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Abstract—Minimum classification error learning realized
via generalized probabilistic descent, usually referred to as
(MCE/GPD), is a very popular and powerful framework for
building classifiers. This paper first presents a theoretical analysis
of MCE/GPD. The focus is on a simple classification problem for
estimating the means of two Gaussian classes. For this simple
algorithm, we derive difference equations for the class means
and decision threshold during learning, and develop closed form
expressions for the evolution of both the smoothed and true error.
In addition, we show that the decision threshold converges to its
optimal value, and provide an estimate of the number of iterations
needed to approach convergence. After convergence the class
means drift towards increasing their distance to infinity without
contributing to the decrease of the classification error. This be-
havior, referred to as mean drift, is then related to the increase
of the variance of the classifier. The theoretical results perfectly
agree with simulations carried out for a two-class Gaussian clas-
sification problem. In addition to the obtained theoretical results
we experimentally verify, in speech recognition experiments, that
MCE/GPD learning of Gaussian mixture hidden Markov models
qualitatively follows the pattern suggested by the theoretical
analysis. We also discuss links between MCE/GPD learning and
both batch gradient descent and extended Baum–Welch re-esti-
mation. The latter two approaches are known to be popular in
large scale implementations of discriminative training. Hence, the
proposed analysis can be used, at least as a rough guideline, for
better understanding of the properties of discriminative training
algorithms for speech recognition.

Index Terms—Convergence analysis, discriminative learning,
generalized probabilistic descent, hidden Markov models, min-
imum classification error, speech recognition.

I. INTRODUCTION

Ageneral paradigm for the design of classifiers, based on the
idea of minimizing the classification error, was proposed

in [12] and [16]. In this framework, a smoothed estimate of the
classification error is first formulated and is then minimized,
with respect to the parameters of interest, using gradient de-
scent. Thus, this approach is often referred to as minimum clas-
sification error/generalized probabilistic descent (MCE/GPD).
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Since its introduction, this learning approach has found great
success in many practical, and often large-scale, classification
problems. A large part of these applications focused on speech
recognition and other natural language processing tasks. Inter-
esting reviews of the MCE/GPD framework, that cover both
theory and applications, can be found in [5] and [15].

Due to the success of MCE/GPD in many practical classifier
design problems there were attempts to theoretically analyze its
performance. We mention here the works in [4], [17], [28]. The
relationship between some of these works and the current work
will be highlighted in the paper. In addition to the above works,
the main theoretical justification for the use of the MCE/GPD
paradigm is the generalized probabilistic descent (GPD) the-
orem (refer to [12] for example). This theorem states that the
update equations lead to a decrease of the expected value of the
smoothed error function and converge to one of its local minima
under some regularity assumptions. The goal of this paper is a
more detailed study of the evolution of the classifier parameters
and the objective function during learning.

In order to address these theoretical questions in more detail,
we first focus on a simple learning scenario. The MCE/GPD
algorithm is used to learn the means of a Gaussian classifier for
a two-class problem. This setting leads to a relatively simple
learning algorithm that is amenable to detailed theoretical study.
Our main theoretical contributions are as follows.

• Detailed difference equations for the evolution of the class
means and decision threshold during learning. These equa-
tions are used to prove that the threshold converges to its
optimal value for a sufficiently small constant step size, and
to obtain an estimate of the number of iterations needed to
approach the optimal value. This convergence result is con-
trasted with GPD convergence [12] in the paper.

• Expressions for the smoothed and true error. Using these
expressions, it is shown that the true error converges to its
optimal value and that additional iterations after conver-
gence only reduce the smoothed error and lead to increase
the distance between inter-class means without reducing
the true error. This is referred to as mean drift in the paper.

• An expression for the classifier variance during learning.
This expression is used to establish that further iterations
after threshold convergence will increase the classifier vari-
ance due to the mean drift. This is clearly a negative effect
that needs to be avoided in practice.

The proposed statistical analysis of the algorithm is based on
a framework for the analysis of adaptive algorithms with non-
linearities which was initially proposed in [3] and since then has
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been used in similar contexts. However, the technical details and
results in this paper are related to the MCE/GPD approach and
differ from other works in the adaptive signal processing litera-
ture.

In addition to the theoretical interest of the analysis, it has
some links to discriminative learning of Gaussian mixture
hidden Markov models that are very popular in speech recog-
nition. First, the analyzed algorithm can be readily identified
as a special case of MCE/GPD learning of the means of
Gaussian mixture hidden Markov models (HMMs) [13]. It is
experimentally verified in the paper, using a speech-recog-
nition setting, that MCE/GPD learning of Gaussian mixture
HMMs qualitatively follows the learning pattern suggested
by the theoretical analysis. Second, it is shown in the paper
that the proposed analysis can be extended to batch gradient
optimization of the MCE objective function. This batch scheme
is popular in large scale implementations for speech recognition
[18], and is also closely related to the very popular extended
Baum–Welch re-estimation scheme [29] as described in [26].
Thus, the proposed analysis, can be used, at least as a rough
guideline, for better understanding of the properties of large
scale discriminative training for speech recognition.

The rest of the paper is organized as follows. The Gaussian
classification problem and the associated discriminative
learning algorithm are formulated in Section II. Section III
contains the analysis results of the algorithm of Section II.
Experimental results are given in Section IV. We first provide
simulation for a two-class Gaussian classifier which perfectly
agrees with the theoretical findings developed in the paper.
We then report on discriminative learning of Gaussian mixture
hidden Markov models for E-set speech recognition, and show
that the learning follows the same pattern predicted in the
theoretical analysis. Relationships to other learning paradigms
are discussed in Section V. Finally, the obtained results are
summarized and possible future directions are discussed in
Section VI. A summarized version of this paper appeared in [2].

II. ALGORITHM FORMULATION

This section presents a simple classification problem for
which the discriminative training algorithm of [12] will be for-
mulated and analyzed. Assume we have two classes , where

. For class , the probability density function (pdf)
of the observations is Gaussian given by , where

is the mean for class , and is a common variance.
It is worth noting that these are the true densities of the two
classes. The choice of this simple setting with one-dimensional
observations and Gaussian distributions facilitates the analysis
of the resulting discriminative training algorithm. The use of
a common variance leads to a linear misclassification function
which allows the computation of certain expected values, as
will be discussed in the paper, without making further approx-
imations. In addition, the solution of the above classification
problem is known [6]. This allows comparing the behavior
of the learning algorithm to the known solution. Assuming,
without loss of generality, that the two classes are equiprobable
and . The optimal classifier reduces to comparing an
observation to a threshold , and deciding
if , and otherwise. The given value of the threshold is

optimal, i.e., leads to minimum classification error, if the ob-
servations are Gaussian. Other threshold values should be used
for different class distributions. Hence, the notion of ”model
correctness” in this simple setting reduces to the choice of the
threshold value. In the Gaussian case the minimum (Bayes)
error can be easily calculated as [6]

(1)

where is the standard Gaussian cumulative distribution
function.

We will now apply the discriminative training paradigm of
[12] to learn the class means in the above classification problem.
This will lead to a discriminative learning algorithm that will
be the focus of the analysis in this paper. The goal of the con-
sidered algorithm is to sequentially estimate the means of the
classes to minimize a smoothed classification error measure.
This objective can be achieved by following the three steps in
[12]. The procedure starts by defining a misclassification func-
tion for class . In our case, it is straightforward to write this
misclassification function as

(2)

where is the pdf of class , and represent the mean
variables in the misclassification function to differentiate them
from the true class means and . It can be also seen that

. A smooth estimate of
the error for observation is then obtained by using a sigmoid
nonlinearity on the misclassification function. This step can be
formulated as

(3)

where we have used as shorthand to indicate means of both
classes, this abbreviation will be used in the rest of the paper. In
addition, we have replaced the usual sigmoid by the standard
Gaussian cumulative distribution function (CDF). Both func-
tions have very similar behavior and can be used for smoothing
purposes [1], [4]. However, the latter allows the calculation of
some expected values in closed form during the analysis. We
note that the true error can be obtained by replacing the Gaussian
CDF by a unit step function. Finally, the expected value of the
smoothed error in (3) is minimized using the generalized prob-
abilistic descent (GPD) algorithm. For our purpose, the GPD
recursion can be written as

(4)

where and are used to indicate the mean of
and the observation at iteration , and is the learning

rate. By using the definition of the error in (3), calculating the
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derivatives, and after some simplification, we arrive at the up-
date equations for the means, shown in (5) at the bottom of
the page, where . The mean up-
date in (5) together with the associated expected values of the
smoothed and true error are the focus of the analysis in Sec-
tion III.

III. ALGORITHM ANALYSIS

In this section, we perform statistical analysis of the algo-
rithm given in Section II. In particular, we focus on deriving dif-
ference equations for and the associated decision
threshold. These difference equations are helpful in studying the
transient behavior of the learning. Hence, we refer to this part
as transient analysis. In addition, we calculate expressions for
the expected values of the smoothed and true error. This helps
in studying the error evolution during learning and is referred
to as error analysis. Following transient and error analysis, we
develop an expression for the evolution of the classifier variance
during learning. We refer to this as variance analysis. This sec-
tion is structured as follows. Transient analysis is presented in
Section III-A, error analysis is carried out in Section III-B, and
variance analysis can be found in Section III-C. Finally, the as-
sumptions used in the analysis and possible generalizations are
discussed in Section III-D.

A. Transient Analysis

This subsection derives difference equations for
and the associated decision threshold followed by studying the
convergence behavior of the decision threshold. We start by the
difference equation for class means. This is done by first eval-
uating and then integrating out the condi-
tioning by using an approximation proposed in [3]. To this end,
we write

(6)

where and are the a priori probabilities of classes
and , respectively. We will evaluate both expectations on
the right-hand side of (6). It is shown in Appendix A that

(7)

where , ,
, is the common variance, and

is calculated as in (2). It can be similarly shown that

(8)

where, in addition to the above definitions, we have
. We will now make the as-

sumption . It is possible to choose any
values for the class prior probabilities. However, in order that
the analysis follows the true behavior of the algorithm, the
presentation of the training examples should follow the chosen
prior probabilities. Using this assumption and substituting into
(6) leads to

(9)

Now to calculate from the above expectation,
we need to specify , to integrate out the conditioning,
which is not a simple task. Instead, we follow the approach of
[3] and assume that is concentrated at . This is a
reasonable assumption for small step size , and has been used
in many works on the analysis of adaptive algorithms. Using
this assumption and denoting , we
get the difference equation shown in (10), at the bottom of the
next page, where we have used the following definitions:

(11a)

(11b)

(11c)

if ,
if (5)
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The difference equation in (10) describes the evolution
of the mean during learning. We then define

as the evolution of the decision threshold
during learning. Using (10), for 0, 1, together with some
algebraic simplifications we arrive at the following recursion
for the decision threshold:

(12)

where we have used the following relationships in the deriva-

tion, , and hence

, , is an even
function, is an odd function, and

.
Now when and the threshold has converged, we have

. The steady-state threshold can be
calculated by equating the second term on the right-hand side
of (12) to zero. After simple calculations we get, excluding the
case that1 , . Hence, at
steady state, the decision threshold will converge to its optimal
value. Once the threshold reaches its optimal value, it will re-
main there. This can be readily seen from (12). Theorem 1 below
formulates the result that the threshold indeed converges to its
optimal value, and provides an estimate of the number of iter-
ations needed to approach this value. The theorem is proven in
Appendix D. Before stating the theorem, we give the following
definitions:

(13)

(14)

1This implies the two class means coincide.

Note that if , we have from the def-
inition in (11c). Recall that we assumed that . Thus,
the previous condition can be guaranteed using proper initializa-
tion. Also note that we always have from (14), and
that is an increasing function of , because the learning
algorithm will always increase the ratio as dis-
cussed in Section III-B. These properties will be used in proving
threshold convergence.

(15)

This is the distance of the threshold at iteration from the op-
timal threshold. In proving Theorem 1, we assume .
The case can be similarly proven.

Theorem 1: Given the definitions in (13)–(15), and if
, the update in (12) will asymp-

totically converge to the optimal threshold value. Moreover, if
is sufficiently small, the number of iterations needed to ap-

proach the optimal threshold value is given by .
The main condition of the theorem can be guaranteed by ap-

propriately selecting the step size and proper initialization. Also,
the number of iterations needed to approach the optimal value is
determined by these two parameters. It is interesting to compare
this convergence result to the GPD theorem. Here, we assume
only a sufficiently small constant step size and proper initializa-
tion to establish asymptotic convergence. In addition, we esti-
mate the number of iterations needed to approach the optimal
threshold. This is in contrast to GPD convergence where a de-
creasing step size that should satisfy certain properties is needed
to prove convergence. However, the GPD result applies to more
general conditions than studied here.

We note that the convergence of the decision threshold to
its optimal value does not uniquely determine the class means.
In fact, any values of the class means that satisfy the equation

are possible. This agrees with [17]
and [28], where it is shown that for model-free optimization, the
MCE criterion results in a distribution which leads to the same
classification error as the true distribution. Indeed, any two dis-
tributions with a common variance and whose means satisfy the
previous condition will lead to the same minimum error. Error
analysis in Section III-B will be used to study in more detail the
behavior of the class means during learning.

(10)
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B. Error Analysis

In this section, we derive expressions for the expecta-
tions of the smoothed error , and the true error

. In addition, we discuss some of their proper-
ties which will help in studying the behavior of the learning.
We start by the expectation of the smoothed error. Using (3),
we write

(16)

Evaluating the first expectation on the right-hand side of (16),
we have

(17)

where the first line follows from the definition of error in (3),
the second line from the definitions of (38) and (39) and in Ap-
pendix A, and the third line by noting that has zero mean
and unit variance, and using the normal identity

[23]. It can be similarly shown that

(18)
Substituting (17) and (18) into (16), and assuming, as in the
previous subsection, equiprobable class priors

, we obtain

(19)

Further making the assumption, of the previous subsection, that
is concentrated at , and denoting ,

and , we arrive at

(20)

In the above analysis, we obtained an expression for the ex-
pected value of the smoothed error as given in (20). We are

also interested in obtaining the expected value of the true error
, often referred to as the 0–1 loss. This can be easily

obtained by replacing in (3) by a unit step and explicitly
evaluating the resulting integral. For example, we have

(21)

where is the unit step function, and the second line follows
by explicitly evaluating the expectation taking into account that

is Gaussian with mean and variance given in (38)
and (39). Further proceeding in exactly the same way as the
smoothed error case, we arrive at the following expression for
the expected value of :

(22)

In Section II, we assumed that . Further assuming that
is preserved during the learning,2 the error ex-

pression in (22) can be simplified to

(23)

where can be considered as the
evolution of the decision threshold during learning. Comparing
(23) and (1), we find that they are similar except for replacing
by . It can be easily verified from (23) that the error
monotonically decreases as approaches . Hence, as the de-
cision threshold evolves towards its optimal value, as discussed
in the previous section, the true error will decrease until it con-
verges to its minimum value, the Bayes error.

Next, examining (20) and (22), and focusing on the first terms
on the right-hand side, we can readily see that

2This is guaranteed given appropriate initialization.
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This is because , and is an
increasing function of its argument. Similarly, it can be shown
that

Combining these results, we deduce that if
, and , with equality

when . These conditions simply state that
the class means are correctly classified during the learning
and are expected to hold. The latter property suggests that the
smoothed error will try during the learning to reach its lower
bound, the true error. To achieve this, the learning algorithm
will continue to increase the ratio . It is interesting
to relate the above upper bound result to the work in [28]. In
[28], it was shown that the MCE objective function is an upper
bound to the Bayes error under very general conditions. The
result obtained here is a special case of that in [28], but the
simplified problem allows deriving exact expressions of the
error, and establishing a condition for the smoothed error to
approach the true error in terms of the classifier parameters.
This is not possible in the general case.

The above properties together with the transient analysis
of the previous section suggest the following behavior of the
learning algorithm. First, the decision threshold will move in the
direction of its optimal value and will converge to this optimal
value. Before convergence of the threshold, the expected true
error will decrease until it reaches its minimum, the Bayes error.
Once the threshold converges, it will remain at its optimal value
indicating that the class means will move along the straight line

. In spite of the saturation of the true
error, the smoothed error objective function will continue to
decrease by increasing the ratio , i.e., by moving
the class means apart, until it reaches infinity. Hence, the mean
values will continue to drift without contributing to an actual
decrease of the true error, and only decreasing the smoothed
error objective function. In Section III-C, we will derive an
expression for the evolution of the variance of the classifier
during learning and show that the mean drift is related to the
increase of the classifier variance.

C. Variance Analysis

In this section, we first derive an expression for the evolution
of the variance of the decision threshold during learning. Then
we show that after convergence the mean drift, discussed in the
previous subsection, is related to the increase of the variance of
the classifier.

To calculate the variance of the decision threshold, we first
use (5) and the definition of to arrive at the following update
equation of the decision threshold:

if
if

(24)

where
, and is defined below (7).

Similar to Section III-A, we can write the following expected
values conditioned on the values of the class means:

(25)

Using the above definitions, we show in Appendix C that

(26)

Further using the definition of above, we
evaluate the expectations in the second and third terms of (26).
This is done by a technique, similar to the second expectation
in Appendix A, that is outlined in Appendix C. Finally, by com-
bining the results, setting equal class a priori probabilities, and
taking , as in the previous subsections, we get the
following expression for the threshold variance:

(27)

At convergence , and hence the first term in
(27) will vanish leaving the second term which increases with
the mean drift. This agrees with the result obtained in [20] for
maximum mutual information (MMI) training which is a closely
related discriminative learning algorithm. In [20], it is shown
that given the correct model, MMI increases the variance of the
parameter estimates. Here, the simple setting allows the deriva-
tion of a more precise expression for the variance increase in
terms of the classifier parameters as given in (27). This increase
of the variance needs to be avoided in practice.

D. Discussion of Assumptions and Results

The results obtained in the previous three subsections are for
MCE/GPD learning of the means of two Gaussian classes with
common variance under the following assumptions:

• the two classes are equiprobable;
• the step size is sufficiently small so that the mean is con-

centrated at its expected value.
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In this section, we will discuss the above two assumptions and
also possible extensions to more general estimation problems.

The first assumption does not cause a loss of generality. The
analysis can be done for any values of the prior probabilities.
The final conclusions regarding threshold convergence and vari-
ance will remain valid. Of course, the optimal threshold value
will change with the prior probabilities. It should be noted, how-
ever, that for the algorithm to follow the theoretical analysis, the
presentation of the training examples must follow the assumed
prior distribution. The second assumption basically means that

(28)

where is the mean of . That is the probability mass
is concentrated at the mean. One way to ensure this is to use a
sufficiently small step size. In our simulation, we found that the
algorithm follows the theoretical analysis for reasonable values
of the learning rate. In addition, convergence of the threshold
as implied by Theorem 1 requires a sufficiently small step size.
Hence, this assumption does not cause any practical or theoret-
ical problem.

It is also interesting to consider generalizations of the rather
simple analyzed algorithm. If both means and variances are to
be estimated, the analysis of the mean update formula can be
extended in a rather simple way to a time varying variance. This
can be achieved by first conditioning on the variance and then
using an assumption that the variance is concentrated at its ex-
pected value similar to the assumption used for the mean in this
paper. On the other hand the analysis of the variance update
formula3 is more difficult. For example, the update requires pa-
rameter transformation to maintain the positivity of the variance
when applying the GPD algorithm [13]. The analysis of the vari-
ance update is not attempted in this paper. In Section IV, we will
experimentally study the parameter evolution of Gaussian mix-
ture hidden Markov models (HMMs), where both means and
variances are updated.

Another popular alternative to the stochastic gradient algo-
rithm considered in this paper is using a batch update rule. Ap-
plication of this rule to large scale MCE learning can be found
in [18], and it is also closely related to the popular extended
Baum–Welch re-estimation formulas [26]. These links will be
further explored in Section V. In this approach, the parameters
are modified after averaging the gradient of a number of training
examples. For the analyzed algorithm, the update of (5) will be
replaced by

(29)

3This is not shown in this paper; we refer the reader to [13] for the general
case of Gaussian mixture HMMs.

where is an index on the training examples, and is their total
number. We note that the time scale stands for one pass over
the whole data instead of a single training sample. For a suf-
ficiently large number of examples, the above summations ap-
proach expected values which are similar to those on the right-
hand sides of (7) and (8), respectively. Hence, the batch algo-
rithm will follow the same difference equations derived for the
stochastic algorithm, and hence will have the same transient be-
havior. The error analysis will be the same as it does not depend
on the type of the update. In this paper we, however, choose to
analyze the GPD algorithm due to its close links to the original
implementations of the MCE/GPD framework.

IV. EXPERIMENTAL RESULTS

This section first shows simulation results on a Gaussian clas-
sifier which perfectly agree with the theoretical developments.
This is followed by experimentally studying the performance
of MCE/GPD training of HMMs for an English E-set alphabet
recognition task.

A. Results on Gaussian Data

Extensive simulation with Gaussian data was performed and
in all experiments we found that the theoretical analysis per-
fectly predicts the behavior of the learning. We show here one
example for illustration.

We generated 10000 samples from two Gaussian-distributed
classes having means and , and a common
variance . The a priori class probabilities used in data
generation were . We ran one pass through
the data, corresponding to 10000 iterations, and used (10) to
calculate the expected evolution of the means, and (20) and (22)
to compute the expected values of the smoothed and true errors
during learning. We also generated 100 sets of 10000 samples
each, and used each set to learn the class means as in (5), and to
calculate the empirical classification error at each iteration. We
averaged the results of these sets to obtain the expected values
of the means and classification error.

The sample based means and variance, corresponding to ML
estimates in this case, were first calculated. The sample means
perturbed by 0.5 and the sample variance were used to initialize
the learning. Thus, the decision threshold is initially set at a
distance 0.5 from its optimal value. The step size used in this
experiment is .

The results shown in Figs. 1 and 2 indicate the close match of
the theoretical results and the simulation. Indeed, for the evolu-
tion of the class means in Fig. 1 we notice the perfect agreement
of the simulation results with the results predicted by (10). Also
for the error evolution we notice the coincidence of the empirical
classification error and the expected true error as predicted by
(22), and the expected smoothed error is an upper bound of both
as discussed in Section III-B. Both means will evolve until the
threshold reaches its optimal value. At this point the true error
will reach its minimum and both the error and decision threshold
will not change. On the other hand, the objective function, the
expected value of the smoothed error, decreases due to the in-
crease of the ratio to asymptotically reach the true
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Fig. 1. Evolution of the mean of classes C , and C during 10000 iterations
of learning. Eqn denotes using (10) to calculate the mean, while Sim stands
for using the learning algorithm in (5) to estimate the mean and averaging on
100 runs. The classes follow a Gaussian distribution with means � = 2:0,
� = 1:0, and common variance � = 1:0. The learning rate is 0.01.

Fig. 2. Evolution of the expected value of the smoothed and true error during
10000 iterations of learning, using (20), and (22). Sim refers to averaging the
empirical error in 100 runs. The classes follow a Gaussian distribution with
means � = 2:0, � = 1:0, and common variance � = 1:0. The learning
rate is 0.01.

error. This agrees with the discussion at the end of Section III-B.

Also, we have ,
, , and

. This leads to iterations from
Theorem 1. Thus, the threshold will approach its optimal value
in about 2915 iterations. This agrees with the simulation in
Fig. 2, where the threshold, and hence the true error, appear to
converge around 3000 iterations.

B. Speech Recognition Experiments

In this section, we will study the performance of MCE/GPD
training of HMMs for E-set recognition. Motivated by the
similarity of the Gaussian classifier update equation (5) to
MCE/GPD learning of the means of Gaussian mixture HMMs
[13], we may expect that the obtained theoretical results will
carry over to the HMM case. Thus, we empirically study the
behavior of MCE/GPD iterations for Gaussian mixture HMMs
to verify the suggested learning pattern. That is, the training

Fig. 3. MCE/GPD learning curves in HMM-based speech recognition.

set error (true error) and MCE objective function (smoothed
error) will decrease, with the smoothed error being an upper
bound of the true error. After the true error saturates, the MCE
objective function will continue to decrease causing only the
“distance” between models to increase without further reducing
the classification error. Details of the experimental setup used
to verify this pattern are given below.

The experiments are performed on the English
E-set vocabulary of ISOLET database, consisting of

. ISOLET is a database of letters of
the English alphabet spoken in isolation. The database consists
of 7800 spoken letters, two productions of each letter by 150
speakers. The recordings were done under quiet laboratory
conditions with a noise-canceling microphone. The data were
sampled at 16 kHz with 16-bit quantization. ISOLET is divided
into five parts named ISOLET 1–5. In this experiment, only
the first production of each letter in ISOLET 1–4 is used as
training data. All data in ISOLET 5 is used as testing data. The
feature vector has 39 dimensions, which include 12-d static
MFCC, log-energy, delta, and acceleration coefficients.

An HMM recognizer, with 16-state, 1-mixture/state whole-
word based models, is trained by HTK to be the initial models
for MCE training. We chose 1-mixture/state models for effi-
ciency purpose to be able to run many iterations on the data,
and we expect that the results will generalize to multiple mix-
ture models. This configuration achieves the best performance
for the 1-mixture/state whole-word based models. The recog-
nizer achieves an accuracy of 93.89% on the training set, and an
accuracy of 85.56% on the testing data.

In the experiments the MCE/GPD discriminant function is
normalized by the utterance length and feature dimension. Both
means and variances will be updated for each training sample.
The step size used in this experiment is . The weight

in the misclassification function is set to 4. The scale in
sigmoid function is set to 2 and the shift is set to 0. These are
parameters of MCE/GPD learning of Gaussian mixture HMMs
as defined in [13]. For the E-set test, the recognition rate for the
training data set is improved from 93.89% to 99.91% (only one
misclassification left), while the recognition rate for the testing
data set is improved from 85.56% to 91.67%. In Fig. 3, we plot
the results for both the training and the testing sets as a function
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of the number of iterations of the MCE training procedure. Each
iteration includes updates over all the training samples.

In Fig. 3, “Train” stands for the recognition rate of the training
data set, and “Test” stands for the recognition rate of the testing
data set. “Smoothed Rate” stands for the smoothed recognition
rate of the training data set. These three curves use the -axis
on the left side. “Euclidean” stands for the sum of Euclidean
distances between each pair of models [9]. “KL” stands for the
sum of Kullback–Leibler distances between each pair of models
[9], [10]. These two curves use the -axis on the right side. Note
that recognition rate is used, in the figure, instead of error for
convenience. Hence, for example, the “Smoothed Rate” appears
as a lower bound to the “Train.”

A few comments concerning the distance between the models
are worth mentioning here. First, the distance is calculated as
the sum of the distances between each pair of models, i.e.,

, where the indices , run over all possible models. In
our case, there will be terms in the summation,
where “9” is the number of models of the E-set. The distance be-
tween each two models, in turn, is calculated, as suggested in [9]
and [10], as the sum of distances along the minimum path be-
tween each pair of states. As the states, in our case, have single
Gaussians, the distance between each pair of states can be cal-
culated in closed form either using the variance normalized Eu-
clidean distance between the means or using the expression for
the KL distance between two Gaussian distributions. These are
referred to as “Euclidean”, and “KL” above. If Gaussian mix-
tures were used for the states the calculated distance can be ap-
propriately extended as discussed in [9] and [10].

The curve “Train” shows that the true recognition rate con-
verges after about 25 iterations. After the convergence of the true
recognition rate, the smoothed recognition rate for the training
data set (curve “Smoothed Rate”) continues to increase towards
the true recognition rate. This agrees with what was shown in the
Gaussian case, that the smoothed error objective function is an
upper bound of the true error on training data. In addition, the
recognition rate for testing data (curve “Test”) has no apparent
improvement (even drops down a little) after the true recognition
rate converges. This agrees pretty well with the pattern suggested
at the beginning of this section. Also, another important observa-
tion is that the distances between models continues to increase
(in Euclidean and KL sense) even after the true error rate con-
verges. This indicates the “mean drift”, here better called “model
drift”, found in the theoretical analysis. This drift is expected to
contribute to the increase of the variance of the classifier though
this is not theoretically proved for the HMM case.

A few comments regarding our experimental setup are worth
mentioning here. Due to our desire of keeping a practical, yet
simple, speech recognition scenario, we deviated from our theo-
retical framework in some aspects. First, a multiple class-recog-
nition problem was considered. It was shown in [19] how to for-
malize an MCE objective function using pairwise mis-classifi-
cation measures, and this work can be considered as a starting
point to generalize our analysis to the general multiple class
problem. In this work to handle this generalization we used the
pairwise averaged model distance in place of the normalized
inter-class means distance . Second, we also chose
to update both means and variances while the analysis consid-
ered only mean estimation for fixed variance.

V. LINKS TO OTHER DISCRIMINATIVE OBJECTIVE

FUNCTIONS AND OPTIMIZATION CRITERIA

Recently the most popular approach to discriminative training
of large scale Gaussian mixture HMMs is proposed in [29]. It
uses criteria as maximum mutual information (MMI) and min-
imum phone error (MPE) [24] in an extended Baum–Welch
(EBW) estimation framework [8], [21]. The relationships be-
tween these estimation criteria and MCE were explored by dif-
ferent authors. In addition, EBW optimization was shown to be
very closely related to batch gradient descent in e.g., [26], which
in turn is related to the GPD algorithm analyzed in this paper. In-
deed, both are gradient descent algorithms which calculate the
gradients and perform the updates at different granularities of
the training data. The goal of this section is to highlight some of
these, at least high level, similarities to better relate the proposed
analysis to practical implementations of discriminative training
methods in speech recognition.

Regarding the optimization criteria both the MMI and MCE
criteria have related functional forms and their relationships
have been discussed in e.g., [5]. In addition, [27] proposed a
formulation for discriminative training which includes both
MMI and MCE as special cases. In [1], it was shown that the
difference between MCE and a criterion related to MMI is in
the form of the weighting function. While MCE tends to give
a Gaussian like weighting to observations which emphasizes
observations near the decision boundary, MMI tends to produce
a hinge like weighting which favors outliers, i.e., observations
having very low discriminative scores. Although the MPE
criterion is defined in a different way using a Levenstein dis-
tance it aims at minimizing a smoothed estimate of the phone
error rate in the same spirit of MCE. Interestingly, a recent
study [25] compared a large variety of different discriminative
criteria in large scale ASR experiments, and showed only minor
differences in performance as long as care is taken in properly
handling the corresponding optimization. To summarize, it is
expected that different discriminative criteria can share similar
properties with the MCE objective that is analyzed in this paper.

In addition to the similarity of other discriminative objective
functions to MCE, it is known that extended Baum–Welch op-
timization is very closely related to batch gradient descent. It is
shown in [26] that when the constant , that is used in EBW
re-estimation, is related in a certain way to the step size of batch
gradient descent, both algorithms will lead to similar estimates
of the means, and variance estimates that differ in a mean-de-
pendent correction factor. Also, in the process of deriving EBW
equations, [14] shows that Baum–Welch re-estimation formulas
are equivalent to batch gradient descent, for sufficiently large

, to a first-order approximation. In turn, batch estimation is
argued in this paper to have the same transient behavior as the
GPD algorithm in Section III-D. This leads us to postulate that
both GPD and extended Baum–Welch re-estimation may be ex-
pected to share similar learning behavior.4

The previous qualitative discussion suggests that the
MCE/GPD algorithm and the above mentioned discriminative

4In the context of batch gradient descent [18], it is possible to use second-
order methods like RPROP or Quickprop that potentially lead to faster conver-
gence. It remains an interesting issue to see if the analysis in the paper could be
extended to these methods.
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training algorithms share conceptual similarities in both the
objective function and the optimization procedure. Thus, they
are expected to share similarities in their learning behavior.
However, more developments are needed to theoretically sup-
port these conclusions.

VI. SUMMARY

In this paper, we have performed statistical analysis of a
simple discriminative learning algorithm. The algorithm is
based on applying the well-known MCE/GPD framework
to estimating the means for a simple classification problem
consisting of two Gaussian classes with common variance. The
relatively simple form of the resulting algorithm allows the use
of a framework originally developed for the analysis of adaptive
algorithms to derive difference equations for the mean and the
decision threshold evolution during learning. These difference
equations are applied to study the convergence behavior of
the decision threshold, and a proof of the convergence of the
decision threshold to its optimal value is given together with
an estimate of the number of iterations needed to approach the
optimal threshold. In addition, closed-form expressions for the
expected values of the smoothed and true error are obtained.
Using these expressions, we first show that the expected value
of the true error decreases until it saturates at the Bayes error
when the threshold reaches its optimal value. We also prove
that, under some conditions, the expected smoothed error is an
upper bound to the true error and that it approaches it when the
ratio of the absolute distance between the class means and the
variance tends to infinity. Thus, the expected smoothed error
objective function continues to decrease even after the true error
converges to its minimum, and the absolute distance between
the class means continues to increase without contributing to
the decrease of the classification error. This mean drift is then
related to the increase of the variance of the classifier. Based
on the resemblance of the analyzed algorithm to the MCE/GPD
updates of the means of Gaussian mixture HMMs, we exper-
imentally studied MCE/GPD learning of Gaussian mixture
HMMs for E-set recognition. We found that the behavior of
the learning qualitatively agrees with the pattern suggested by
the theoretical analysis. However, some work still needs to be
done to formally support this observation. We also qualitatively
discussed the relationships between the analyzed MCE/GPD
and other discriminative training frameworks, and argued that
it is likely that both will share the same learning behavior.

One obvious application of the results obtained in this
paper is the use of the normalized inter-class means distance

, or its square, as a penalty term during discrimi-
native optimization to alleviate the mean drift. This additional
term can be interpreted as a form of regularization that prevents
the increase of the classifier variance. The regularization term
is derived in closed form for the simple Gaussian classification
problem as noted above. Regularization terms in the same spirit
can be motivated for Gaussian mixture or HMMs. Interest-
ingly, this agrees with the use of H-criteria [7] or more recently
I-smoothing [24]. In these methods, the discriminative objective
function is interpolated with a likelihood based objective func-
tion. Although these do not directly agree with the inter-class

distance derived in this work, this interpolation can be related
to the mean drift observed in this paper. It is easily seen that
interpolating with a likelihood function will help in keeping
the means close to their original ML estimates, and hence will
indirectly reduce the mean drift. From this point of view, these
H-criteria can be considered as a form of regularization of
the discriminative objective function, to ensure that the model
parameters stay close to their ML estimates. In this context, it
is worth mentioning that the performance of the MPE criterion
[24], a very popular algorithm for training large scale HMMs, is
significantly improved using I-smoothing. Also, in the recently
proposed maximum margin training [11], it is shown that a
penalty term, in the same spirit of regularization, is needed
for the success of the training. We plan to explore this line of
thought in our future work.

APPENDIX A

In this appendix, we will prove the result in (7). Taking the
expected value of both sides of (5), with the appropriate condi-
tioning, it is straightforward to arrive at

(30)

where we have, for convenience, removed the conditioning from
the expectations on the right-hand side. The following defini-
tions have been used in (30)

(31a)

(31b)

where for convenience we have defined
, , and

. The values of these and other relevant
statistics are given in Appendix B. We now move to the calcu-
lation of the two expectations on the right-hand side of (30).

Using Bussgang theorem [22],5 and noting that both and
are zero mean, we can write the first expectation as

(32)

5The theorem states that for two zero mean Gaussian random variables x and
y we have E[yf(x)] = E[xy]E[f (x)].
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Evaluating the expectations on the right-hand side of (32), we
have for the first expectation

(33)

where the first line follows directly from the definitions in (31a)
and (31b), the second line from the definition of the covariance,
and the third line from the statistics given in Appendix B. By
applying the normal identity [23]

(34)

and noting that has zero mean and unity variance, we evaluate
the second expectation as

(35)

Combining (32), (33), and (35), we arrive at the required expec-
tation. The second expectation on the right-hand side of (30) can
be calculated using the normal identity [23]

(36)

and noting that has zero mean and unit variance as

(37)

Substituting these expectations into (30), and after some simpli-
fication, we arrive at the required result.

APPENDIX B

This appendix contains some statistics relevant to the deriva-
tions in this paper. These can be easily calculated by noting
that is a linear function of and
using the well-known properties , and

, and some simple algebra

(38)

(39)

We note that as the standard deviation is always positive, we
define .

(40)

The above statistics can be similarly calculated when condi-
tioning on , and will be omitted for brevity.
We would like to point out that the common variance assump-
tion in Section II leads to a linear misclassification measure

, which is also Gaussian, and hence it fa-
cilitates the application of the Bussgang theorem, and normal
identities as in Appendix A. If this assumption is to be relaxed,
the misclassification measure will be quadratic and more ap-
proximations will be needed to proceed.

APPENDIX C

In this appendix, we first derive (26) then we outline how the
expected value is
evaluated by a technique similar to Appendix 1.

First, by definition, we have

(41)

and using (24) we get

(42)

This is easily seen using (24) and noting that
.

Now, expanding the expectation using
(24), we can write (43), as shown at the top of the next page,
where the second line follows by noting that and sum
to one, and the third line follows from (42). Substituting (43)
into the definition of (41) and completing the square we arrive
at the required result.

Next, we outline how to calculate the second and third ex-
pectations in the last line of (43). We consider only the second
expectation and the third similarly follows

(44)

where the first equality follows from the definition in
(24), and the second equality from the observation that

. The expectation in the second line
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(43)

can be evaluated using an exactly similar way to the expectation
in (37). This will not be repeated here for brevity.

APPENDIX D

In this appendix, we will prove Theorem 1 of Section III-A.
We will prove the theorem for , and the case of

can be similarly proved. By subtracting the optimal
threshold value from both sides of (12) and using the defini-
tions in (13)–(15), we can write

(45)

Making use of the inequality6

in (45), and taking , and , we
get

(46)

where the second line follows because is negative,
the third line is obtained by noting that is an in-
creasing function of , and the fourth line results by defining

.
Now, applying (46) times starting from iteration zero, we

finally obtain

(47)

where is the initial distance from the optimal threshold.
For and is finite, we take the limit of the right-
hand side as to yield . Because is
positive by assumption, this implies that , which is
the required convergence result.

6This can be proved by noting that �(a� x) � 1=
p
2�, and that e is a

convex function and hence lies above its first-order Taylor’s expansion.

Further, if is sufficiently small such that ,
then can be considered as an estimate of the number
of iterations needed to reach steady state. This completes the
proof.

ACKNOWLEDGMENT

The authors would like to thank Prof. C.-H. Lee of Georgia
Tech for his insightful comments on an initial version of this
paper, and the anonymous reviewers for carefully reviewing the
paper and providing very helpful suggestions.

REFERENCES

[1] M. Afify and O. Siohan, “A discriminative training criterion and an
associated EM learning algorithm,” in Proc. ICASSP’02, Orlando, FL.

[2] M. Afify, X. W. Li, and H. Jiang, “Statistical performance analysis
of MCE/GPD learning in Gaussian classifiers and Hidden Markov
models,” in Proc. ICASSP’05, Philadelphia, PA.

[3] N. Bershad, J. Shynk, and P. Feintuch, “Statistical analysis of single-
layer back-propagation algorithm: Part I- mean weight behavior,” IEEE
Trans. Signal Process., vol. 41, pp. 573–582, Feb. 1993.

[4] A. Biem, “Discriminative Feature Extraction Applied to Speech
Recognition,” Ph.D. dissertation, Univ. Paris, Paris, France, 1997.

[5] W. Chou, “Discriminant-function-based minimum recognition error
rate pattern-recognition approach to speech recognition,” Proce. IEEE,
vol. 88, no. 8, pp. 1201–1223, Aug. 2000.

[6] R. Duda, P. Hart, and D. Stork, Pattern Classif., S. Edition, Ed. New
York: Wiley-Interscience, 2000.

[7] P. S. Gopalakrishnan, D. Kanevsky, A. Nadas, D. Nahamoo, and M.
A. Picheny, “Decoder selection based on cross entropies,” in Proc.
ICASSP’88, New York.

[8] P. S. Gopalakrishnan, D. Kanevsky, A. Nadas, and D. Nahamoo, “An
inequality for rational functions with applications to some statistical
estimation problems,” IEEE Trans. Inf. Theory, vol. 37, no. 1, pp.
107–113, Jan. 1991.

[9] H. S. M. Beigi, S. H. Maes, and J. S. Sorensen, “A distance measure be-
tween collections of distributions and its application to speaker recog-
nition,” in Proc. ICASSP’98, Seattle, WA, Apr. 1998.

[10] C.-S. Huang, H.-C. Wang, and C.-H. Lee, “A study on model-based
error rate estimation for automatic speech recognition,” IEEE Trans.
Speech Audio Process., vol. 11, no. 6, pp. 581–589, Nov. 2003.

[11] H. Jiang, X. Li, and C.-J. Liu, “Large margin Hidden Markov models
for speech recognition,” IEEE Trans. Speech Audio Process., vol. 14,
no. 5, pp. 1584–1595, Sep. 1996.

[12] B.-H. Juang and S. Katagiri, “Discriminative learning for minimum
error classification,” IEEE Trans. Signal Process., vol. 40, no. 12, pp.
3043–3054, Dec. 1992.

[13] B.-H. Juang, W. Chou, and C. H. Lee, “Minimum classification error
rate methods for speech recognition,” IEEE Trans. Speech Audio
Process., vol. 5, no. 3, pp. 257–265, May 1997.

[14] D. Kanevsky, “Extended Baum transformations for general functions,”
in Proc. ICASSP’04, Montreal, QC, Canada.

[15] S. Katagiri, B. H. Juang, and C. H. Lee, “Pattern recognition using a
family of design algorithms based upon the generalized probabilistic
descent method,” Proc. IEEE, vol. 86, no. 11, pp. 2345–2373, Nov.
1998.

Authorized licensed use limited to: York University. Downloaded on June 02,2010 at 08:44:52 UTC from IEEE Xplore.  Restrictions apply. 



AFIFY et al.: STATISTICAL ANALYSIS OF MINIMUM CLASSIFICATION ERROR LEARNING 2417

[16] S. Katagiri, C. H. Lee, and B. H. Juang, “New discriminative training
algorithm based on the generalized probabilistic descent method,” in
Proc. 1991 IEEE Workshop on Neural Networks for Signal Processing,
pp. 299–307.

[17] E. Mcdermott, “Discriminative Training for Speech Recognition,”
Ph.D. dissertation, Waseda University, Tokyo, Japan, 1997.

[18] J. L. Roux and E. Mcdermott, “Optimization methods for discrimi-
native training,” in Proc. EUROSPEECH’05, Lisbon, Portugal, Sep.
2005, pp. 2941–2944.

[19] E. McDermott and S. Katagiri, “A new formalization of minimum clas-
sification error using a parzen estimate of classification chance,” in
Proc. ICASSP’03, Hong Kong, Apr. 2003.

[20] A. Nadas, “A decision theoretic formulation of a training problem
in speech recognition and a comparison of training by unconditional
versus conditional maximum likelihood,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 31, no. 4, pp. 814–817, Aug. 1983.

[21] Y. Normandin, “Hidden Markov Models, Maximum Mutual Informa-
tion Estimation and the Speech Recognition Problem,” Ph.D. disserta-
tion, McGill University, Montreal, QC, Canada, 1991.

[22] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Sto-
chastic Processes. New York: McGraw-Hill, 2002.

[23] J. K. Patel and C. B. Read, Handbook of the Normal Distribution.
New York: Marcel Decker, 1996.

[24] D. Povey and P. C. Woodland, “Minimum phone error and I-smoothing
for improved discriminative training,” in Proc. ICASSP’02, Orlando,
FL.

[25] D. Povey and B. Kingsbury, “Evaluation of proposed modifications to
MPE for large scale discriminative training,” in Proc. ICASSP’07, Hon-
olulu, HI, Apr. 2007.

[26] R. Schlueter, W. Macherey, S. Kanthak, H. Ney, and L. Welling, “Com-
parison of optimization methods for discriminative training criteria,” in
Proc. EUROSPEECH’97, Rhodes, Greece, 1997.

[27] R. Schlueter and W. Macherey, “Comparison of discriminative training
criteria,” in Proc. ICASSP’98, Seattle, WA, May 1998, pp. 817–820.

[28] R. Schlueter and H. Ney, “Model-based MCE bound to the true Bayes’
error,” IEEE Signal Process. Lett., vol. 8, no. 5, pp. 131–133, May
2001.

[29] P. C. Woodland and D. Povey, “Large scale discriminative training
of Hidden Markov models for speech recognition,” Comput. Speech
Lang., vol. 16, pp. 25–48, 2002.

Mohamed Afify was born in Cairo, Egypt, in 1964. He received the B.Sc. degree
(with distinction), M.Sc., and Ph.D. degrees from the Department of Electronics
and Communications, Cairo Univeristy in 1987, 1992, and 1995, respectively.

From 1989 to 1996, he was a Research Associate at the National Telecom-
munication Institute, Cairo. From 1996 to 1998, he was a Postdoctoral Research
Fellow with the Speech Recognition Group, INRIA Lorraine, Nancy, France.
From 1998 to 2000, he was an Assistant Professor with the Department of Elec-
trical Engineering, Cairo Univerdsity, Fayoum Branch. From 2000 to 2002, he
joined the Dialogue Systems Research Department at Bell Laboratories as a
consultant. Since 2002, he has been an Associate Professor with the Faculty of
Information and Computer, Cairo University. From March 2004 to June 2005
he was with BBN Technologies, Cambridge, MA, working on large-vocabu-
lary speech recognition. In June 2005, he joined the IBM T. J. Watson Research
Center, Yorktown Heights, NY. His research interests are in statistical modeling,
pattern recognition, and digital signal processing with a particular emphasis on
their application to speech and language processing.

Xinwei Li received the B.S. degree in electronics from Beijing University, Bei-
jing, China, and the M.S. degree in computer science from York University,
Toronto, ON, Canada.

He is a Speech Scientist with Nuance, Inc., Burlington, MA. His major re-
search interest focuses on automatic speech recognition, especially discrimina-
tive training.

Hui Jiang (M’00) received the B.Eng. and M.Eng. degrees from the University
of Science and Technology of China (USTC), Hefei, and the Ph.D. degree from
the University of Tokyo, Tokyo, Japan, in September 1998, all in electrical en-
gineering.

From October 1998 to April 1999, he worked as a Researcher at the Uni-
versity of Tokyo. From April 1999 to June 2000, he was with Department of
Electrical and Computer Engineering, University of Waterloo, Waterloo, ON,
Canada, as a Postdoctoral Fellow. From 2000 to 2002, he worked in Dialogue
Systems Research, Multimedia Communication Research Lab, Bell Labs, Lu-
cent Technologies, Inc., Murray Hill, NJ. He joined the Department of Computer
Science and Engineering, York University, Toronto, ON, Canada, as an Assistant
Professor in fall 2002 and was promoted to Associate Professor in 2007. His cur-
rent research interests include speech and audio processing, machine learning,
statistical data modeling, and bioinformatics, especially discriminative training,
robustness, noise reduction, utterance verification, and confidence measures.

Authorized licensed use limited to: York University. Downloaded on June 02,2010 at 08:44:52 UTC from IEEE Xplore.  Restrictions apply. 


