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Large Margin Hidden Markov Models
for Speech Recognition
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Abstract—In this paper, motivated by large margin classifiers
in machine learning, we propose a novel method to estimate
continuous-density hidden Markov model (CDHMM) for speech
recognition according to the principle of maximizing the min-
imum multiclass separation margin. The approach is named
large margin HMM. First, we show this type of large margin
HMM estimation problem can be formulated as a constrained
minimax optimization problem. Second, we propose to solve this
constrained minimax optimization problem by using a penalized
gradient descent algorithm, where the original objective func-
tion, i.e., minimum margin, is approximated by a differentiable
function and the constraints are cast as penalty terms in the
objective function. The new training method is evaluated in the
speaker-independent isolated E-set recognition and the TIDIGITS
connected digit string recognition tasks. Experimental results
clearly show that the large margin HMMs consistently outperform
the conventional HMM training methods. It has been consistently
observed that the large margin training method yields significant
recognition error rate reduction even on top of some popular
discriminative training methods.

Index Terms—Continuous-density hidden Markov models
(CDHMMs), gradient descent search, large margin classifiers,
minimax optimization, support vector machine.

I. INTRODUCTION

THE most successful modeling approach to automatic
speech recognition (ASR) is to use a set of hidden

Markov models (HMMs) as the acoustic models for subword
or whole-word speech units and to use the statistical N-gram
model as language model for words and/or word classes in sen-
tences. All the model parameters, including HMMs and N-gram
models, are estimated from a large amount of training data
according to certain criterion. It has been shown that success of
this kind of data-driven modeling approach highly depends on
the goodness of estimated models. As for HMM-based acoustic
models, the dominant estimation method is the Baum–Welch
algorithm which is based on the maximum likelihood (ML)
criterion. As an alternative to the ML estimation, discriminative
training (DT) has also been extensively studied for HMMs in
ASR. The DT methods aim to minimize or reduce classification
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errors in training data as model estimation criterion. Over the
past decade, it has been experimentally found that the discrimi-
native training methods can improve the ASR performance over
the standard ML method in many tasks, such as in [8], [17],
[18], [26], [28], [31], [45] and many others. Generally speaking,
the maximum mutual information (MMI) [3], [31], [45] and
minimum classification error (MCE) [18], [19] formulation
have been regarded as the most successful DT methods in ASR.
In the MMI formulation, estimation criterion is to maximize
the mutual information between training data and their corre-
sponding models (or class labels). A growth-transformation
based optimization method, a.k.a. extended Baum–Welch
(EBW) algorithm, is used to optimize model parameters to
achieve the maximum mutual information in order to establish
the possibly tightest relation (in a probabilistic sense) between
data and their corresponding models. More recently, some
variants, such as minimum phone error (MPE) in [32], have
also been proposed for ASR under the MMI framework. In
the MCE framework, the empirical error rate in training data
is approximated by a smoothed and differentiable objective
function. Then, an optimization method is used to minimize the
objective function with respect to all HMM parameters, such as
the generalized probabilistic descend (GPD) algorithm based
on gradient descent [19], the approximate second-order Quick-
prop method [33], a similar EBW-like method [13], and others.
Although both MMI and MCE criteria have been shown to be
an asymptotic upper bound of the Bayes error when an infinite
amount of training data is available [34], a low classification
error rate in a finite training set does not necessarily guarantee
lower error rate in a new test. In practice, several techniques
have been used to improve generalization of a discriminative
training method, e.g., smoothing sigmoid function in MCE
[19], acoustic scaling and weaken language modeling in MMI
[45], and so on. With help of these techniques, it has been
shown that the discriminative training can significantly improve
recognition performance in many very large-scale recognition
tasks [8], [26], [28].

On the other hand, the generalization problem of a learning
algorithm has been theoretically studied in the field of machine
learning, where the Bayes error is shown to be bounded by the
classification error rate in a finite training set plus a quantity
related to the so-called VC dimension [35], [39], [44]. The
fact that it is the margin1 in classification rather than the raw
training error that matters has become a key tool in recent years
when dealing with classifiers. The concept of large margin
has been identified as a unifying principle for analyzing many
different approaches in pattern classification. [39] As one of the

1It has been shown that margin is related to the VC dimension.
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most successful examples, support vector machine (SVM) has
achieved a huge success in a variety of applications. In the field
of speech recognition, we have also observed some research
activities over the past years regarding application of SVM to a
variety of acoustic modeling tasks. In brief, it starts from some
early works in which the standard SVM formulation is directly
applied into some isolated speech recognition tasks, e.g.,
phoneme recognition [6], [10], digit recognition [4], [9], dis-
tinct feature detection [30], speaker recognition and verification
[41], etc. Since speech patterns are generally regarded as highly
complicated and not linearly separable, when we apply SVMs
to any speech problems, the first issue we must deal with is how
to choose an appropriate kernel to map speech patterns into a
high dimension space where a linear classifier is suitable. A va-
riety of kernels have been studied for speech patterns, including
the general-purpose polynomial kernels, Gaussian radial basis
kernel, and tanh sigmoidal kernels [5], [35]; kernels derived
from generative models, e.g., fisher kernels [14], [37] and
likelihood-ratio score-space kernel [20], [38]; kernels designed
especially for speech patterns, such as dynamic time-alignment
kernel which is based on a dynamic time warping (DTW)
procedure between two speech sequences [36], probabilistic
distance kernel which is based on a KL-divergence between
two simple models derived from two speech sequences [29],
pair HMM kernel [42], etc. Generally speaking, the original
formulation of SVM does not suit well to speech recognition
tasks in many aspects. First of all, the standard SVM expects
a fixed-length feature vector as input while speech pattern is
dynamic and it always leads to variable-length features. To
cope with this problem, some researchers have proposed to
use proper kernels which are able to map a variable-length
feature into a fixed-length one, such as in [20], [29], [36]–[38],
[42]. Besides, others also proposed to directly convert the
variable-length speech feature sequence into a fixed-size one
in a preprocessing stage even though information loss usually
occurs in such a conversion, such as linear time warping [6],
ad-hoc feature sequence resampling [4], [11], etc. Second, the
standard SVM is originally formulated for a binary pattern
classification problem. Thus, in speech recognition, it is critical
to use SVMs in such an efficient way to make it effective to
solve the multiclass problem in ASR. The heuristic approach is
to build a set of binary SVMs for all possible classes or class
pairs based on the one versus one or one versus rest approach.
During the test, the classification is conducted by combining
many local decisions made by all of these binary SVMs ac-
cording to the strategy of majority-voting or winner-take-all. In
addition, some people have also proposed the so-called k-class
SVM to generalize the SVM formulation to accommodate
multiclass problems, as in [2], [7], [43]. In the k-class SVM,
margin and objective function are redefined for multiple classes
and multiclass classification is solved in a single quadratic
optimization. Third, SVM is a static classifier in nature and it
is not straightforward to solve sequence recognition problem
where the boundary information about each potential pattern
is unknown, as in continuous speech recognition. To deal with
the dynamic sequence problem in ASR, the first solution is to
combine SVM with the existing HMM formulation as in [11],
[12], [40]. In these works, a hybrid SVM/HMM formulation is

proposed by replacing Gaussian mixture model in each HMM
state with an SVM. The raw scores from the SVMs are first
converted into probability-like measures by a sigmoid function
and then used for HMM likelihood computation. More recently,
a novel approach, the so-called Hidden Markov Support Vector
machines (HMSVM) in [1], is proposed to combine discrete
density HMMs (DDHMMs) with SVM for solving the label
sequence learning problem in text processing. In HMSVM,
DDHMMs are estimated based on the large margin principle
just like SVMs. As shown in [1], estimation of DDHMMs for
large margin turns out to be a quadratic programming problem
under some linear constraints. The problem can be solved by
many standard optimization software tools similarly as the
standard SVM.

Obviously, the large margin classifiers do provide the theoret-
ical beauty and practical superiority in many applications. How-
ever, in speech recognition, Gaussian mixture continuous den-
sity HMM (CDHMM) remains the most popular and successful
model for modeling speech patterns. As shown in the previous
works mentioned previously, direct use of SVMs or loose cou-
pling of SVM with HMM for speech recognition can not easily
handle the dynamic nature of speech patterns and will raise
technical difficulties in terms of training and recognition com-
plexity which eventually question the feasibility of extending
such a framework to some larger scale speech recognition tasks,
such as in [8], [17], and [45], which can be easily and effi-
ciently dealt with under the current framework of HMM. There-
fore, in this paper, instead of completely switching paradigm
from HMM to SVMs or loosely coupling SVM with HMM,
we study how to directly estimate Gaussian mixture continuous
density HMMs (CDHMMs) for speech recognition based on
the large margin principle. In other words, we attempt to es-
timate the CDHMM parameters in such a way that the deci-
sion boundary determined by the estimated CDHMMs achieves
the maximum classification margin as in SVMs. An intuitive
explanation can be illustrated by a simple HMM-based classi-
fier for a 2-class problem, as shown in Fig. 1. By modifying
the HMM parameters, we change the classification boundary to
make it as far from all training samples as possible. In this way,
margin of the classifier will be increased so that its generaliza-
tion power is improved accordingly. In this paper, we will show
that this type of large margin HMM estimation problem can
be formulated as a constrained minimax optimization problem.
And, we propose to solve this constrained minimax optimiza-
tion problem by using a penalized gradient descent algorithm,
where the original objective function, i.e., minimum margin, is
approximated by a differentiable function, and the constraints
are cast as penalty terms in the objective function. The new
training method is evaluated in the speaker-independent iso-
lated E-set recognition and the TIDIGITS connected digit string
recognition tasks. Experimental results clearly show that the
large margin HMMs consistently outperform the conventional
HMM training methods, such as ML. It has been consistently
observed that the large margin training method yields signifi-
cant recognition error rate reduction even on top of popular dis-
criminative training methods, such as MCE.

The remainder of this paper is organized as follows. First, we
present the general framework for large margin HMM estima-
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Fig. 1. Illustration of a simple large margin HMM-based classifier.

tion in speech recognition in Section II. Then, in Section III, we
give the formulation of large margin estimation for Gaussian
mixture CDHMM and mathematically analyze the definition of
margin and introduce some theoretically-sound constraints to
guarantee the boundedness of the margin in CDHMM. Next,
in Section IV, we present a gradient descent based optimiza-
tion method to approximately solve the constrained minimax
optimization in large margin estimation of CDHMM. Then, ex-
perimental results on ISOLET isolated E-set recognition and
TIDIGITS connected digit string recognition tasks are reported
and discussed in Section V. Finally, we conclude the paper with
our findings in Section VI.

II. LARGE MARGIN HMMs FOR ASR

In ASR, given any speech utterance , a speech recognizer
will choose the word 2 as output based on the plug-in MAP
decision rule [15] as follows:

(1)

where denotes the HMM representing the word and
is called its discriminant func-

tion. In this paper, we are only interested in how to estimate
HMM and assume language model used to calculate
is fixed.

For a speech utterance , assuming its true word identity as
, following [1], [7], [43], the multiclass separation margin for
is defined as

(2)

where denotes the set of all possible words. Clearly, the above
(2) can be re-arranged into

(3)

Obviously, if , will be incorrectly recognized
by the current HMM set, denoted as ; if , will
be correctly recognized by the model set .

2Depending on the problem of interest, a wordW may be any linguistic unit,
e.g., a phoneme, a syllable, a word, a phrase, a sentence, etc.

Given a set of training data , we usu-
ally know the true word identities for all utterances in , de-
noted as . Thus, we can calculate the
separation margin (or margin for short hereafter) for every utter-
ance in based on the definition in (2) or (3). According to the
statistical learning theory [44], the generalization error rate of a
classifier in new test sets is theoretically bounded by a quantity
related to its margin. A large margin classifier usually yields
low error rate in new test sets and it shows more robust and
better generalization capability. Motivated by the large margin
principle, even for those utterances in the training set which all
have positive margin, we may still want to maximize the min-
imum margin to build an HMM-based large margin classifier for
ASR. In this paper, we will study how to estimate HMMs for
speech recognition based on the principle of maximizing min-
imum margin.

First, from all utterances in , we need to identify a subset of
utterances as

(4)

where is a preset positive number. Analogically, we call
as support vector set and each utterance in is called a sup-

port token which has relatively small positive margin among all
utterances in the training set . In other words, all utterances in

are relatively close to the classification boundary even though
all of them locate in the right decision regions. To achieve better
generalization power, it is desirable to adjust decision bound-
aries, which are implicitly determined by all models, through
optimizing HMM parameters to make all support tokens as far
from the decision boundaries as possible, which will result in a
robust classifier with better generalization capability, as shown
in Fig. 1. This idea leads to estimating the HMM models based
on the criterion of maximizing the minimum margin of all sup-
port tokens, which is named as large margin estimation (LME)
of HMM

(5)

The HMM models, , estimated in this way, are called large
margin HMMs.

Considering (3), large margin HMMs can be equivalently es-
timated as follows:

(6)
Finally, the large margin estimation of HMMs can be con-

verted into a standard minimax optimization problem as

(7)
Note that it is fine to include all training data into the support

token set with a large value for in (4). However, this may signif-
icantly increase the computational complexity in the following
optimization process, and most of those data with large margin
are usually inactive in the optimization toward maximizing the
minimum one, especially when a gradual optimization method,
such as gradient descent, is used.
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III. FORMULATION OF LARGE MARGIN ESTIMATION

FOR CDHMM

In this section, let us describe how to formulate the large
margin estimation in (7) for Gaussian mixture CDHMMs
in speech recognition. At first, we assume each speech unit,
e.g., a word , is modeled by an -state CDHMM with
parameter vector , where is the initial state
distribution, is transition matrix,
and is parameter vector composed of mixture parameters

for each state , where
denotes number of Gaussian mixtures in each state. The state
observation pdf is assumed to be a mixture of multivariate
Gaussian distribution

(8)

where mixture weights s satisfy the constraint
. In many cases, we prefer to use multivariate Gaussian distri-

bution with diagonal covariance matrix. Thus, the above state
observation pdf is simplified as

(9)

A. Discriminant Functions of CDHMMs

Given any speech utterance , let
be the unobserved state sequence, and

be the associated sequence of the unobserved
mixture component labels, the discriminant function based on
the word model , , can be expressed as

(10)

where the summations are taken over all possible state and
mixture component label sequences. If we adopt the Viterbi
method to approximate the above summation with the single
optimal Viterbi path, denoted as and

, then we have

(11)

Usually, it is more convenient to represent the discriminant
function in the logarithm scale. Assume we adopt
diagonal covariance matrices for all Gaussian mixtures, we have

(12)

Throughout this paper, for simplicity, we only consider to es-
timate mean vectors of CDHMMs based on the large margin
principle while keeping all other CDHMM parameters constant
during the large margin estimation. For any utterance in the
support token set , if we assume its true model is , then
we check for all other models to include those
hypothesized incorrect model in the optimization proce-
dure for large margin model estimation as long as they meet
the condition , where is
a preset threshold. For simplicity, we use the Viterbi approx-
imation in evaluating both and . For

, let us assume the optimal Viterbi path is
and . Similarly, we

assume the optimal path is and
when evaluating . Since we are

only considering to estimate mean vectors of CDHMMs, we
can rewrite and according to (12) as
follows:

(13)

(14)

where and are two constants independent from mean
vectors. In this case, the discriminant functions
and can be represented as a summation of some
quadratic terms related to mean values of CDHMMs.

B. Imposing Constraints for CDHMM in Large Margin
Estimation

As shown in [22] and [24], the decision margins,
as in (3), are actually unbounded for

the CDHMMs, which in turn makes the margin as defined in (2)
unbounded for CDHMMs as well. In other words, we can adjust
CDHMM parameters in a way to increase the margin unlimit-
edly so that the minimax optimization in (7) is actually not solv-
able if not imposing any other constraints in optimization. Sev-
eral methods have been proposed to solve this problem to make
the margin bounded. In [22], a heuristic method, called Iterative
Localized Optimization, is used to guarantee the existence of an
optimal point. In that method, instead of optimizing parameters
of all models at the same time, only one selected model will be
adjusted in each step of optimization, then the process iterates
to update another model until the optimal margin is achieved. In
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[24] and [25], we replace the original definition of margin by a
relative separation margin which is bounded by definition.

In this paper, we will mathematically analyze the definition
of margin and introduce some theoretically sound constraints
for the minimax optimization in LME of CDHMMs in speech
recognition. First of all, if we adopt the Viterbi approxima-
tion as above, the discriminant functions and

in (13) and (14) can be represented as a summation
of quadratic terms of CDHMMs’ mean vectors. As a result,
the decision margin can be represented as a standard
diagonal quadratic form

(15)

where .
Clearly, from (15) we can see that each feature dimension

contributes to the above decision margin separately. Thus,
for each feature vector , we can divide all of its dimensions
into two parts: and

. After some math manipulation, we have

(16)

where

(17)

(18)

(19)

(20)

(21)

From (16), we can see that for those dimensions where the
two models, i.e., and , have the same variance, its
margin contribution degenerates to a linear function of .
And, for those dimensions where two models have different
variance, its margin contribution is a quadratic function of .
For the linear part, it is clear that we can increase the slope value,
namely , to increase its margin contribution unlimitedly for
any given data sample . Similarly, for the quadratic part, we
can move the position of parabola vertex toward infinity

to increase its margin contribution as much as we want. There-
fore, the decision margin of CDHMMs is actually un-
bounded for any given data , which in turn makes the margin
as defined in (2) unbounded for CDHMMs as well. In other
words, for any given speech data , we can adjust CDHMM
parameters, i.e., Gaussian means in this study, in such a way to
increase the margin unlimitedly so that the minimax optimiza-
tion in (5) is actually not solvable unless we impose additional
constraints with respect to CDHMM model parameters during
optimization.

According to the previous analysis, in order to bound the
margin contribution from the linear part, intuitively we should
constrain the norm of slope vector in all linear dimensions
to be a finite value. As a result, we should add the following
constraint during the optimization:

(22)

where is a constant set to the value of calculated based
on initial models.

On the other hand, in order to bound the margin contribution
from the quadratic part, intuitively we should limit the position
of parabola vertex by adding the following spherical constraint:

(23)

where is another preset constant and is also a constant
which is set to be the value of computed based on the initial
models. Actually, we have the following theorem regarding the
boundedness of the margin .

Theorem III.1: Assume we have a set of CDHMMs,
and a set of training data, denoted as
. The margin , as defined in (2), is

bounded for any token in the training set as long as the
following constraints satisfy. 1) The constraints in (22) and (23)
holds simultaneously between any two models, and , in .
2) For any model in , there is at least one token in which
belongs to this model and is correctly classified by the current
model set , i.e., holds.

Proof: Since we have , we can
prove is bounded as long as we prove is bounded
for any two models, and in .

We can rewrite in (16) into

(24)

where

(25)
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Based on Cauchy–Schwarz inequality, we can get

(26)

Since the training set is given and fixed, is a finite
value. In this way, we have proved that Item I in (24) is bounded.

For any two models and , in , since the constraint in
(23) holds, for any component , we have

(27)

Thus

(28)

Then we have

(29)

In this study, we only consider to estimate Gaussian mean
vectors in CDHMMs, thus is constant. And is
also a finite value since the training set is fixed during the
optimization. Therefore, we have proven that Item II in (24) is
also bounded.

Next, we will prove that in (24) is bounded as well. For
any model in , we have at least one token which has positive
margin. Here, let us assume that for model , the token has
positive margin, i.e., , and for model , the token

has positive margin, . As a result, we have

(30)

(31)

From (30), we have

(32)
Based on the above analysis, both Item I and Item II in (32)

are bounded. Thus, is upper bounded.
Based on defined in (25) as well as (17), (18), and (21), it

is clear that . Thus, according to (31), we have

(33)
Similarly, since both Item III and Item IV are bounded, is

lower bounded.
Finally, based on (24), is bounded for any two

models, and . Thus, is bounded.
According to Theorem III.1, the minimum margin in (7) is

a bounded function of model parameter set under the con-
ditions specified in Theorem III.1. Thus, we can always search
for an appropriate set of model parameter to maximize the min-
imum margin. Therefore, the minimax optimization problem in
(5) becomes solvable under these constraints. Here, we refor-
mulate the large margin estimation as the following constrained
minimax optimization problem:

(34)
subject to

(35)

(36)

(37)

for all and and . Here, and are
preset constants calculated according to the decoding sequences
of based on the initial models of and . Note that we
do not explicitly impose condition 2) of Theorem III.1 during
the previous optimization. As long as we choose a reasonably
large set of support tokens , in practice we usually have at least
one support token to limit each model parameter to make sure
that is bounded for any two model and . Besides, we
introduce constraints in (37) to ensure that none of these support
tokens will cross decision boundary to have negative margin
during optimization.
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IV. OPTIMIZATION BASED ON THE PENALIZED

GRADIENT DESCENT

As shown in previously, large margin estimation (LME) of
CDHMMs turns out to be a constrained minimax optimization
as shown in (34). Obviously, it is a complicated nonlinear op-
timization problem, where typically no efficient solution exists
from the viewpoint of optimization theory. In practice, this kind
of minimax optimization can be numerically solved with some
general-purpose optimization software package. However, due
to the huge number of free parameters in any CDHMM-based
speech recognition system, it is very difficult, if not impossible,
to directly use any general-purpose optimization tool to solve
the above constrained minimax optimization problem in an ef-
ficient way. In this paper, we propose to approximate the ob-
jective function in the above minimax optimization with a dif-
ferentiable function and then derive an iterative optimization ap-
proach for CDHMM mean vectors based on the gradient descent
method. As opposed to Iterative Localized Optimization method
in [22], we call it Constrained Joint Optimization method in this
paper.

A. Iterative Optimization Based on Gradient Descent

To construct a differentiable objective function for the large
margin optimization in (34), we first need to approximate max
operation with a continuous and differentiable function. A well-
known trick is to use the summation of exponential functions,
as used in the MCE [19]. That is, the maximization in (34) is ap-
proximated by summation of exponential functions as follows:

(38)

where . As , the continuous function in the
right-hand side of (38) will approach the maximization in the
left-hand side. In practice, we can choose as a constant signif-
icantly larger than 1.

From (38), we construct the objective function, called
smoothed margin, for large margin estimation (LME) of
CDHMM as follows:

(39)

where is calculated as in (10) or (12). Then, an iter-
ative gradient descent method must be used to minimize
with respect to all CDHMM mean vectors to approximately
derive the large margin estimation of CDHMM as originally
defined in (34). The minimization is subject to all constraints
given in (35) to (37). In practice, the constrained minimization

problem can be transformed into an unconstrained minimiza-
tion problem by casting all constraints3 as penalty terms in the
objective function

(40)

where and are two large positive numbers to balance the
penalty terms, and we define

(41)

(42)

Following [18], we introduce the following transformation to
normalize mean vectors during the model estimation process:

(43)

where is the transformed parameter of th dimension of
Gaussian mean vector for the th mixture component of state
of HMM model . And the gradient descent algorithm is used
to adjust Gaussian means to minimize the objective function

as follows:

(44)

(45)

where is the step size, and denotes normalized
mean of th dimension of Gaussian mean vector for the th mix-
ture component of state of HMM model at th iter-
ation and its counterpart in original model space.

Furthermore, we have

(46)

From (39), we have

(47)

where we denote

(48)

And we have

(49)

3The constraint (37) is not explicitly included since we use gradient descent
to maximize margin in the support token set. Initially, the constraint (37) holds
since minimum margin is positive in support token set. In each step of gradient
descent, the minimum margin is gradually increased. Thus, the constraint (37)
is not actually active in this type of gradient descent optimization as long as step
size is small enough.
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(50)

where stands for the Dirac delta function

(51)

Besides, we have

(52)

since

(53)

Thus, we have

(54)

Next, we have

(55)
Here, we define its differential as

if

if
(56)

where

(57)

since

(58)

Thus, we have

(59)

As a remark, the whole LME training process is summarized
in Algorithm 1. In each epoch, we first recognize all training
data based on the current model parameters. Then we select sup-
port tokens according to (4) and obtain the optimal Viterbi se-
quence for each support token according to its recognition re-
sult. Then, a penalized gradient descent algorithm is run sev-
eral iterations to optimize the constrained minimax optimization
problem with respect to all Gaussian means jointly. Then, if not
convergent, the next epoch will start from decoding all training
data again.

Algorithm 1 Constrained Joint Optimization
repeat

1. Perform Viterbi decoding for each utterance in training set
based on current models.
2. Identify the support set based on the current model set

according to (4).
3. Obtain optimal Viterbi paths for all support tokens.
4. A number of iterations of gradient descent updates are run
to maximize the minimum
margin subject to the corresponding constraints w.r.t.

.
5. .

until some convergence conditions are met
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V. EXPERIMENTS

A. Isolated Speech Recognition: ISOLET E-set Recognition

In our first set of experiments, the LME training based on
the constrained joint optimization method is evaluated on the
English E-set recognition with OGI ISOLET database, con-
sisting of {B, C, D, E, G, P, T, V, Z}. ISOLET is a database of
letters of the English alphabet spoken in isolation. The database
consists of 7800 spoken letters, two productions of each letter
by 150 speakers, 75 male and 75 female. The recordings were
done under quiet, laboratory conditions with a noise-canceling
microphone. The data were sampled at 16 kHz with 16-bit
quantization. ISOLET is divided into five parts named ISOLET
1–5. In our experiment, only the first production of each letter
in ISOLET 1–4 is used as training data (1080 utterances). All
data in ISOLET 5 is used as testing data (540 utterances).
The feature vector is of 39 dimensions, which include 12-d
static mel frequency cepstral coefficient (MFCC), log-energy,
delta, and acceleration coefficients. An HMM recognizer with
16-state whole-word-based models is trained based on different
training criteria. Here CDHMMs with 1-mixture, 2-mixture and
4-mixture per state are experimented. In each case, a maximum
likelihood estimation (MLE) model is trained based on the
standard Baum–Welch algorithm using HTK 3.0. Then, the
best MLE model is used as the seed model to conduct minimum
classification error (MCE) training. The MCE algorithm with
online update is implemented exactly following [18]. The two
parameters of the sigmoid function are experimentally tuned
for the best performance on the test set: the slope value
and shift value are used for this task. All other E-set
models are used as competing models with smoothing factor

in the MCE training. All parameters are tuned based
on 1-mixture model and used for all others. Next, we use the
best MCE models as the initial models to perform large margin
estimation (LME) training. In LME training, we only update
Gaussian mean vectors. In each epoch, in (4) is set to include
appropriate number of support tokens and in (38) is automat-
ically set to make the largest value of around 10.0
to avoid underflow. in (23) is chosen to be 0.01. In this task,
recognition errors in training data are quickly brought down to
zero after a couple of iterations in MCE training, and training
error rate remains zero in LME training of this task. In the
ISOLET E-set task, we usually run a large number of iterations
of gradient descent updates with a very small step size during
each epoch of the Constrained Joint Optimization method.

1) Effectiveness of the Constraints: First of all, we study the
effect of the constraints (35) to (37) which we introduced for
the minimax optimization in this paper. In Fig. 2, we plot the
objective function, i.e., in (39), as a function of iteration
number in gradient descent updates during the first epoch of the
constrained joint optimization method. It is clearly shown that
after adding the constraints (35) to (37) into the optimization
the objective function converges to a local minimal point after a
number of iterations, which shows the effectiveness of the con-
straints (35) to (37). The learning curves as a function of epochs
are shown in Fig. 4

Second, in Fig. 3, we plot number of support tokens as a func-
tion of number of epochs when we run the constrained joint

Fig. 2. Objective function versus number of gradient update iterations during
the first epoch of constrained joint optimization method for the 1-mix models
in the ISOLET E-set task.

Fig. 3. Number of support tokens is plotted as a function of number of
epochs with and without the proposed constraints when the constrained joint
optimization method is run for the 2-mix models on the E-set task.

Fig. 4. Real margin and the objective function (i.e., smoothed margin Q(�))
are plotted as a function of number of epochs in the LME training of a 2-mix
model on the E-set task.

optimization method with and without the proposed constraints
(35) to (37). The effectiveness of the constraints can be demon-
strated again from the evolution of the number of the support
tokens in optimization. The number does not decrease signif-
icantly during the optimization process. Since we use a fixed
threshold to select support tokens, if the optimization were to in-
crease the margins for all training samples in any unlimited way,
the number of support tokens would have decreased quickly as
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TABLE I
WORD ACCURACY (IN %) ON THE ISOLET E-SET TEST DATA

what we observed if the constraints (35) to (37) were removed
from the optimization procedure.

2) Performance of LME Training in E-set: In Table I, we
give performance comparison of the best results obtained by
using different training criteria to estimate CDHMMs for the
E-set recognition. It is clearly demonstrated that the constrained
joint optimization method works well in LME training. For
example, the LME-trained models with 2-mixture per state
achieve the word accuracy of 95.00%, which indicates 15.68%
errors reduction over the corresponding MCE-trained models,
which get 94.07% in word accuracy. From the experimental
results in Table I, we can see that 4-mix models performs
slightly worse than 2-mix models. Because we use 16 states
for each alphabet model, 4-mix model is slightly over-trained
in this small database. At last, if we compare the performance
here with our previous results based on a heuristic optimization
approach in [22], we can see that both methods perform very
similarly in this task. However, the optimization method pro-
posed in this paper is much more solid in theory. It may make
difference in other larger scale tasks.

Furthermore, we also plot in Fig. 5 the word accuracy of
LME models (with two mixtures) on the test set as a func-
tion of number of epochs in the constrained joint optimization
method. As shown in Fig. 5, the word recognition accuracy of
the 2-mix model on the testing set also increases as the iterative
LME training proceeds. After a number of iterations, the LME
models achieve 95.00% in word accuracy on the testing set, rep-
resenting a 15.68% reduction in recognition error over the best
MCE models, and a 47% error reduction over the ML models.

B. Continuous Speech Recognition: TIDIGITS Digit Strings

Following [25], the proposed LME training can be easily ex-
tended to string-level model for continuous speech recognition.
In this case, a couple of string-level competing models are com-
puted for each utterance in training set based on its N-best de-
coding results. The string-level LME algorithm has been eval-
uated in a connected digit string recognition task by using the
TIDIGITS corpus [21]. This corpus contains utterances from a
total of 326 speakers (111 men, 114 women, and 101 children),
coming from 21 regions of the United States. The corpus vocab-
ulary is made of the digits of “1” to “9,” plus “oh” and “zero,”
for a total of 11 words. The lengths of the digit strings are from
1 to 7 (except 6). Only adult portion of the corpus is used in
our experiments. It contains a total of 225 speakers (111 men
and 114 women), 112 of which (55 men and 57 women) are
used for training and 113 (56 men and 57 women) for testing.
The training set has 8623 digit strings and the test set has 8700
strings.

Fig. 5. Word accuracy of LME models on the test set is plotted as a function
of number of epochs in the LME training of a 2-mix model on the E-set task.

Our model set has 11 whole-word CDHMMs representing all
digits. Each HMM has 12 states and use a simple left-to-right
topology without state-skip. The data sampling rate is 16 kHz.
Acoustic feature vectors are of standard 39 dimensions (12
MFCCs and the normalized energy, plus their first- and
second-order time derivatives). Different number of Gaussian
mixture components per state are experimented. The models
are tested with unknown-length digit string with maximum
seven digits. The ML models are estimated using HTK 3.0. The
MCE training uses the best ML model as the seed model. All
HMM model parameters (except transition probabilities) are
updated during the MCE training process. The MCE algorithm
with online update is implemented exactly following [18]. The
two parameters of the sigmoid function are experimentally
tuned for the best performance on the test set: the slope value

and shift value are used in this task. The number
of competing strings in the N-Best list is set to five. In the MCE
training, the competing strings are combined with smoothing
factor . For the LME training, we always use the best
MCE model as the initial models. As opposed to the MCE
training, only Gaussian means are updated during the LME
training. Different training parameters are tuned to achieve the
best possible model. For example, the threshold in (4) is set
to a values to ensure we have adequate number of tokens in
the support token set for every epoch. And the value in (39)
is set dynamically in each epoch to make the largest value of

around 10.0. The values of and in (40)
are set to 100. The step size in the gradient descent search
is set between 0.02 and 0.04. in (23) is set to be 0.01. In
the TIDIGITS task, recognition accuracy on the training set
is less than 100% even after the MCE and LME training. The
recognition results (in string accuracy) on the training set are
given in Table II for various model complexity. It is clear that
the LME training can significantly reduce recognition errors
in training data set, ranging from 55% to 84% relative error
reduction. During the LME training, from one epoch to next,
some of the training data with negative margins may become
positive. In this case, they will be included in the support token
set in the next epoch. In the TIDIGITS task, we limit to run
at most 20 iterations during each epoch due to the efficiency
reason.

In Table III, we give string recognition accuracy in the test set
of TIDIGITS for the best models obtained by different training
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TABLE II
STRING ACCURACY (%) FOR DIFFERENT MODELS IN THE TIDIGIT TRAINING

SET. THE NUMBERS INSIDE PARENTHESES REPRESENT THE RELATIVE

STRING ERROR REDUCTION OF LME OVER MCE

TABLE III
STRING ACCURACY (%) FOR DIFFERENT MODELS IN THE TIDIGITS TEST

SET. THE NUMBERS INSIDE PARENTHESES REPRESENT THE RELATIVE

STRING ERROR REDUCTION OF LME OVER MCE

criteria. The results are listed for various model sizes we have
investigated. The results clearly show the LME training method
considerably reduces recognition error rates on top of the MCE
training across all different model sizes. As the model size
gets bigger and error rate gets smaller, the advantages of using
LME decreases, but still remains significant. For small model
sizes (such as 1-mix, 2-mix, 4-mix, 8-mix), the LME training
method typically yields over 40% relative error reduction on
top of the MCE training. For large model sizes (such as 16-mix
and 32-mix), the LME method still gives around 26%–27%
error reduction from the MCE discriminative training.

As the final remark, in this paper, the proposed LME training
method achieves string error rate 0.66% and word error rate
0.22% in the TIDIGITS task. To our best knowledge, this is the
best result reported so far in this task.4

VI. CONCLUSION

In this paper, we have studied estimating Gaussian mixture
CDHMMs based on the principle of maximizing the minimum
multiclass separation margin. We have formulated the problem
as a minimax optimization under some nonlinear constraints.
At last, we proposed to solve this constrained minimax opti-
mization problem by using a penalized gradient descent search
algorithm. The method has been successfully applied to two

4In [31], 0.89% string error rate was reported with the MMI training. In [18],
under a similar setting of context-independent digit model as our work, 0.95%
string error rate was reported with the MCE, and 0.72% string error rate and
0.24% word error rate was reported with the complicated context-dependent
head-body-tail models after the MCE training.

standard speech recognition tasks, namely the E-set recogni-
tion task with the ISOLET database and the connected-digit
string recognition with the TIDIGITS database. In both cases,
recognition error rates have been significantly reduced with the
proposed large margin training approach. This paper shows the
proposed framework of the so-called large margin HMMs is
superior to other early efforts to combine SVM with HMM
in speech recognition. More importantly, the new framework
looks very promising to be capable of solving other larger scale
speech recognition tasks as well. Some extensive research works
are under way to extend the large margin training method to
subword-based large vocabulary continuous speech recognition
tasks and to investigate how to handle misrecognition utterances
in the training set.
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