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for Speech Recognition
Dalei Wu, Yan Yin, and Hui Jiang, Member, IEEE

Abstract—Large-margin estimation (LME) holds a property of
good generalization on unseen test data. In our previous work,
LME of HMMs has been successfully applied to some small-scale
speech recognition tasks, using the SDP (semi-definite program-
ming) technique. In this paper, we further extend the previous
work by exploring a more efficient convex optimization method
with the technique of second-order cone programming (SOCP).
More specifically, we have studied and proposed several SOCP
relaxation techniques to convert LME of HMMs in speech recog-
nition into a standard SOCP problem so that LME can be solved
with more efficient SOCP methods. The formulation is general
enough to deal with various types of competing hypothesis space,
such as N-best lists and word graphs. The proposed LME/SOCP
approaches have been evaluated on two standard speech recogni-
tion tasks. The experimental results on the TIDIGITS task show
that the SOCP method significantly outperforms the gradient
descent method, and achieve comparable performance with SDP,
but with 20–200 times faster speed, requiring less memory and
computing resources. Furthermore, the proposed LME/SOCP
method has also been successfully applied to a large vocabu-
lary task using the Wall Street Journals (WSJ0) database. The
WSJ-5k recognition results show that the proposed method yields
better performance than the conventional approaches including
maximum-likelihood estimation (MLE), maximum mutual in-
formation estimation (MMIE), and more recent boosted MMIE
methods.

Index Terms—Convex optimization, convex relaxation, dis-
criminative training (DT), large-margin estimation (LME),
second-order cone programming (SOCP).

I. INTRODUCTION

A UTOMATIC speech recognition (ASR) has been one of
the most challenging tasks in the field of pattern recogni-

tion. Many researchers have been contributing their efforts to the
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research of ASR for several decades. Summarizing these efforts,
the most successful modeling methods that are widely accepted
by the ASR research community can be organized into two cat-
egories: generative training (GT) and discriminative training
(DT). In generative training methods, ASR model parameters
are estimated using a standard training algorithm that is referred
to as maximum-likelihood estimation (MLE) under an assump-
tion that all the training data can be “generated” from the pre-
sumed distributions of speech models, whereas in DT methods,
ASR model parameters are optimized based on a training data
set to maximize or minimize a certain discriminative criterion.
The most popular acoustic model for ASR is continuous den-
sity Gaussian mixture hidden Markov models (CDHMMs) and
a variety of DT methods have been investigated for CDHMMs,
such as maximum mutual information estimation (MMIE) [2],
[23], minimum classification error (MCE) [4], [8], [9], [19],
[20], minimum word/phone error (MWE/MPE) [23].

Although most of these methods are quite effective, one of
the notable drawbacks is that they do not possess an attribute
to avoid the well-known over-fitting problem, i.e., the models
trained on a given training set may not be well generalized to
unseen test data. From a theoretical point of view in machine
learning, a large-margin classifier implies good generalization
power and generally yields much lower generalization errors
on unseen data. More recently, large-margin based discrim-
inative training methods have been successfully applied to
speech recognition, where Gaussian mixture continuous den-
sity hidden Markov models (CDHMMs) are estimated based on
the principle of maximizing the minimum margin, such as [11]
and [12], where the large-margin estimation (LME) of HMMs
turns out to be a constrained minimax optimization problem.
However, the major difficulty of applying the LME method,
as well as other DT criteria, to large-scale ASR tasks lies in
the fact that these DT criteria normally result in large-scale
optimization problems and how to solve these problems is
very challenging [13]. For instance, discriminative training of
a state-of-the-art system in large-scale ASR tasks normally
needs to solve an optimization problem involving over mil-
lions or even tens of millions of free parameters. Optimizing
a complicated objective function in such a high-dimension
space is an extremely difficult task since optimization can
be easily trapped to any shallow local optimal point of the
function surface. Most of the optimization methods used by
DT in ASR suffer from this problem, including so far the most
popular optimization method derived from a set of growth
functions, i.e., extended Baum–Welch (EBW) algorithm. One
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possible way to solve this problem is to use convex opti-
mization methods since any locally optimal point in a convex
optimization problem is guaranteed to be globally optimal. In
our previous work, we have successfully applied one of the
common convex optimization methods, namely semi-definite
programming (SDP), to solve LME optimization problems
based on N-best lists for some small-vocabulary digit string
recognition tasks [16], [29]. More specifically, large-margin
estimation (LME) of Gaussian mixture CDHMMs has been
formulated as a semi-definite programming (SDP) problem
under various SDP relaxation conditions as in [16] and [29].
As a result, the LME problem can be solved by many popular
convex optimization algorithms, such as interior-point methods,
which lead to the globally optimal solution, because SDP is
a well-defined convex optimization problem. Moreover, it has
been experimentally shown that the SDP relaxation is extremely
tight to maintain high accuracy for LME. Therefore, it has been
reported in [16] that the SDP-based large-margin estimation
method (denoted as LME/SDP for short) outperforms all other
discriminative training methods used for speech recognition
and it has achieved one of the best performances in the standard
TIDIGITS connected digit string speech recognition task.
However, optimization time of the LME/SDP method increases
dramatically as the size of HMM models grows because the
size of the SDP variable matrix in [16] is roughly equal to the
square of the total number of Gaussians in the model set. In
[16], the LME/SDP method has been successfully managed to
handle a CDHMM set consisting of about 4 k Gaussians but it
is unlikely to directly extend the LME/SDP method in [16] to
any large-vocabulary speech recognition task which typically
involves tens or even hundreds of thousands of Gaussians due
to extensive CPU time and a large amount of memory required
for solving such a large-scale SDP problem.

In this paper, we propose to use a different convex optimiza-
tion method, namely second-order cone programming (SOCP),
to solve the large-margin estimation of CDHMMs for speech
recognition. Comparing with SDP, SOCP is a simpler convex
optimization problem and SOCP can be solved much faster
than SDP for the same problem size and structure; see [15]
and [18], but just like SDP, an SOCP algorithm can guarantee
to find the globally optimal solution since SOCP is also a
well-defined convex optimization problem. In order to apply
LME to a large-scale ASR tasks, in this paper, we extend the
previous work by formulating LME of CDHMMs into a convex
quadratic optimization problem based on a general representa-
tion of competing hypothesis space, which includes both N-best
lists for small-scale ASR tasks and word graphs for large-vo-
cabulary ASR tasks. Based on the SOCP relaxation method
originally proposed in [15], we have formulated large-margin
estimation (LME) of CDHMMs as an SOCP problem, where
the size of SOCP variable vector is only proportional to the
total number of Gaussians, as opposed to the square of the
number of Gaussians in the LME/SDP method. In this way,
the proposed LME method (denoted as LME/SOCP) can deal
with much larger HMM model sets widely used in large-scale
ASR tasks. However, it has been experimentally found that
the original SOCP relaxation in [15] is too loose to yield as
good performance as a gradient descent or SDP method for

LME in speech recognition (cf. Table I). In this paper, we have
proposed two novel tighter SOCP relaxation methods for LME
of CDHMMs. Experimental results on the standard TIDIGITS
task show that the LME/SOCP methods based on the newly
proposed SOCP relaxations significantly outperform the pre-
vious gradient descent method and they can achieve almost
comparable performance as the previous LME/SDP approach,
but the LME/SOCP method shows much better efficiency in
terms of optimization time (about 20–200 times faster) and
memory usage when compared with the LME/SDP method in
[16]. Furthermore, the LME/SOCP method based on the new
SOCP relaxation technique has been successfully applied to a
large vocabulary continuous speech recognition (LVCSR) task
using the standard WSJ-5k corpus. Experimental results have
shown the LME/SOCP method significantly outperforms the
conventional maximum-likelihood estimation (MLE) method
as well as two popular discriminative training methods, i.e.,
MMIE and boosted MMIE methods using the standard EBW
based optimization algorithm.

It is also worth to note that there have been some recent
research efforts which attempt to include a margin term into
the conventional DT training framework of ASR, e.g., boosted
MMI/Modified MMI, boosted MPE/MWE [7], [25], margin-
based MMI/MPE [21], etc. The idea of these methods is to in-
troduce some extra parameters to the numerator and/or denomi-
nator of the conventional MMI/MPE criteria to approximate the
hinge loss function of the hidden Markov support vector ma-
chine (HM-SVM) [1]. Roughly speaking, these margin-based
MMI criteria can also be regarded as a special case of LME with
the hinge loss function as used in HM-SVM. These methods
normally reply on the conventional EBW-based method to op-
timize their objective functions.

The remainder of this paper is organized as follows: In
Section II, we first describe the framework of large-margin
estimation for ASR. In Section III, we briefly introduce
second-order cone programming (SOCP) as a special case of
convex optimization. In Section IV, we show how to convert the
LME problem into an SOCP problem and present three different
SOCP relaxation methods. Experiments on both TIDIGITS
and WSJ-5k are reported and discussed in Section V. Finally,
the paper is concluded with our findings and discussions in
Section VI.

II. LARGE-MARGIN ESTIMATION OF HMMS

Building a standard ASR system normally consists of two
separate stages: training and test. At the training stage, a set
of acoustic models, normally CDHMMs, denoted as , is
estimated to represent basic speech units, such as phonemes,
bi-phones, tri-phones, etc., under a certain training criterion. At
the test stage, the trained CDHMM set is then used to search
the best-matched word sequence for each acoustic observation

by maximizing the posterior probability of a word sequence
given the observation and the trained model set

(1)
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where is language model score, normally cal-
culated from -grams language models, is
acoustic score obtained based on CDHMMs , and

is referred to as dis-
criminant function in the logarithm domain.

The formulation of the large-margin criterion depends on an
essential concept of multiclass separation margin. Given a sen-
tence , , in a training set along with its correct
transcription , we define a competing hypothesis space for
the sentence , which is normally generated from a decoding
process, as . In the LME formulation, competing hypothesis
space always excludes the correct transcription . Fol-
lowing [1], [5], and [26], the mutliclass separation margin for
sentence is defined as the minimum distance between cor-
rect transcription and competing hypotheses , i.e.,

(2)

where and are discriminant func-
tions for the correct path and a competing hypothesis .
They are normally calculated as logarithm of the product of
acoustic and LM scores as follows:

(3)

(4)

where , are language model scores and
, are acoustic scores for the correct

transcript and the competing hypotheses , respectively.
By substituting (3) and (4) into (2), we can rewrite the margin

distance of sentence as follows:

(5)

Since max function is not smooth, in practice, it is often sub-
stituted for by an alternative, soft-max, using the operator of log-
sum. Therefore, the final definition of margin distance
for the sentence is derived as follows:

(6)

In practice, a scaling factor is often intro-
duced into calculating discriminant functions to prevent some
hypotheses from dominating the sum, i.e.,

(7)

(8)

where denote the discriminant function calcu-
lated from the whole hypothesis space .

With all these necessary notations, the criterion of LME can
be then defined as an optimization procedure to seek an optimal

model set by maximizing the minimum margin distance over
all sentences in the training set , i.e.,

(9)

where denotes the margin of a sentence calculated
based on the model set .

The above LME formulation is applicable to the case where
there is no training error and all training sentences have posi-
tive margins, i.e., . It can be easily extended to a
more general case to consider training errors, as in [12]. In this
case, we first select two subsets from the overall training set: the
support token set and the error set . The support token set

contains only positive tokens with relatively small margins
while the error set includes all negative tokens with negative
margins. In other words, the support token set is denoted as

(10)

which contains all sentences in the training set with relatively
small positive margin less than a threshold . The error set is
denoted as

(11)

which then includes all sentences with negative margins. Con-
ceptually speaking, the support token set includes all training
sentences locating in the correct decision region but staying
quite close to the current decision boundary while the error
token set includes all training sentences locating in the wrong
decision region.

With the concepts of support and error tokens, training errors
can be taken into consideration to facilitate the LME training
and thus, a variant criterion of LME, referred to as soft large-
margin estimation (soft-LME) [12], can be defined as follows:

(12)

where is a constant to balance minimum margin with training
errors, and is the number of error tokens contained in a
training set.

In addition to the objective function of LME as established
in (12), an additional locality constraint is often imposed during
the optimization process to control the updating range of model
parameters , as shown in [17], in order to avoid changing the
new model parameters too much from the current location. The
locality constraint is simply defined as Kullback–Leibler (KL)
divergence of the model parameters and its current values,
i.e.,

(13)

where is a constant to control the range for updating model
parameters.

By considering both (12) and the locality constraint of (13),
if we further introduce two variables and to represent the
lower bound of the margins of all support tokens and the upper
bound of the sum of the margins of all error tokens, respectively,
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then as in [16], [28], we can equivalently convert the maximin
optimization problem in (12) into an constrained minimization
problem as follows.

1) Problem 1:

(14)

subject to

for all (15)

(16)

(17)

and (18)

Until now, we have formulated LME of HMMs into a gen-
eral constrained optimization problem. Hence, the next ques-
tion would be how to efficiently solve the formulated optimiza-
tion problem. In Sections III–VI, we will present our ideas to
use SOCP to efficiently solve the above general optimization
problem for ASR.

III. SECOND-ORDER CONE PROGRAMMING

In this section, let us first briefly introduce second-order cone
programming (SOCP) as a special case of convex optimization.
An SOCP problem is a nonlinear convex optimization problem
in which a linear function is minimized over intersection of an
affine set and various second-order cone constraints. A standard
SOCP has the following form:

minimize (19)

subject to

(20)

where is the optimization variable, and the problem
parameters include , , ,

, and . The norm appearing in the constraints
is the standard Euclidean norm, i.e., . We call
the constraint in (19) as second-order
convex cone constraint of dimension .

SOCP includes linear programming (LP) and convex
quadratic programs (QP) as special cases, but is less general
than SDP. Many efficient primal-dual interior-point methods
have been developed for SOCP. Like LP and QP and SDP, an
SOCP problem can be solved in polynomial time by interior
point methods. The computational effort per iteration required
by these methods to solve SOCP problems, although greater
than LP and QP problems, is much less than that required to
solve an SDP problem with similar size and structure. Since
SOCP is a well-defined convex optimization problem, the
efficient algorithm for SOCP can always lead to the globally
optimal solution.

IV. GENERAL SOLUTION TO LME VIA SOCP

In this section, we propose a general framework to use the
SOCP algorithm to efficiently solve the optimization problem

in LME of HMMs, i.e., Problem 1, using several SOCP relax-
ation techniques. The method is derived based on a general rep-
resentation of competing hypothesis space, which can be easily
adapted to either N-best list for small scale ASR tasks or word
graph for LVCSR.

In our proposed method, we only consider to optimize mean
vectors of Gaussian mixture CDHMMs and leave other param-
eters unchanged. We assume totally Gaussian mixtures in
the CDHMM set, each of which is denoted by with

. For simplicity, all covariance matrices are as-
sumed to be diagonal as .

From Problem 1, we can see that equations for both sup-
port and error tokens are mostly determined by two terms,

and . The former term is related to
correct transcription , which is normally referred to as the
numerator term and the latter one is related to all competing
hypotheses in the space , which is called the denominator
term. Next, we will show how to convert these two terms into
quadratic forms, which are then used to convert Problem 1 into
an SOCP problem.

Let us first visit the numerator term . This term
can be approximated by an auxiliary function as in the well-
known expectation–maximization (EM) algorithm [6], which
is referred to as expectation-based approximation (E-approx)
methods in [14]. By using E-approx, we can approximate the
numerator term in (15) with an auxiliary func-
tion, denoted as , with the following form:

(21)

where is a hypothesized state sequence and is a hy-
pothesized Gaussian sequence obtained in decoding sentence

, is posterior probability for state

and Gaussian sequence , denotes the posterior
probability calculated for the th Gaussian component in the
model set at time using the Baum–Welch algorithm
from the correct path of utterance conditional on the initial
model , and is a constant independent from all Gaussian
mean vectors calculated as follows:

(22)

where and are initial probability and weight for the
th Gaussian and is the -dimensional variance in the th

Gaussian of HMM model set .
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After rearranging all terms in (21), we can organize
as a quadratic function of all Gaussian mean

vectors as

(23)

where is another constant independent of Gaussian mean vec-
tors, and and are statistics collected from the correct
path of utterance for the th Gaussian component as follows:

(24)

(25)

(26)

(27)

Furthermore, we can represent (23) using standard quadratic
functions as in the following matrix form:

(28)
where is a large column vector created by concatenating all
normalized Gaussian mean vectors as

(29)

with , and is
dimensional diagonal matrix with all calculated in (25) as
its diagonal elements, and is a concatenated vector as

with ,
where is the -dimensional statistics vector collected for

th Gaussian from all feature vectors in the sentence , as in
(26).

Next, let us consider the denominator term for
competing hypotheses. As we have mentioned before, all com-
peting hypotheses are encoded in a competing space .
While -best list is an appropriate representation for in
small scale ASR tasks, word graph is a more efficient format
for to represent competing hypotheses in LVCSR, due to
extremely large number of different competing hypotheses in
LVCSR.

Using the similar approximation strategy of E-approx, the
denominator term in (15) and (16) can also be

formulated as a quadratic form of Gaussian mean vectors, as
follows:

(30)

where is a hypothesized state sequence and is a hypoth-
esized Gaussian sequence obtained in decoding sentence ,

is posterior probability for the state and

Gaussian sequence , are the -dimensional
components of mean and variance for the th Gaussian, , and

are constants

(31)

(32)

and is posterior probability for the th Gaussian at
time calculated for any single competing hypothesis in the
hypothesis space given the sentence , and and
are statistics collected from for the sentence as follows:

(33)

(34)

(35)
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In the same way, we can represent as a standard
quadratic form in matrix form

(36)
where is the same concatenated vector of normalized
Gaussian means as in (28), and are defined in the same
way as their counterparts in (28) but computed with denomi-
nator statistics in (33) and (34) for utterance .

Substituting (28) and (36) into (15), we can rewrite (15) to
the final form for each support token, i.e.,

for (37)

where

(38)

(39)

and

(40)

Similarly, we can obtain the final constraint for error tokens
in (16)

(41)

where
(42)

(43)

and

(44)

Furthermore, the locality constraint in (17) can also be repre-
sented as a spherical constraint of as follows:

(45)

After substituting the matrix-based formulations for both sup-
port and error tokens, Problem 1 can be converted into a new
optimization problem as follows.

1) Problem 2:

(46)

subject to

for all (47)

(48)

(49)

and (50)

From Problem 2, we can see that the constraint of (49)
is convex. The constraints in (47) and (48) are in standard
quadratic form, but they are not convex since we cannot guar-
antee matrices and for support and error tokens are
positive semi-definite. Therefore, the current form of the op-
timization problem of Problem 2 cannot be directly solved by
the SOCP method. To resolve this problem, we have to resort
some SOCP relaxation techniques. In this paper, we study three
different SOCP relaxation methods: named as RLX0, RLX1 and
RLX2. We refer to the first one as the basic relaxation technique
since it was firstly proposed by Kim et al. in [15]. The second
and third ones are originally proposed in this work, which
have been found to lead to much tighter relaxation and in turn
yield much better estimation accuracy than the basic relaxation
method for LME of HMMs.

A. Basic Relaxation Method: RLX0

In order to convert Problem 2 into a standard SOCP problem
as in (19), some convex relaxation techniques have to be
used. As the first attempt, we adopt the same SOCP relaxation
method in [15], which is referred to as RLX0 in this work,
to convert matrices of and into positive semi-definite
matrices combined with a sequence of linear constraints. The
basic idea in [15] is to decompose an indefinite matrix ac-
cording to its eigenvectors and eigenvalues. More specifically,
suppose be all eigenvalues ( in total)
of support token matrix , where corresponds to the th
element of the diagonal matrix , and let be
all eigenvectors of corresponding to the eigenvalues

and satisfying and ,
. In case matrix is diagonal, they are just Euclidean

base vectors. Then, it is easy to show that matrix can be
decomposed into two parts as follows:

(51)

where is constructed based on only eigenvectors corre-
sponding to positive eigenvalues, as

. Obviously, is a positive semi-definite matrix.
Substituting (51) into (47) and introducing a new variable

for each eigenvector with negative eigenvalue, in this way, we
can derive the following two constraints which are equivalent to
(47)

(52)

with

and (53)

where is a component in the normalized mean vector in
(29).

Obviously the constraint in (52) is convex quadratic, how-
ever, the nonlinear equality constraint in (53) still remains
non-convex. Following [15], this equality constraint is relaxed
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into an inequality constraint but upper-bounded by a constant
as follows:

and (54)

where is a constant. In our case, can be roughly estimated

from the locality constraint of (49) as . In
this paper, the above relaxation is named as RLX0.

Analogously, the error token matrix can also be converted
into a positive definite matrix and a linear term consisting
of all negative eigenvalues, i.e.,

(55)

where is constructed from all positive eigenvalues, as
. Obviously, is positive semi-

definite.
Using the same relaxation method as above, we can convert

(48) into the following two convex constraints:

(56)

with

and (57)

where is a constant. Similarly, can be also
roughly estimated from the locality constraint of (49) as

.
Using the SOCP relaxation RLX0, Problem 2 can be con-

verted into the following convex optimization problem.
1) Problem 3:

(58)

subject to

for all (59)

and (60)

(61)

and (62)

(63)

and (64)

The relaxation technique of RLX0 can be intuitively illus-
trated in Fig. 1. The original LME problem can be viewed as
optimizing an objective function along the solid curve segment
in Fig. 1(a). After relaxation, optimization is actually conducted
within the shaded area under the constant upper bound, which
becomes a convex set.

However, as shown in Fig. 1(a), the relaxation of RLX0 is
taken quite loosely, due to a relatively large area of the relaxed
region. Although it is helpful to seek a global solution, it
inevitably introduces significant mismatch from the original

Fig. 1. Illustration of SOCP relaxation (RLX0 versus RLX1).

optimization problem of LME. Because of this, we will con-
sider two tighter relaxation methods to alleviate this problem in
Sections IV-B and IV-C.

B. Mean-Dependent Linear Upper Bound on : RLX1

The first method is to use a linear upper bound to replace a
constant upper bound for , and the relaxed convex area used
for optimization thus becomes a sharp shaded area bounded by
a line segment intersected with the original function curve, as
plotted in Fig. 1(b). More specifically, the new relaxed constraint
is upper-bounded by a linear function of , which can be de-
rived according to the locality constraint in (63)

(65)

This relaxation method is called RLX1 in this paper. Obviously,
the new relaxation area is still a convex set, but much smaller
than RLX0.

Hence, using the relaxation method of RLX1, the LME opti-
mization problem in Problem 2 can be reformulated as follows.

1) Problem 4:

(66)

subject to

(67)

for all and and (68)

(69)

for all and (70)

(71)

and (72)

C. Mean Shifting for Even Tighter SOCP Relaxation: RLX2

However, one potential problem for the relaxation method
RLX1 is that the relaxed area may not be ideally tight if the
upper and lower bounds of have different signs, as shown
in Fig. 2(a). The issue can be solved by a slightly improved re-
laxation method, which we refer to as RLX2. In this method, all
the Gaussian means, i.e., , are shifted by a constant positive
value, e.g., , towards right as until the shaded
relaxation area does not cross the origin for all Gaussian means.
It is straightforward to show that the proposed constant shifting
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Fig. 2. Illustration of mean shift for tighter relaxation RLX2.

cannot reduce the area of the relaxed region but it can make the
region longer and narrower so that it can significantly reduce
the gap between the linear upper boundary and the underlying
function.1 Since are all constant, they do not affect the op-
timization problem as long as we properly modify the objective
function and all constraints based on the constant shifts. We first
perform optimization with respect to the shifted mean and
the optimal solution of is shifted back by the same constant
to obtain the optimal value of the original Gaussian mean .
More importantly, if is big enough, we can guarantee that
the upper bound and lower bound of all shifted means will
have the same sign. Thus, the linear upper bound of for both
support and error token matrices in terms of will achieve
better approximation accuracy, as shown in Fig. 2(b). In our
experiments, the value of is determined based on Gaussian
mean vectors in the initial models. In our experiments, a large
enough value is chosen to ensure the lower bounds of
all shifted mean vector are all positive.

By using the relaxation method of RLX2, Problem 3 can be
further relaxed and converted into the following convex opti-
mization problem as follows.

1) Problem 5:

(73)

subject to

(74)

(75)

for all and (76)

(77)

(78)

for all and (79)

(80)

and (81)

1In fact, it is this gap not the total area that determines relaxation errors in all
the three SOCP methods, including RLX0, RLX1 and RLX2. For any of these
three SCOP problems, it is easy to show that given constant �, the larger �
variables are, the smaller the value of the objective function becomes. This can
be easily justified in (67) since any increase of � values can be compromised
by reducing � value, assuming all � are constant. Because of this, the optimal
solution to Problems 3, 4, and 5 is always located in the upper boundary of the
relaxed region, never in the middle of the region.

In summary, the above three optimization problems, namely
Problem 3, Problem 4, and Problem 5, are all standard convex
quadratic programming problem and they all can be easily con-
verted into SOCP problem as in [18] and [30] so that they can
be solved by any SOCP solver.

V. EXPERIMENTS

The experiments in this section are organized as two parts. In
the first part, we carry out experiments on a small scale ASR
task, i.e., the TIDIGITS connected digit string recognition task.
The purposes of the experiments on the TIDIGITS task are two-
fold. First, we evaluate the proposed LME/SOCP methods and
compare them with other DT methods, such as MCE, as well
as LME using other optimization methods, such as gradient de-
scent (GD) and SDP. Second, we evaluate and compare three
different relaxation methods and choose the most efficient one
to further apply it to LVCSR tasks. In the second part, we con-
duct experiments to examine effectiveness of the LME/SOCP
method on an LVCSR task using the WSJ-5k corpus.

A. Experiments on TIDIGITS

The proposed SOCP-based optimization methods for LME
have been evaluated on the TIDIGITS database for connected
digit string speech recognition in string level. In our experi-
ments, only adult portion of the TIDIGITS corpus is used. The
training set has 8623 digit strings (from 112 speakers) and the
test set has 8700 strings (from other 113 speakers). Our model
set consists of 11 whole-word CDHMMs representing all
digits. Each HMM has 12 states and uses a simple left-to-right
topology without state-skipping. Acoustic feature vectors con-
sist of 39 dimensions (12 MFCCs and the normalized energy,
plus their first- and second-order time derivatives). Different
number of Gaussian mixture components (from 1 to 32 per
state) are experimented. In all LME methods, we use the best
MCE models (see [9]) as the initial models and only HMM
mean vectors are re-estimated with LME. In each iteration of
LME, a number of competing strings are generated for each
utterance in training set based on its N-best decoding results

. Then we select support tokens according to (10)
and obtain the optimal Viterbi sequence for each support token
according to the recognition result. Then, in each iteration, the
relaxed SOCP optimization is conducted with respect to , ,

and with the searching range being set to 0.06. At last,
CDHMM means are updated based on the optimization solu-
tion . In this paper, all convex optimization problems, i.e.,
Problem 3, Problem 4 and Problem 5 are solved by an SOCP
optimization tool, MOSEK 4.0 [22], running under Matlab.

In our experiments, the SOCP method with three different
types of relaxation techniques, namely RLX0, RLX1, and RLX2,
have been compared with the LME using gradient descent
(GD) method in [11], denoted as GRAD, and the SDP method
in [16], denoted as SDP. We also include the ML and minimum
classification error (MCE) [9] baseline systems in the table for
reference. In Table I, we gives performance comparison on the
TIDIGITS test set using all these different training methods.
From the results, we can also see that the RLX0 method only
achieves very little improvement over MCE method, while
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TABLE I
STRING ERROR RATES (IN %) ON THE TIDIGITS TEST DATA

TABLE II
AVERAGE OPTIMIZATION TIME (IN SECONDS) PER ITERATION

RLX1 and RLX2 method not only significantly improve recog-
nition performance over the MCE method, but also largely
outperform the simple GD-based LME method. By applying
mean shifting, RLX2 achieves the best recognition performance
among three SOCP approaches. Also all LME/SOCP methods
(RLX0, RLX1, and RLX2) are relatively easy to run while the
GD method needs lots of fine-tuning on its parameters such
as step size and penalty weight coefficients. From the results,
we can see that the LME/SDP method in [11] still achieves
the best overall performance, especially for large models.
However, the performance gap between LME/SDP and our best
RLX2 is not significant. It is safe to say that the RLX2 yields
comparable performance as LME/SDP on the TIDIGITS task.
However, if we compare the efficiency between LME/SDP and
our proposed SOCP approaches, all three SOCP methods2 run
substantially faster and consume much less memory during
optimization. As one example, the CPU times needed to op-
timize each problem per iteration are listed in Table II for
comparison between LME/SDP and RLX1. It is clear that the
RLX1 method runs about 20–200 times faster than the SDP
method. The speed gap between them grows bigger when the
model size increases. This can be easily explained because an
SOCP problem can be solved more efficiently than an SDP
problem with the similar problem size and structure. Moreover,
the size of optimization variable matrix in the LME/SDP [11]
is proportional to square of total number of Gaussians while
the size of optimization variable (e.g., ) is only proportional
to the number of Gaussians. As a result, for the same CDHMM
model set, the problem size of SOCP is significantly smaller
than the LME/SDP.

The advantage of SOCP with faster training speed and less
memory consumption is critical if we extend the LME method
to large-scale ASR tasks, such as LVCSR, which typically in-
volves much larger HMM model sets. The requirements of a
large amount of memory and computing resources will probably

2Experimental results show all three SOCP methods need similar optimiza-
tion time and memory.

make it difficult to apply the SDP method to any state-of-the-art
LVCSR task. In Section V-B, we will present our experiments in
an LVCSR task to further evaluate effectiveness of the proposed
LME/SOCP method on some larger scale ASR tasks. However,
based on the experiments on TIDIGITS, we only focus on the
best relaxation method, i.e., RLX2, due to its proved efficiency
and effectiveness, while the other two relaxation methods are
not explored furthermore.

B. Experiments on WSJ-5k

In this section, the proposed LME/SOCP method with
relaxation RLX2 is evaluated on a standard large-vocabulary
continuous speech recognition task using the WSJ0 (Wall
Street Journal) corpus. In our experiments, we use the standard
SI-84 set as training data, which consists of 7133 training
utterances from 84 speakers. Evaluation has been performed
on the standard Nov’92 nonverbalized 5 k close-vocabulary
test set (WSJ-5k), including 330 utterances in total from other
eight speakers. Feature extraction uses the standard 39 dimen-
sional vector, including 12 Mel-frequency cepstral coefficients
(MFCCs) and normalized energy, along with their delta and
acceleration coefficients. In our baseline model, we use the
HTK tools [31] to build a crossword tri-phone HMMs with a
total number of 2774 tied-states and each tied state has eight
Gaussian components. A standard trigram language model has
been used for test. The maximum-likelihood estimation (MLE)
baseline system achieves 95.35% in word accuracy, which is
comparable with other systems reported in the same task.

We use the above MLE models as the seed model to conduct
discriminative training based on word graphs. The word graphs
are generated for all training data using the MLE models based
on a uni-gram LM trained from all training transcriptions. In
these experiments, the proposed LME/SOCP method has been
compared with a different DT method, i.e., maximum mutual
information estimation (MMIE) and boosted MMIE using the
popular EBW optimization method, which is implemented
using the provided HTK tool [31]. All the parameters related to
the MMIE/EBW method are set to the default values suggested
by HTK. In the MMIE/EBW method, the learning constant

was set to 2, i-smoothing , acoustic scale factor
. In the LME method, Problem 5 is solved by the

commercial SOCP solver, i.e., MOSEK 4.0 [22], running under
Matlab. As in [27], the value for searching range in SOCP
optimization procedure is set to 0.005.

As shown in (74) and (75) of Problem 5, we need to intro-
duce a set of constraints for every sentence in the selected sup-
port token set . As the support token set grows, the number
of total constraints in the optimization Problem 5 also increases
dramatically. This will inevitably increase complexity of the op-
timization problem and it requires more CPU times and memory
to solve the underlying SOCP problem. Therefore, we need to
limit the total number of constraints in the optimization problem
for better efficiency in the training process. In this paper, we split
all support tokens in based on their margins into a smaller
number of groups. In this way, instead of introducing one set of
constraints in (74) and (75) for every token in , we only need
to impose a set of constraints for each group based on the av-
erage margins of all tokens in this group.
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Fig. 3. Effect of various control parameter � between support and error tokens
on WSJ-5k test set.

In the following, we conduct three different sets of ASR ex-
periments on the WSJ-5k task to investigate the performance of
the LME/SOCP method. First of all, we investigate the effect of
the contribution between support and error tokens by varying the
value of ; Second, we study the effect of using different number
of support tokens in the LME/SOCP optimization where all sup-
port tokens are assumed to belong to one group; Third, we study
the effect of using different number of groups to partition the
support token set. Finally, we will compare the best performance
of the proposed LME/SOCP method with other conventional
DT training methods, such as MMIE and boosted MMIE using
the EBW method.

1) Effect of the Contribution Between Support and Error
Tokens : In this experiment, we investigate the effect of
the contribution between support and error tokens to the final
system performance by varying the interpolation parameter .
The values we used include 1.0, 6.0, and 12.0. In Fig. 3, we can
see that the best performance was obtained by setting the value
of to 6.0. Therefore, for other experiments, we set 6.0 to the
parameter .

2) Effect of Pruning Small Values of the Matrix : As
shown in [27], small values in the matrix introduce noise into
an optimization procedure and are therefore harmful for system
training. A pruning strategy with the threshold parameter

has to be used to remove the small values (posterior
probabilities) from the matrix . To this end, we varied the
value of by 6.0, 5.0, and 4.0 but kept all other param-
eters unchanged. It was found that , which kept
approximately 25% elements of the matrix , achieved the best
performance as shown in Fig. 4. With this type of pruning, the
number of parameters that are optimized in SOCP is reduced
to 25% and the remaining 75% of Gaussian mean values are
not re-estimated during each iteration. For other experiments
thereafter, the is set to 6.0.

3) Effect of Support Token Selection: In this experiment, we
check the impact from the selection of a different number of sup-
port tokens. We fix all the other parameters unchanged but use
a different threshold, i.e., in (10), to select support token sets
from all training data. Here, we consider four different values

Fig. 4. Recognition performance on WSJ-5k test set by varying threshold
������ to prune matrix �.

Fig. 5. Effect of support token selection parameter � on WSJ-5k test set.

for , i.e., 1.0, 5.0, 10.0, 20.0. In this experiment, we only
use one group for all selected support tokens.

From Fig. 5, it is clearly shown that the number of support to-
kens strongly affects the final recognition performance. Among
them, the threshold value yields the best recognition
performance. As a result, we will use for the other ex-
periments thereafter.

4) Effect of Different Partition Groups: In this experiment,
we examine the effect of different group numbers for the sup-
port token set on the final system performance. The best setting

is used to select support tokens and all selected support
tokens are equally split into a number of groups according to
their margins.

In the experiment shown in Fig. 6, we consider to split support
tokens into two, three and four different groups. From Fig. 6,
we can see that the results with three group partition achieve the
best performance.

5) Performance Comparison With MLE, MMIE and Boosted-
MMIE: In this experiment, we compare the performance of
LME with the conventional MLE training method and two other
DT training methods based on MMIE and boosted MMIE cri-
teria using the standard EBW method. The parameter setting we
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Fig. 6. Recognition performance of different partitioning strategies on WSJ-5k
test set.

Fig. 7. Comparison of MLE, MMIE, Boosted MMIE, and LME/SOCP. Note:
LME-SOCP only updates the mean vectors of the model, whereas the other
three methods update all the model parameters, including weights, means, and
variances.

used in this experiment is , partition no. . The al-
gorithm of the boosted MMIE is implemented according to the
description of [25] by subtracting from the acoustic log-likeli-
hood the boosting parameter times the contribution of the sen-
tence-level accuracy arising from each arc in the forward–back-
ward algorithm [25]. The boosting parameter of the boosted
MMIE is set to 0.5, which has been tuned in a range
for the best performance according to [25]. All the other pa-
rameters of the boosted MMIE are set to the same values used
by MMIE. In Fig. 7, we can see that the performance of the
boosted MMIE converges more quickly than that of the con-
ventional MMIE. The performance of the proposed LME/SOCP
method with updating only mean vectors improves the result of
the MMIE baseline result with updating all the model parame-
ters, including weights, means and variances, from to

, with relative 9% of error reduction. We also carried
out significance test, which showed the LME-SOCP method

3available at http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm.

Fig. 8. Parameters �, � and the objective function evolve during LME/SOCP
training process.

Fig. 9. Number of support and error tokens evolve during LME/SOCP training
process.

significantly outperforms MMIE-based DT training method (the
p-value 0.017 is obtained at the level of 0.05 with the matched
pair sentence segment test using the standard NIST significance
test package for automatic speech recognition, namely sclite.3

We also present some representative evolution curves re-
garding the margin parameters , and the number of support
tokens during the iterations of optimization, which is helpful
to demonstrate the essence of the equations in Problem 5. The
curves of the above parameters are produced based on the
optimal settings for the LME/SOCP method, i.e., ,
partition no. , and . It is clearly
shown in Fig. 8 that the objective function decreases with
iterations in the optimization process, which demonstrates the
effective of the optimization procedure as shown in Problem 5.
Besides this, we also demonstrate the evolution trend of the
numbers of support and error tokens with optimization itera-
tions in Fig. 9.

By interpreting the experimental results between MLE,
MMIE/boosted MMIE and LME/SOCP, we can see that the
improvement of LME/SOCP mainly comes from three parts.
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First, all the MMIE/Boosted MMIE and LME/SOCP signif-
icantly outperform the conventional MLE training method
because they have all utilized DT information in their training
procedures. This part of the improvement is mostly due to the
advantages of DT training over GT training. Second, some
additional improvement for LME comes from a better gen-
eralization capacity held by LME than the other DT criteria,
e.g., MMIE. Third, another part of the improvement may
be attributed to the application of a more effective convex
optimization method. As it is shown in the experiments, the
same LME criterion gives quite different performance when
different optimization algorithms, such as GD, SDP, SOCP, are
used (cf. Table I). Finally, the LME/SOCP can guarantee to
find a global solution, though some relaxation is applied, but
the conventional EBW method is suboptimal so that it may get
stuck in a local optimal solution.

VI. CONCLUSION

In this paper, we have proposed to use SOCP for LME of
CDHMMs in speech recognition. The two new SOCP relax-
ation methods, namely RLX1 and RLX2, have been proposed
to convert LME of Gaussian mixture HMMs into an SOCP
problem and they both have been demonstrated to be effective
in several speech recognition tasks. The proposed formulation
is general enough to deal with various types of competing hy-
pothesis space, such as N-best lists and word graphs. Our ex-
perimental results have shown that the proposed LME/SOCP
method has achieved better performance than other DT methods
in a small-scale connected digit string recognition task using
TIDIGITS database as well as a large-vocabulary continuous
speech recognition task using the WSJ0 corpus.
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