” The comparative results of equal error rate (EER)
between the new Bayesian method and the baseline system are
given in Table I.

From these results, we observe that thes2 training condition
generally gives better performance thans1. The main reason
is that the enrollment data comes from different conversation
sessions unders2 training condition, which may include more
information about the telephone channel variations. In addition,
for the same training condition, the longer test segment duration
gives better verification performance. We also observe that by
use of the novel Bayesian approach, moderate improvements
have been achieved in the EER over the baseline system for all
the training and test conditions we have examined as listed in
Table I.

The next set of results are obtained when we change the crit-
ical threshold continuously, and then draw the verification ROC
curve. Each point in the ROC curve represents a certain value of

TABLE I
COMPARATIVE RESULTS OFEQUAL ERRORRATE (EER) BETWEENBAYESIAN

APPROACH(BAYES) AND THE LIKELIHOOD-RATIO-TEST-BASED

BASELINE SYSTEM (LRT )

Fig. 1. Comparison of speaker verification ROC curves for female speakers
under training conditions1and test conditionT30. Dotted-line: likelihood ratio
test (LRT), solid-line: Bayesian approach (Bayes).

Fig. 2. Comparison of speaker verification ROC curves for female speakers
under training conditions1and test conditionT10. Dotted-line: likelihood ratio
test (LRT), solid-line: Bayesian approach (Bayes).

the threshold, which is also called an operating point. The ROC
curves obtained for all the experiments we have conducted are
shown in Figs. 1–6.

From these ROC curves, we observe that generally the
Bayesian approach is superior to the baseline system under
all examined conditions. In particular, the advantage of the
Bayesian approach is larger for the training condition ofs1
than that ofs2. The possible reason is that the GMMs estimated
in the condition ofs1 are relatively poor due to the telephone
channel variations in the speech data, and it is well known that
the Bayesian approach usually achieves larger gains than the
likelihood-based non-Bayesian method when the estimated
model is not sufficiently accurate.

In general, the advantage of the Bayesian approach lies in the
following two aspects. First, the “mismatch” problem caused by
incorrect model assumptions and by insufficient training data
often invalidates the optimality of the LRT procedure implied
by Neyman–Pearson’s Lemma. The Bayesian approach is much
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Fig. 3. Comparison of speaker verification ROC curves for female speakers
under training conditions1and test conditionT3. Dotted-line: likelihood ratio
test (LRT), solid-line: Bayesian approach (Bayes).

Fig. 4. Comparison of speaker verification ROC curves for female speakers
under training conditions2and test conditionT30. Dotted-line: likelihood ratio
test (LRT), solid-line: Bayesian approach (Bayes).

Fig. 5. Comparison of speaker verification ROC curves for female speakers
under training conditions2and test conditionT10. Dotted-line: likelihood ratio
test (LRT), solid-line: Bayesian approach (Bayes).

Fig. 6. Comparison of speaker verification ROC curves for female speakers
under training conditions2and test conditionT3. Dotted-line: likelihood ratio
test (LRT), solid-line: Bayesian approach (Bayes).

less sensitive to model inaccuracy because the model param-
eters are integrated over the entire space based on the prior
pdf. Second, as shown in (30), the joint Bayesian predictive

log value can be decomposed into two terms, namely
and . The first term represents

the information from the model and the second term represents
the information obtained directly from the data. The Bayesian
approach optimally combines the two different sources of infor-
mation in making the verification decision. The optimal balance
between these two sources is automatically adjusted by the prior
pdf; that is, the decision is made to rely more on the data if the
model is less accurate and more on the model if the model is
more precise. Both aspects of the strength of the Bayesian ap-
proach over the conventional likelihood based approach have
been demonstrated in the experimental results presented in this
section.

As far as the computational complexity is concerned, in com-
parison with the Gaussian density computation in the conven-
tional method, the Bayesian approach requires slightly more
computation in calculating the predictive density, as shown in
(31). However, this does not cause any significant computation
increase in the overall computing loads of the system. One major
weakness of the Bayesian approach, compared with the conven-
tional method, is the relatively large requirement in storage, ei-
ther in memory or in disc, for saving the sufficient statistics for
all model parameters.

VII. SUMMARY AND CONCLUSION

The non-Bayesian approach based on the LRT has dominated
speech technology while dealing with the verification problem.
In this paper, we present a novel approach to solving the ver-
ification problem. We address the verification problem from
a Bayesian viewpoint. The Bayesian approach to verification
involves the evaluation of a quantity called theBayes factor
against a critical threshold. The calculation of theBayes factor
involves evaluating several Bayesian predictive densities.

Specifically, we report in this paper our study of the out-
lier verification problem in pattern recognition. While the ap-
proach presented is applicable to many practical verification
problems, in this study, we apply it to speaker verification based
on the GMM. For this application, we propose an efficient al-
gorithm to calculate theBayes factorfor the GMM and an ef-
fective strategy to perform speaker verification based on the
Bayes factor. The proposed approach is investigated and evalu-
ated using theNIST98speaker recognition evaluation data. Ex-
perimental results demonstrate the consistent effectiveness and
efficiency of the Bayesian approach in speaker verification.

Finally, we discuss some possible future research directions
along the line of the work described in this paper. First, although
the work in the paper is derived for speaker verification based
on the GMM, it is straightforward to extend it to the HMM. The
basic verification principle is also applicable to all other types of
verification problems. Thus, as a direct extension, we also can
apply the Bayesian approach to another important verification
problem in speech recognition, i.e., utterance verification based
on HMM. Second, as discussed in Section III-B, using the ap-
proximation of (7), we can obtain a much simpler method for
computing theBayes factor. It will be very interesting to see
how well this highly efficient approximate method will work in
practice.
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APPENDIX

ESTIMATION OF GMM BASED ON EM ALGORITHM

We consider the parameter estimation problem of the GMM
from multiple observations

by using the EM algorithm. We denote
, where each observation is a sequence denoted

by .
Given the initial GMM parameters

E-Step:

const. (43)

where denotes the probability of residing in the th
mixture component, i.e.,

(44)

M-Step: For and ,

(45)

Thus

(46)

(47)

Thus

(48)

As for , we have the constraint of . Using the
Lagrange multiplier method, we have

(49)

Thus

(50)
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