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Abstract—In this paper, we propose a novel optimization al-
gorithm called constrained line search (CLS) for discriminative
training (DT) of Gaussian mixture continuous density hidden
Markov model (CDHMM) in speech recognition. The CLS
method is formulated under a general framework for optimizing
any discriminative objective functions including maximum mu-
tual information (MMI), minimum classification error (MCE),
minimum phone error (MPE)/minimum word error (MWE), etc.
In this method, discriminative training of HMM is first cast as
a constrained optimization problem, where Kullback–Leibler
divergence (KLD) between models is explicitly imposed as a con-
straint during optimization. Based upon the idea of line search, we
show that a simple formula of HMM parameters can be found by
constraining the KLD between HMM of two successive iterations
in an quadratic form. The proposed CLS method can be applied
to optimize all model parameters in Gaussian mixture CDHMMs,
including means, covariances, and mixture weights. We have
investigated the proposed CLS approach on several benchmark
speech recognition databases, including TIDIGITS, Resource
Management (RM), and Switchboard. Experimental results show
that the new CLS optimization method consistently outperforms
the conventional EBW method in both recognition performance
and convergence behavior.

Index Terms—Discriminative training (DT), optimization algo-
rithm, line search, Kullback–Leibler divergence (KLD).

I. INTRODUCTION

I N THE past few decades, discriminative training (DT) has
been a very active research area in automatic speech recog-

nition (ASR). Most discriminative training methods have been
formulated to estimate parameters of Gaussian mixture contin-
uous density hidden Markov models (CDHMM) in different
speech recognition tasks, ranging from small vocabulary, iso-
lated word recognition to large vocabulary, continuous speech
recognition tasks. Discriminative training of CDHMMs is a typ-
ical optimization problem, where an objective function is usu-
ally optimized in an iterative manner. Popular DT criteria in-
cludes maximum mutual information (MMI)[1], minimum clas-
sification error (MCE) [2]–[4], minimum word or phone error
(MWE or MPE) [5], minimum divergence (MD) [6], etc. Once
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the objective function is chosen, an effective algorithm is used to
optimize the objective function by adjusting CDHMM param-
eters. In speech recognition, various algorithms have been pro-
posed to optimize the objective function, including the general-
ized probabilistic descent (GPD) algorithm based on the first-
order gradient descent, the approximate second-order Quick-
prop algorithm, and the extended Baum–Welch (EBW) algo-
rithm, etc. The GPD and Quickprop methods are mainly used
for optimizing the MCE objective function. The EBW method
has been initially proposed for optimizing a rational objective
function and later extended to Gaussian mixture CDHMMs for
the MMI [7] and MPE (or MWE) [8] objective functions. Re-
cently, the EBW method has also been generalized to optimize
the MCE objective function [9] and the MD objective function
[6]. Nowadays, the EBW method has been widely accepted for
discriminative training because it is relatively easy to implement
the EBW algorithm on word graphs for large scale ASR tasks
and it has been demonstrated that the EBW algorithm performs
quite well on many ASR tasks. Generally speaking, these opti-
mization methods attempt to search for a nearby locally optimal
point of objective functions from any initial point according to
both a search direction and a step size. Normally, the search di-
rection is locally computed based on the first-order derivative
(such as gradient), but the step size must be empirically deter-
mined in practice. As a result, the performance of these opti-
mization methods highly depends on the location of the initial
point and the property of objective functions. If the derived ob-
jective function is highly nonlinear, jagged, and nonconvex in
nature, it is usually difficult to optimize it effectively with any
simple optimization algorithm. In speech recognition, the major
difficulties of discriminative training lie in high dimensionality
of model parameters and highly complex nature of the derived
objective functions. In practice, some heuristic methods have
been used to smooth the objective functions to make them op-
timizable, such as the so-called acoustic scaling in [1] and the
use of a smooth sigmoid function in MCE [2], [10] and so on.

In this paper, we propose a novel optimization method, called
constrained line search (CLS), for discriminative training of
Gaussian mixture CDHMMs. As a general optimization
method put forward under a unified framework, the proposed
constrained line search method is capable of optimizing var-
ious popular DT objective functions in speech recognition,
including: MMI, MCE, MPE (or MWE), MD, etc. And a
simple closed-form solution can be derived to efficiently update
means, covariances, and mixture weights of Gaussian mix-
ture CDHMMs. In this paper, we first cast the discriminative
training of CDHMMs as a constrained optimization problem,
where a constraint is explicitly imposed for DT based on the
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Kullback–Leibler divergence (KLD) [11] between CDHMMs
between two successive iteration. The constraint is motivated
by the fact that all collected estimation statistics are only
reliable in a close neighborhood of the original model. Under
this constraint, the objective function can be approximated as a
smooth quadratic function of CDHMM parameters, and its sole
critical point, if existing, can be easily obtained by vanishing its
derivative to zero. Then, a novel algorithm called constrained
line search (CLS) is proposed to solve the constrained optimiza-
tion problem. Subject to the KLD constraint, the line search is
performed either along a line segment joining the initial model
parameters and the critical point of the smoothed objective
function, if the critical point exists, or along gradient direction
of the objective function at the initial point, if the critical point
does not exist. As we will show, a closed-form solution can be
derived as long as we can formulate or approximate the KLD
constraint as quadratic constraint.

In this paper, the proposed CLS method has been used to
optimize the MMI objective function as well as other DT ob-
jective functions in several speech recognition tasks, including
connected digit string recognition using the TIDIGITS database
[13], the resource management (RM) task [14], and large-vocab-
ulary continuous speech recognition on the Switchboard task
[15]. The experimental results clearly show that the proposed
CLS algorithm outperforms the popular EBW method in all
evaluated ASR tasks in terms of final recognition performance
and convergence behavior.

The remainder of the paper is organized as follows: In
Section II, we first formulate discriminative training as a KLD
constrained optimization problem under a general framework.
In Section III, we discuss how to simplify and approximate
the KLD constraints into a quadratic form. In Section IV,
we describe the constrained line search (CLS) optimization
method in details and derive closed-form solutions to update all
CDHMM parameters for CLS. In Section V, we examine the
proposed CLS method on several standard speech recognition
tasks and report and discuss experimental results. Finally, we
conclude the paper with our findings and discuss about future
works in the Conclusion

II. FORMULATION OF DISCRIMINATIVE TRAINING

AS CONSTRAINED OPTIMIZATION

A. Criteria of Discriminative Training

We assume that an acoustic model set consists of many in-
dividual Gaussian mixture CDHMMs, each is represented as a
triple , where is the ini-
tial state distribution and is the number of states in HMM,

is transition matrix, and is state output dis-
tribution set, consisting of Gaussian mixture distributions for

all states: , where
with standing for the number

of Gaussian mixture components in state , and
for a multivariate Gaussian distribution with mean

vector and covariance matrix .
For a training utterance and its corresponding transcrip-

tion , we first consider how to compute acoustic model score
based on the composite HMM of . Suppose

, let be any pos-
sible state sequence, and be the associ-
ated sequence of the mixture component labels. The likelihood

is computed as

(1)

where summations are taken over all possible state sequences
and mixture labels .

Assume that the whole training set consists of different
training utterances along with their cor-
responding transcriptions, denoted as . As
shown in [16], objective functions of CDHMMs for various
discriminative training criteria can be formulated in the fol-
lowing general form, as shown by (2) at the bottom of the
page, where is the acoustic scaling factor. (It
is remarkable that for MCE there is not an explicit acoustic
scaling factor. However, the smoothing factor of [2] in MCE
is essentially playing a similar role, and the MCE approach can
also be represented in a posterior form [16].) And stands
for all competing string hypotheses of utterance which
is compactly approximated by a word lattice generated in
Viterbi decoding, is a mapping function to transform the
objective function, and is the gain function to mea-
sure dissimilarity between reference and a hypothesis .
The mapping function and the gain function
can take different functional forms in various discriminative
training criteria, as listed in Table I. In this study, we assume
that language model score is fixed.

B. Constrained Optimization for Discriminative Training

After substituting (1) into (2), the general DT objective func-
tion becomes a complicated, highly nonlinear function,
which is difficult to optimize directly. Therefore, we normally
make the following assumptions: 1) competing recognition hy-
pothesis space remains unchanged throughout the whole
optimization; and 2) the estimation statistics, including state oc-
cupancies and Gaussian kernel occupancies, remains unchanged

(2)
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TABLE I
OBJECTIVE FUNCTIONS FOR VARIOUS DISCRIMINATIVE TRAINING CRITERIA

(�� � �: KRONECKER DELTA FUNCTION; � � �: NUMBER OF SYMBOLS IN A STRING;
LEV�� � ��: LEVENSHITINE DISTANCE; ��� � ��: KLD)

during optimization. We also use a sufficiently small scaling
factor to smooth the original objective function. Be-
cause of these, it makes sense to explicitly impose a constraint
that HMM model parameters do not deviate too much from
their initial values, . This constraint ensures that all of the
above assumptions remain valid during optimization since the
initial models have been used to generate all word lattices

and corresponding statistics from the training data for
optimization.

The constraint can be quantitatively defined based on the
KLD between models. Therefore, given an initial model set

, we formulate discriminative training of CDHMMs as the
following constrained maximization problem:

(3)

subject to (4)

where is the KLD between and , and is
a preset constant to control the search range. The constraint in
(4) specifies a trust region of optimization. Note that theoretical
analysis of discriminative training in [17] and [18] also supports
to use such a constraint in discriminative training.

III. KLD CONSTRAINTS FOR CDHMMS

First of all, we formulate the KLD-based model constraint in
(4) for different CDHMM parameters. As long as we approxi-
mate the KLD constraints in a quadratic form, we will be able
to derive a simple closed-form solution for updating CDHMM
parameters.

A. Constraint Decomposition for Gaussian Mixtures

Assume the whole model set consists of many CDHMMs
, the overall KLD constraint in (4) can be ensured

by many local constraints for all individual CDHMMs as
.

Furthermore, can be decomposed into its Gaussian
components

(5)

where denotes all Gaussian mixture
weights, denotes KLD between and its initial
value, and denotes the KLD

between two multivariate Gaussian distributions. By definition,
they can be computed as

(6)

(7)

where is the dimension of each Gaussian kernel.
We can further break down the constraint separately in (7)

for Gaussian means, covariance, and weights. The overall con-
straint is decomposed into the following independent parts for
different model parameters:

(8)

(9)

(10)

where is a parameter to control the trust region of CDHMM
model parameters.

Obviously, the constraints of Gaussian mean vectors follow
an quadratic form which can be represented as

(11)

where stands for a standard quadratic form with a pos-
itive-definite matrix .

B. Quadratic Approximation for KLD Constraints of
Covariance and Mixture Weights

As we will show in Section IV, given an quadratic form con-
straint, (3) can be easily solved in a closed-form. In this section,
we consider to approximate the constraints for covariances and
weights into quadratic forms based on the Taylor series.

In this paper, we assume all covariance matrices are diag-
onal: . For computational conve-
nience, we represent each diagonal covariance matrix as a vector
in the logarithm domain: .
Then, we have

(12)

where is the feature dimension of HMMs, and we denote
and we have used the second-order
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Taylor series to approximate exponential function as
.

As for Gaussian mixture weights , we denote
. If we adopt the Taylor series approximation

, we have

(13)

where is a diagonal
positive-definite matrix. In addition to the above quadratic
constraint, mixture weights must satisfy an affine constraint

. Note that we have explicitly applied the sto-
chastic constraints to derive the
approximation in (13).

In summary, we approximate the original KLD-based model
constraints by the following positive-definite quadratic terms for
all model parameters

(14)

IV. CONSTRAINED LINE SEARCH

In this section, we consider how to solve the constrained op-
timization problem in (3) and (4) and derive closed-form solu-
tions for updating Gaussian mixture based on line search.

If we substitute or to (34) in Appendix A in place
of , we can derive partial derivatives of w.r.t. means

, variances , and weight of each Gaussian mixture
component, respectively

(15)

(16)

(17)

where we denote the following statistics for the zeroth-, first-,
and second-order moments

(18)

(19)

(20)

As discussed in Appendix A, if the acoustic scaling factor
is sufficiently small , we can approximately treat

and (see Appendix A for their definitions)
as constants which are independent of CDHMM parameters or
slowly changing with respect to model parameters. As a result,
all the statistics given above can be treated as constants, and
the objective function becomes a smooth function so that
its unique critical point can be obtained by setting its deriva-
tive to zero, i.e., . After solving the equations:

, we can easily derive the critical
point of the above smoothed objective for Gaussian mean and
variances. For Gaussian weights, we use Lagrange multipliers to
obtain the critical point subject to the constraint of .
The results are shown as follows:

(21)

(22)

(23)

However, since the general DT objective function may
be positive definite, negative definite, or even indefinite, the
above critical point may be a maximum, a minimum, or a
saddle point of . Even more, it may not exist at all in some
special cases. We have conceptually depicted all possible sit-
uations in Fig. 1. In total, we can have five different possible
cases: 1) is maximum and it is located inside the trust region,
as shown in case 1; 2) is maximum but outside the trust re-
gion, as in case 2; 3) is a minimum, as in case 3; 4) is a
saddle point, as shown in case 4; and 5) no critical point exists,
as shown in case 5. Among these cases, even when is indeed a
maximum, it may still not be a good solution to (3) since it may
be too far from the initial point so that the constraint in (14) is
no longer valid, as in case 2.

Our ultimate goal is to optimize the objective function
subject to the constraints given in (14). We propose to use a line
search method to solve the constrained optimization problem.
First, we determine a search direction. For cases 1 to 3, we
are essentially facing a quadratically constrained quadratic pro-
gramming (QCQP) [23] problem, and it is intuitive to conduct
the line search along the line segment joining the initial point

and the calculated critical point . However, for cases 4 and
5, it makes more sense to conduct the line search along the gra-
dient direction of the objective function at the initial point .
In summary, the line search direction is selected as follows:

if exists and is not a saddle point
otherwise.

(24)

Next, the constrained optimization in (3) is to optimize a
scaling coefficient along the predetermined search direction

as

subject to (25)
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Fig. 1. Illustration of constrained line search for maximizing the objective function in several cases. (�: ��� , the initial point; : ����, the critical point;�: ��� �
����� �, the optimal point;—: contours of � ; � � �: the trust region;�: search direction;�-: gradient direction).

TABLE II
SOLUTIONS FOR CLS WITH QUADRATIC TRUST REGION

where is the model linearly scaled along the
direction of .

As long as we impose the quadratic constraints in (14), the
above line search problem can be solved efficiently and the op-
timal scaling coefficient can be computed in a closed-form
for all five cases in Fig. 1. For case 1, it is obvious that the op-
timal coefficient is since the computed critical point
is the solution to (25). For all other cases, it is clear that the op-
timal point is the intersecting point of the search line with the
quadratic constraint surface. In other words, the optimal scaling
coefficient satisfies . After substi-
tuting (14) into it, we have

(26)

Therefore, the optimal coefficient can be computed as
. Obviously, for

case 3 while for cases 2, 4, and 5. The
results are summarized in Table II.

It is remarkable that for the problems from cases 1 to 3, the
corresponding solutions are intuitive and theoretically grounded
according to the convex optimization theories [23], while in
the other two nonconvex cases, we are adopting effective first-
order algorithm. In the following, based on the above CLS opti-
mization method, we derive the updating formula for Gaussian
means, Gaussian variances, and Gaussian mixture weights, re-
spectively.

Because when updating each kernels in one iteration, we
come up with a closed form solution, the computational cost of
the algorithm is roughly the same compared to EBW.

TABLE III
CONDITIONS AND CLS FORMULAE TO UPDATE GAUSSIAN MEANS

In some other algorithms for discriminative training such as
Quickprop and EBW, gradient and high-order statistics are also
used to improved the effectiveness, but heuristic back-off or
smoothing mechanisms are also necessary to ensure the reliable-
ness of these statistics. A major difference in our approach is that
now the problem is first casted as a constrained optimization,
then based on the nature of locality constraint, all the studies
can then be conducted in a grounded manner, which provide a
new framework to utilize high-order information reliably.

A. Updating Gaussian Means

For Gaussian mean vectors, the critical point is calculated
according to (21). Now we need to examine conditions under
which the computed critical point is a maximum, minimum, or
saddle point. From (15), it is easy to show that

. Since is always a positive definite matrix,
cannot be a saddle point. It is a maximum or minimum point

depending on the sign of . If , it is a maximum
point; otherwise it is a minimum point. If , the ob-
jective function degenerates into a linear function of
and the critical point does not exist.

Furthermore, we can determine whether the computed critical
point satisfies the constraint in (14) by checking

: if locates inside the
trust region, as in case 1; otherwise, it locates outside the trust
region as in case 2. All these results are summarized in Table III.
In each case, the optimal mean vector is updated as

.
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TABLE IV
CONDITIONS AND CLS FORMULA TO UPDATE GAUSSIAN VARIANCES

B. Updating Gaussian Variances

For Gaussian variances, the critical point, , is calculated
according to (22). From (22), we can see that exists only
when the condition (all the ele-
ments in the vector are larger than 0) holds. If

, we have to conduct line search along gradient di-
rection as in case 5 since the critical point does not exist.

Furthermore, based on (16), it is straightforward to show:

(27)

If the critical point exists, i.e.,
, we can easily derive that . As the

result, the second partial derivative w.r.t. in (27) is always
negative-definite. Therefore, situations in cases 3 and 4 never
happen for Gaussian variances. At last, we summarize all these
different conditions and formulae to calculate and for
Gaussian variance in Table IV. Similarly, all variances are
updated as .

C. Updating Mixture Weights

For Gaussian weights , we can ob-
tain the critical point as in (23), subject to the constraint of

. It is remarkable that there exist alternative ap-
proaches, e.g., to renormalize the weights after free parameter
updating, in dealing with the weights. Here we enforce the con-
straint to keep the updated models are still valid HMMs, and
thus a theoretically grounded study can be conducted. Also, it is
straightforward to verify that is a maximum when

for all , as in case 1 or 2, And is a minimum when
for all , as in case 3; otherwise, is neither

maximum nor minimum. In the last case, we follow the gra-
dient to update . To ensure that the weights remain a valid
discrete probability distribution, we must project the gradient
in (17) at the initial point, i.e., , onto the hyperplane

, as shown in Fig. 2

(28)

where is the
normal vector of the hyperplane. We summarized all these
different conditions and formula to calculate and for
Gaussian weights in Table V. Similarly, weights is updated as

.
In practice, we should also check the boundary condition of

to ensure a valid discrete probability
distribution.

Fig. 2. Illustration of solving CLS problems for weight vectors by using the
projected gradient decent.

TABLE V
CONDITIONS AND CLS FORMULA TO UPDATE GAUSSIAN WEIGHTS

V. EXPERIMENTS

In order to verify the effectiveness of the proposed CLS
optimization method, we evaluated it on several benchmark
speech recognition tasks, including: connected digit string
recognition with the TIDIGITS database, continuous speech
recognition with the Resource Management (RM) database,
and large-vocabulary continuous speech recognition with the
Switchboard database (both mini-train set and full h5train00
set [1]). Experimental setups are summarized in Table VI.

Because EBW is the most popular and successful method for
optimizing the MMI and other DT criteria, such as MPE and
MD, in our experiments, the CLS method is only compared with
it. In our EBW implementation, following [8], we use kernel
dependent smoothing factors which are set to be twice of the
corresponding denominator occupancy. When we use EBW for
the MPE training, we also use I-smoothing [8] with setting
to 100 during each iteration. In CLS experiments, the most re-
cently obtained models are set as the initial model set , and
the model parameters are updated according to the CLS formula
in Section IV.
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TABLE VI
EXPERIMENTAL SETUP IS LISTED FOR ALL RECOGNITION TASKS

Fig. 3. Comparison of word error rates of different optimization methods in
the MMI training on the TIDIGITS test set.

The constant is set to for th iteration for all the pa-
rameters. Actually, the physical meaning of KLD constraints en-
sures that it is statistically normalized, and the same trust region
control parameter can be used across models. Hence, we just
verified that the scheme of selecting introduced above leads
to smooth updating procedure on TIDIGITS and then adopt it
for all the experiments.

A. TIDIGITS

The TIDIGITS database contains utterances from a total of
326 speakers (111 men, 114 women, and 101 children). In our
experiments, we used all data from adults and children, which
includes totally 12 549 training utterances and 12 547 testing
utterances. The vocabulary is composed of 11 digits of “zero” to
“nine,” and “oh.” The length of digit strings varies from one to
seven digits. Each digit is modeled by a ten-state, left-to-right,
whole-word Gaussian mixture CDHMMs. The baseline ML
model consists of 114 tied states with six Gaussians per
state. The acoustic feature and model size are summarized
in Table VI. In the experiment, the ML model is used as the
seed model for discriminative training, in either EBW or CLS
method.

In Fig. 3, we compare the learning curves of CLS and EBW
methods in the MMI training. The results clearly show that the
proposed CLS method yields better performance than the EBW
method. The CLS algorithm shows both a faster convergence
and a lower recognition error rate than the conventional EBW
algorithm. For CLS, word error rate decreases from 1.16% of
the ML baseline performance to 0.42%, or a 63.8% relative error
reduction. Meanwhile, the EBW algorithm only achieves 44%
relative error reduction.

TABLE VII
SUMMARY OF RECOGNITION PERFORMANCE IN TIDIGITS BY USING EBW OR

CLS OPTIMIZATION METHOD FOR MMI AND MD TRAINING CRITERIA

Fig. 4. Comparison of word error rates (in %) of different optimization methods
on the Resource Management test set, based on MMI criterion.

In addition, we compare CLS with EBW for the MD criterion,
and the results are shown in Table VII. Again, CLS outperforms
EBW. In the MD training, the CLS algorithm achieves a 0.40%
word error rate which is slightly better than 0.44% obtained by
the EBW method.

B. Resource Management(RM)

In this section, we examine the CLS algorithm in a medium
size continuous speech recognition task on the DARPA Re-
source Management (RM) database. In this experiment, we
only use the speaker independent portion in the training data
set. And the test data is composed of the data sets of Feb’89,
Oct’89, Feb’92, and Sep’92, with 300 sentences in each set.
Context-dependent triphone CDHMMs are used. The best
ML-trained models set has 1600 tied states with six Gaussians
per state. Acoustic features and model size are summarized in
Table VI as well. The ML model is used as the initial model in
discriminative training. Word-pair language model is adopted
for testing. In order to obtain richer acoustically competing hy-
potheses, we use unigram language models to decode training
data in word lattice generation.

In Fig. 4, we compare the learning curves of the EBW and
CLS algorithms in MMI training. The results show that CLS
outperforms EBW where CLS decreases the word error rate
from 4.08% to 3.43%, with a 16.2% relative error reduction
from the ML baseline.

Besides the MMI training, we also compare CLS with EBW
for optimizing the MPE criterion. The results are shown in
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TABLE VIII
SUMMARY OF RECOGNITION PERFORMANCE IN RM BY USING EBW OR CLS

OPTIMIZATION METHOD FOR MMI AND MPE TRAINING CRITERIA

Fig. 5. Comparison of word error rates of different optimization methods on
the Switchboard eval2000 test set, using mini-train training set, based on MMI
criterion.

Table VIII. In the MPE training, we still observe that the CLS
algorithm achieves bigger improvement than EBW and CLS
achieves 3.39% word error rate while EBW obtains 3.87%
word error rate.

C. Switchboard

In the Switchboard recognition task, we used two different
training sets: the mini-train and the full h5train00 set, consisting
of 18 and 265 h of speech data, respectively. Both training sets
contain data from the Switchboard I (SWB1) corpus and the
h5train00 set also contains Call Home English (CHE) data.
Eval2000 set, which contains 1831 utterances, has been used
as the evaluation set. Context-dependent triphone HMMs are
used in the following experiments. Trigram language model
is used in evaluation but unigram language model is used in
training to generate word lattices for discriminative training.
The NIST scoring software [21] has been used to evaluate
word error rates. The baseline ML models are estimated using
the standard Baum–Welch (BW) algorithm. The experimental
setup, including acoustic features and the best ML model size,
is summarized in Table VI.

We first compare CLS with EBW in MMI training. The
learning curves are shown in Figs. 5 and 6 for the mini-train
and h5train00 sets. Once again, the results show that the
proposed CLS algorithm achieves better word accuracy and
faster convergence than the EBW method on both mini-train
and h5train00 sets. Comparing with the ML baseline, the

Fig. 6. Comparison of word error rates of different optimization methods on
the Switchboard eval2000 test set, using h5train00 training set, based on MMI
criterion.

TABLE IX
SUMMARY OF RECOGNITION PERFORMANCE (WER IN %) IN SWITCHBOARD

BY USING EBW OR CLS OPTIMIZATION METHOD FOR MMI
AND MPE TRAINING CRITERIA

CLS training algorithm reduces word error rate from 40.8% to
37.9%, or a 7.1% relative error reduction for the mini-train set,
and from 31.7% to 28.9%, or a 8.8% relative error reduction for
the h5train00 set, respectively. Comparing CLS with EBW in
MMI training, we observe that CLS outperforms EBW on both
mini-train and h5train00 sets, where the EBW only achieves
38.5% word error rate in mini-train and 29.6% word error rate
in h5train00.

Finally, we also compare CLS with EBW for MPE training.
The results are summarized in Table IX. It is clearly shown that
CLS yields better recognition performance than EBW in the
MPE training as well. For example, the CLS training achieves
37.7% word error rate for mini-train and 28.4% word error rate
for h5train00 while the EBW method obtains only 38.0% word
error rate for mini-train and 28.7% for full h5train00 set.

VI. CONCLUSION

In this paper, a new optimization method, called CLS, is pro-
posed for discriminative training of speech recognition HMMs.
The proposed CLS method is general enough to optimize var-
ious popular objective functions in discriminative training. In
this paper, discriminative training of CDHMMs is first formu-
lated as a constrained optimization problem, where a constraint
is imposed based on the KLD between models, which guar-
antees an equalized updating process across all the parame-
ters in the model set. Based upon some approximations on the
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KLD constraint, closed-form solutions can be easily derived
for updating various CDHMM parameters. We examined the
proposed CLS methods on several standard speech recognition
tasks, from small-vocabulary digit string recognition to large-
vocabulary continuous speech recognition. Experimental results
clearly show that the proposed CLS method consistently yields
better performance than the popular EBW method for all exam-
ined discriminative training criteria.

Although the constrained optimization framework provide us
a meaningful framework in solving the stableness issue of dis-
criminative training, we will further study various practical is-
sues under this framework. For example, how to set theoretically
grounded trust regions across models, and how to update vari-
ances more reliably.

APPENDIX

In this Appendix, we calculate partial derivatives of the gen-
eral DT objective function with respect to any CDHMM
parameter. The general DT objection function can be expressed,
as shown in (29) at the bottom of the page.

For any model parameter, denoted as 1, we have

(30)

where we denote

(31)

1Here��� represents the �th state, �th Gaussian component of Gaussian mean
vector, covariance matrix, or mixture weight

When the smoothing factor is sufficiently small
and the models do not deviate too much from the values in
each iteration, it is reasonable to assume that all the three terms,
i.e., , and , are approximately con-
stants with respect to model parameter since they are all re-
lated to model parameters only through . Ac-
cordingly, we have

(32)

where we denote
. Furthermore, we have

(33)

where denotes posterior probabilities collected for th
Gaussian component in th state of the composite HMM corre-
sponding to based on . After substituting (33) into (32),
we obtain the following formula:

(34)
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