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A Minimax Search Algorithm for Robust Continuous
Speech Recognition

Hui Jiang, Member, IEEE, Keikichi Hirose, Member, IEEE, and Qiang Huo, Member, IEEE

Abstract—In this paper, we propose a novel implementation of
a minimax decision rule for continuous density hidden Markov-
model-based robust speech recognition. By combining the idea of
the minimax decision rule with a normal Viterbi search, we de-
rive a recursive minimax search algorithm, where the minimax de-
cision rule is repetitively applied to determine the partial paths
during the search procedure. Because of its intrinsic nature of a
recursive search, the proposed method can be easily extended to
perform continuous speech recognition. Experimental results on
Japanese isolated digits and TIDIGITS, where the mismatch be-
tween training and testing conditions is caused by additive white
Gaussian noise, show the viability and efficiency of the proposed
minimax search algorithm.

Index Terms—Minimax rule, plug-in-MAP rule, robust decision
rule, robust speech recognition.

I. INTRODUCTION

I T IS now well known that the mismatches between training
and testing conditions will considerably degrade the per-

formance of an automatic speech recognition (ASR) system.
How to maintain the recognizer’s performance under various
mismatches has recently become one of the hottest topics in
the area of robust speech recognition. The so-called “com-
pensation/adaptation” approaches [6], which aim at reducing
the involved mismatches as much as possible, have formed
the mainstream of the current robust speech recognition tech-
nology. However, in the past few years, based on robustness
theory, some works have been performed to modify the basic
decision rule used by the speech recognition system. Instead
of directly compensating for the underlying mismatches, the
decision rule of the ASR system is designed to be inherently
robust to the possible unknown mismatches. This scheme
becomes a potential approach for robust ASR because no
rigid assumptions about the sources and mechanisms of the
mismatches have to be made. Two sets of robust decision
rule, namelyminimaxdecision rule [2], [5], [8] andBayesian
predictive classification(BPC) rule [2], [4], [9] have been
studied for ASR. In [8], Merhav and Lee first mentioned the
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minimax rule in speech recognition community and proposed
an implementation for isolated word recognition task. In [2], a
so-calledmodified minimaxmethod was proposed to perform
minimax rule under a Bayesian framework. In both of these
existing minimax implementations, instead of dynamically
searching a desired answer in a structural network represen-
tation of all possible hypotheses, decisions are made only
from a list of finite candidates. This makes them difficult to
be extended to perform continuous speech recognition (CSR)
except in an N-Best rescoring mode.

In this paper, we combine the idea of the minimax rule with a
normal Viterbi search to derive a minimax recursive search algo-
rithm for continuous density hidden Markov model (CDHMM)-
based speech recognition. The proposed implementation can be
outlined as follows:

• for every time instant, the least favorable model parame-
ters in the minimax rule are estimated based on each active
partial path via only one iteration; then

• score of the partial path can be recomputed accordingly
by using the estimated least favorable parameters, based
on these recomputed scores;

• all the active partial paths are propagated in the network
in a similar way as in the normal Viterbi search.

Because of its intrinsic nature of a recursive search, the ap-
proach can be easily extended to perform CSR. A series of ex-
periments are performed on the recognition of isolated digits
and TI connected digit strings (TIDIGITS), where the mismatch
between training and testing conditions is caused by additive
white Gaussian noise (AWGN). The experimental results show
that

• for the isolated digit recognition task, in comparison with
the standard Plug-in-MAP method, all three minimax al-
gorithms are able to improve the robustness considerably,
while the proposed algorithm performs the best;

• for connected digit task (TIDIGITS), the proposed min-
imax search algorithm also achieves a much better perfor-
mance than that of the conventional Viterbi search algo-
rithm;

• increased computational overhead in the minimax search
is generally affordable at least in some small vocabulary
tasks.

The remainder of the paper is organized as follows. The min-
imax rule is defined and derived in Section II based on statis-
tical decision theory and robustness theory. In Section III, we
briefly review two existing implementations of the minimax rule
for speech recognition in the literature. The proposed minimax
search algorithm is described in detail in Section IV, followed
by a report of the related experiments and results in Section V.

1063–6676/00$10.00 © 2000 IEEE
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Finally, we conclude the paper with some discussions in Sec-
tion VI.

II. M INIMAX RULE FORROBUSTSPEECHRECOGNITION

In a typical speech recognition problem, our task is to classify
a speech observation (usually feature vector sequence extracted
from speech signal) into one of a fixed number of classes.
For convenience, each class is referred to as aword hereafter.
Depending on the problem of interest, a wordmay be of any
linguistic unit, e.g., a phoneme, a syllable, a word, a phrase, a
sentence, etc. Let denote the set of all words to be classified,
i.e., . Let feature space(or observation space) denote
the set of all possible speech observation, i.e., . In a
decision problem, we always have a finite set, calleddecision
space , which consists of all possible decisions to be made.
For speech recognition, simply , where
means that the word is chosen as the final recognition re-
sult. Obviously, a speech recognition problem consists in con-
structing a decision rule which may be defined as a mapping
function from to

where (1)

Any mapping defines a decision rule. Hence there exist
an infinite set of decision rules, denoted by , for the same
problem. Not all of them are of equal value in practice though.
They may be compared by many characteristics, e.g., classifica-
tion accuracy in speech recognition. In a more general setting,
we usually assign aloss function to a decision
rule , where denotes the loss involved in
making decision when the observation actually comes
from . In a statistical paradigm, a word and an observa-
tion are viewed as a jointly distributed random pair ,
whose joint distribution is denoted as . Theclassifica-
tion risk for a decision rule is then defined as an expected
value of the loss function

(2)

where denotes mathematical expectation with respect
to the joint distribution of and .

In speech recognition, what we are interested in is the recog-
nition accuracy. Consequently, a so-called (0-1)-lossis often
used:

(3)

where is the indicator function. In this case, the loss is 0 for
each correct decision and 1 for each wrong decision. If
is exactly known, an optimal decision rule can then be
defined as the one to minimize the above classification risk

d

(4)

This decision rule is known as the optimal maximuma poste-
riori (MAP) decision rule [2], [10]. However, in practice, we
have no means to determine exactly. Therefore, the
above optimal rule will never be achievable. A simple heuristic
solution is first to assume a parametric form for and
then to estimate its parameters from training data using a param-
eter estimation technique. Then, we plug in the estimators to the
optimal rule to obtain aplug-in MAPrule [2], [9], [10]. In the
plug-in MAP rule, the estimators are treated as the true values.
The uncertainty with respect to estimation and model assump-
tion is not taken into account in the decision making procedure.
Therefore, the plug-in MAP rule is not a robust decision rule.

Alternatively, we have another strategy to construct a deci-
sion rule, which can take uncertainty into account in the de-
cision-making as follows: We first assume that the true distri-
bution lies in a neighborhood of the estimated (or hypothet-
ical) one. Such a neighborhood is referred to as-deviation un-
certainty neighborhood in robust statistics literature (e.g., [1]).
Then, the decision is made to safeguard some criteria within that
neighborhood.

If we define the robustness to mean insensitivity with regard
to small deviations from the assumptions, a quantitative measure
of robustness might be concerned with the maximum degrada-
tion of performance for a possible-deviation from the assump-
tions. A robust procedure that minimizes this maximum degra-
dation will thus be called a minimax procedure.

For simplicity, we do not consider the uncertainty of the lan-
guage model in this study. Given the conditional distri-
bution and its -deviation uncertainty neighborhood
denoted as , we consider the expected recognition error
probability (i.e., classification risk)

d (5)

Let denote the upper bound of the above expected
error probability when takes all admissible distribu-
tions within , i.e.,

d

(6)
A decision rule which minimizes the above maximum error
probability (with respect to uncertainty ) is
referred to asminimaxdecision rule [1]

d (7)

A minimax rule is in principle geared to protect against the pos-
sibly worst case. It serves as a reliable decision strategy when a
thorough knowledge about uncertainty is unavailable. However,
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as shown in (7), a minimax decision rule usually does not pos-
sess a straightforward form to implement, even for some simple
distributions. In most of practical applications, some more re-
laxed minimax rule has to be adopted. One possibility is to use
the upper bound of

d (8)

A decision rule which minimizes the above is as
follows:

(9)

This is the so-calledminimax decision rulewhich was first
studied by Merhav and Lee in [8]. In order to emphasize its
difference from the minimax decision rule defined in (7),
the above decision rule is referred to asquasiminimax
decision rule.

III. T WO PREVIOUSMINIMAX METHODS FORROBUSTASR

Suppose we model eachword with an -state CDHMM
with parameter vector , where is the initial state
distribution, is the transition matrix,
and is the parameter vector composed of mixture parameters

for each state, where de-
notes the number of Gaussian mixtures in each state. The state
observation probability density function (p.d.f.) is assumed to
be a mixture of multivariate Gaussian p.d.f.s with diagonal pre-
cision matrices

(10)

where the mixture coefficients ’s satisfy the constraint
, is the mean and is the precision

(inverse variance) inth dimension, and is the dimension of
the feature vector.

As stated above, in practice, the quasiminimax rule is often
used for the sake of simplicity. In [8], the-deviation uncertainty
neighborhood isparametricallydefined: the true param-
eters of the CDHMMs are assumed to lie within the neighbor-
hood of the pretrained models’ parameters

(11)

where constants ( ) and ( ) are used to
control respectively the possible mismatchsizeandshape, and

denote the pre-trained model parameters.
Thus, their quasiminimax rule is achieved as

(12)

where is the recognition result. In their implementation, in
order to approximate the operation in
(12), the following iterative procedure is used.

• Initialize with the values obtained in the training phase.
• In each iteration, for an observation sequenceto be

recognized, the optimal path of the corresponding unob-
served state sequence and the associated sequence of
the unobserved mixture component labelsis first de-
coded using the Viterbi algorithm. Then the model param-
eter is re-estimated based on according to max-
imum likelihood (ML) criterion.

• If the new falls in , it is used to update the old;
otherwise, the parameter within which is closest to
the new is chosen.

In this paper, the above Merhav and Lee’s implementation of
quasiminimax is referred to as minimax1 for convenience.

Besides, another so-called modified minimax rule used in [2]
works as follows:

(13)

where

(14)

with the prior p.d.f. , where denotes thehyperpa-
rameters. This modified minimax method is referred to as min-
imax2 hereafter. In minimax2, the quasiminimax rule is realized
under a Bayesian framework, where the least favorable param-
eters are acquired by the MAP estimate which is implemented
by an iterative EM algorithm [2]. In the following experiments,
we adopt one of the prior specification methods described in [3]
to choose as the best normal approximation to the
constrained uniform distribution within the neighborhood
in (11).

In both minimax1 and minimax2, instead of dynamically
searching a desired answer in a structural network represen-
tation of all possible hypotheses, decisions are made only
from a list of finite candidates. This makes them difficult to be
extended to perform continuous speech recognition except in
an N-Best rescoring mode.

IV. M INIMAX SEARCH ALGORITHM FORROBUSTCONTINUOUS

SPEECHRECOGNITION

In order to execute the minimax decision rule in robust contin-
uous speech recognition, we combine the idea of the quasimin-
imax rule (minimax1) with the normal Viterbi search to derive
a recursive minimax search algorithm as outlined in the intro-
duction section. Our implementation of the quasiminimax rule
can be represented as

(15)
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where is the unobserved state sequence andis the associated
sequence of the unobserved mixture component labels corre-
sponding to the observation sequence. This recursive quasi-
minimax search method is referred to as minimax3 in this paper.

Given a test utterance , CDHMM
parameter as well as its corresponding uncertainty
neighborhood ,1 the recursive search algorithm toap-
proximately achieve the minimax3 decision rule in (15) is
described as follows.

1) Initialization ( )

(16)

(17)

(18)

where denotes the score of the optimal partial path
arriving at state at the time instant. The corresponding
best partial path is represented by a chain of state points
started from and a chain of mixture component label
points started from .

2) Recursion: for , , do

2.1) Path-merging in state:

(19)

(20)

(21)
where

if
if

if
(22)

2.2) For each active partial path, estimate the least
favorable parameters :

where and denote respectively
the state sequence and the mixture compo-
nent label sequence corresponding to the
active optimal partial path backtracked from
the points and . When the neigh-
borhood (11) is adopted, only the mean vec-
tors are adjusted. Thus, all the mean vectors

of CDHMM are
reestimated as follows:

1The neighborhood in (11) is still adopted for�(�) here, in which only the
uncertainty of mean vectors is taken into account.

if (the mixand is included in the partial
path { , }), then

(23)

else

(24)

where and denote respectively
the state and mixture component labels corre-
sponding to the time instantin the partial path
backtracked from the points and .
Here denotes the Kronecher delta function.

Then the least favorable mean vectors are cal-
culated as: (for all , and

)

if
if

if
(25)

2.3) Rescore the partial path based on the
updated least favorable parameters

:

(26)

3) Termination

(27)

4) Path Backtracking

(28)

The final recognition result can be derived from the op-
timal path { }.

Because of its intrinsic nature of recursive search, minimax3
can be easily extended to perform continuous speech recogni-
tion. In comparison with the normal Viterbi algorithm, min-
imax3 needs extra efforts to rescore each active partial path
during the search process. However, if the size of the network
to be examined is moderate, the increased computational cost is
generally affordable.

V. EXPERIMENTS

In order to examine the viability of the proposed minimax3 al-
gorithm, we present a series of experiments where the minimax3
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algorithm is compared with other existing methods. Firstly, in an
isolated Japanese digit recognition task, minimax3 is compared
with the Plug-in-MAP based Viterbi algorithm, minimax1 and
minimax2. As a remark, only a Viterbi version of the minimax2
in [2] is implemented here. Next, in another connected word
recognition task on TIDIGITS [7], minimax3 is compared with
the conventional Viterbi search in terms of both the recognition
accuracy and computational complexity. In all the experiments,
the mismatch between training and testing conditions is caused
by adding, at different SNR (signal-to-noise ratio) levels, com-
puter-generated white Gaussian noise (AWGN) into the test data
prior to the pre-processing stage. The AWGN is scaled to a fixed
level for all utterances in the test set. The degree of mismatch
is measured by SNR level (in terms of dB) of the contaminated
speech, which is calculated over the whole testing set as follows:

SNR (29)

where denotes the signal variance of theth speech utter-
ance in test set, and the variance of noise signal added to
the th utterance. Compared with other methods, the SNR values
in this paper which are computed from (29) are relatively low
because we summarize signal variances over the whole data set.
Moreover, in the following experiments, no knowledge of the
related mismatch is explicitly exploited in testing phase. In all
of the following experiments, we do not perform cepstral mean
normalization in either training or testing phase.

A. Isolated Digit Recognition: ATR-JPD

In order to compare the performance of minimax3 with other
twopreviousquasiminimaxmethods(minimax1andminimax2),
wefirstperformaseriesofcomparativeexperimentsonaspeaker-
independent (SI) recognition task of isolated Japanese digits on
the ATR-JPD database, which is selected from ATR Japanese
SpeechDatabaseandcontains isolatedutterancesofJapanese0-9
digits from 60 speakers (half male, half female). The database
ATR-JPD is recorded in a quiet environment at a sampling rate
of 20 kHz with 16 bit quantization accuracy. Each digit is mod-
eled by a left-to-right four-state CDHMM without state skipping
and each state has 6 Gaussian mixture components with diagonal
covariance matrices. Each feature vector consists of 16 LPC-de-
rived cepstral coefficients, which are not warped to Mel scale.
For each digit, in total, we have 56 tokens from 46 speakers for
speaker-independent (SI) training, and 24 tokens from other 14
different speakers for SI testing.

In Table I, the averaged recognition accuracy of the min-
imax3 is compared with that of the standard plug-in-MAP-based
Viterbi search algorithm, minimax1, and minimax2 at three
SNR levels, 10 (dB), 20 (dB), and 30 (dB). The experimental
results clearly show that all three quasiminimax algorithms
are able to improve the robustness considerably in comparison
with the standard Plug-in-MAP based Viterbi algorithm when
the AWGN-caused mismatch exists between the training and
testing conditions. We also note that minimax3 significantly
outperforms both minimax1 and minimax2 in three examined
SNR levels. This can be explained by the fact that the quasimin-

TABLE I
PERFORMANCE(WORD ACCURACY IN PERCENT) COMPARISON OFMINIMAX 3

WITH PLUG-IN-MAP, MINIMAX 1 AND MINIMAX 2 IN ISOLATED JAPANESEDIGIT

RECOGNITION TASK WHEN TEST DATA ARE DISTORTED BY ADDITIVE

GAUSSIAN WHITE NOISE. [THE NUMBERS IN THE PARENTHESESDENOTE THE

OPTIMAL NEIGHBORHOODPARAMETERS (C , �) FOR THECORRESPONDING

METHOD TO ACHIEVE THE SHOWN PERFORMANCE INEACH CASE]

imax rule is repetitively applied during the recursive minimax3
search, which provides a chance to find a better path than both
minimax1 and minimax2 in which the quasiminimax rule is
only used to rescore the paths found by the normal Viterbi
search. Next, we also see that the performance of minimax1
is better than that of minimax2. This mainly attributes to the
prior difference in minimax1 and minimax2. In minimax1,
a constrained uniform distribution is chosen while a normal
approximation is used in our implementation of minimax2.
The heavy tail of the normal distribution obviously degrades
the performance 2%–3% in this case. Finally, we also note
that, in the specific case here, the performance of all three
quasiminimax methods is better than that of Viterbi method
even in the matched condition (SNR ).

We have to note that in Table I we only give the optimal
performance for all three quasiminimax methods when the hy-
perparameters are manually adjusted within the range:

and . As a reference, we also list in
Table I the optimal choice of the hyperparameters for the
corresponding methods to achieve the shown performance. Be-
sides the optimal performance in Table I, we also observed in
our experiments that minimax1, minimax2 and minimax3 out-
perform the plug-in-MAP method for a wide range of .
However, we have not found a good method yet to automatically
adjust for the optimal performance in all these minimax
methods. We also find that the recognition performance of min-
imax3 method tends to be relatively insensitive to in a
quite wide range, as shown in Table II.

B. Connected Word Recognition: TIDIGITS

In order to examine the feasibility of the minimax3 in terms
of its computational complexity in a continuous speech recogni-
tion task, we also perform a series of comparative experiments
of SI connected digits recognition on TIDIGITS English con-
nected digit-string database[7]. Only the part of adult speech
data (111 men, 114 women) is used in the experiments. The fea-
ture vector consists of 12 LPC-derived cepstral coefficients, en-
ergy, and their delta features, which are also not warped to Mel
scale. Because we are using the delta features in this part of ex-
periments, the mean vector consists of static feature in the
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TABLE II
RECOGNITIONACCURACY (IN PERCENT) AS A FUNCTION OF NEIGHBORHOODPARAMETERSC AND � OF MINIMAX 3 AT SNR= 30 dB

TABLE III
PERFORMANCE(IN PERCENT) COMPARISON OFMINIMAX 3 WITH PLUG-IN-MAP METHOD ONTIDIGITS CORPUSWHEN TESTDATA ARE DISTORTED BYADDITIVE

GAUSSIAN WHITE NOISE, WHERE STR STANDS FORSTRINGCORRECTRATE, Wd-C FOR WORDCORRECTRATE, Wd-A FORWORDACCURACY, WER FOR WORD

ERRORRATE, DEL , SUB AND INS FOR DELETION, SUBSTITUTIONAND INSERTIONERRORRATES, RESPECTIVELY

low dimensions and delta feature in the high dimensions. The
uncertainty neighborhood of defined in (11) will be slightly
modified as follows:

(30)

where for , ’s correspond to the static
feature part while ’s correspond to the delta fea-
ture part. The SI model for each digit is a ten-state, ten-mix-
ture-per-state CDHMM. These whole digit HMMs are trained
on 8623 utterances from adult training data subset of TIDIGITS.
The algorithms are evaluated on 8700 utterances from adult test
data subset distorted by various levels of computer-generated
Gaussian white noises.

The experimental results in Table III show that the minimax3
also performs much better than the conventional Viterbi algo-
rithm in continuous speech recognition task for the three exam-
ined SNR levels. In the table, we also give the corresponding
values of which minimax3 used. As far as the compu-
tational complexity is concerned, in minimax3, the increased
computation mainly lies in 1) estimating the least favorable pa-
rameters as in eqs. (23) and (25) and 2) rescoring the partial path
in (26). However, in each search step, only a small portion of the
individual partial path need to be re-calculated while the most

TABLE IV
TOTAL RECOGNITION TIME (IN SECONDS) COMPARISON OFMINIMAX 3 FULL

SEARCH WITH PLUG-IN-MAP BASED VITERBI FULL SEARCH ALGORITHM FOR

300 UTTERANCESFROM TIDIGITS (ON A SUN ULTRA-I WORKSTATION)

part of it remains unchanged as in (24). In the experiment, we
observed that in this small vocabulary task where the recogni-
tion network is not very large, the calculation overhead of the
minimax3 is affordable. As an example, we list in Table IV the
total CPU time used by Viterbi and minimax3 full searches (i.e.,
the beam width is set to infinity) to recognize in total 300 ut-
terances randomly chosen from the test set of TIDIGITS. The
CPU time in Table IV shows that the computational complexity
is approximately doubled in the minimax3 search in comparison
with the normal Viterbi search. However, we have to note that
the result of the quantitative comparison heavily depends on the
size of the recognition network used by the search engine. The
results in Table IV are obtained by using a recognition network,
where all digit models are in parallel, with a silence model al-
lowed preceding and succeeding the digit string.

As a remark, in the above experiments on TIDIGITS, we have
established the baseline system as simple as possible. The high
recognition error rate (2.7% WER) in the baseline system is
mainly attributed to the following reasons: we don’t include the
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delta-delta feature, we use only one model for each digit and
do not adopt such as gender-dependent model, we also don’t
refine the system in many aspects including preprocessing and
modeling due to the lack of CPU power, etc.

VI. SUMMARY

In this paper, we have proposed a novel minimax recursive
search algorithm to perform quasiminimax decision rule in con-
tinuous speech recognition. In the algorithm, the quasiminimax
rule is repetitively applied to determine the optimal partial paths
during the search. This provides the minimax search algorithm
an opportunity to find a better path for the correct hypothesis
than the normal Viterbi search when the mismatch exist between
the trained models and the testing speech. From the above ex-
perimental results, it is found that given an appropriate uncer-
tainty neighborhood, the robustness of an ASR system can be
enhanced by adopting the minimax decision rule. The proposed
minimax search algorithm is shown to be effective and efficient
for the examined small vocabulary tasks of either isolated words
or continuous speech. As future works, we need to develop some
methods to automatically determine the hyperparameters
of the uncertainty neighborhood. We should also consider other
possibility in uncertainty modeling such as thedistribution un-
certaintyinstead of the current practice of themodel parameter
uncertainty. It will also be interesting to see whether the min-
imax method can help improve the performance when it is com-
bined with other mismatch compensation approaches.
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