1.1. The Kleene Recursion Theorem

This brief note covers Kleene's recursion Theorem and a few applications.

1.1.1 Theorem. (Kleene's recursion theorem) If $\lambda z \vec{x} \cdot f(z, \vec{x}_n) \in \mathcal{P}$, then for some e,

$$\phi_e^{(n)}(\vec{x}_n) = f(e, \vec{x}_n)$$
 for all \vec{x}_n

Proof. Let $\phi_a^{(n+1)} = \lambda z \vec{x}_n \cdot f(S_1^n(z, z), \vec{x}_n)$. Then

$$f(S_1^n(a, a), \vec{x}_n) = \phi_a^{(n+1)}(a, \vec{x}_n) = \phi_{S_1^n(a, a)}^{(n)}(\vec{x}_n)$$
 by S-m-n thm

Take $e = S_1^n(a, a)$.

1.1.2 Corollary. Let $f \in \mathcal{R}$. Then there is an $e \in \mathbb{N}$ such that $\phi_e = \phi_{f(e)}$.

Proof. $\lambda xy.\phi_{f(y)}(x) \in \mathcal{P}$ by the Normal Form Theorem. By 1.1.1, there is an $e \in \mathbb{N}$ such that $\phi_e(x) = \phi_{f(e)}(x)$, for all x.

For short, $\phi_e = \phi_{f(e)}$.

1.1.1. Two Applications of the Recursion Theorem

1.1.3 Definition. Recall that a *complete index set* is a set $A = \{x : \phi_x \in \mathcal{C}\}$ for some $\mathcal{C} \subseteq \mathcal{P}$. We call A *trivial* iff $A = \emptyset$ or $A = \mathbb{N}$ (correspondingly, $\mathcal{C} = \emptyset$ or $\mathcal{C} = \mathcal{P}$). Otherwise it is called *non trivial*.

1.1.4 Theorem. (Rice) A complete index set is recursive iff it is trivial.

Thus, "algorithmically" we can only "decide" trivial properties of "programs".

Proof. (The idea of this proof is attributed in [Rog67] to G.C. Wolpin.)

if-part. Immediate, since $\chi_{\emptyset} = \lambda x.1$ and $\chi_{\mathbb{N}} = \lambda x.0$.

only if-part. By contradiction, suppose that $A = \{x : \phi_x \in \mathcal{C}\}$ is non trivial, yet $A \in \mathcal{R}_*$. So, let $a \in A$ and $b \notin A$. Define f by

$$f(x) = \begin{cases} b & \text{if } x \in A \\ a & \text{if } x \notin A \end{cases}$$

Clearly,

Ż

$$x \in A \text{ iff } f(x) \notin A, \text{ for all } x$$
 (1)

By the Corollary, there is an e such that $\phi_e = \phi_{f(e)}$.

Thus,
$$e \in A$$
 iff $\phi_e \in \mathcal{C}$ iff $\phi_{f(e)} \in \mathcal{C}$ iff $f(e) \in A$, contradicting (1).

Ş

The second application is about self-referential (recursive) definitions of functions F such as the one below

$$F(\vec{x}_n) = f\left(\dots F\left(\dots F\left(\dots F\left(\dots\right)\right) \dots\right) \dots F\left(\dots F\left(\dots F\left(\dots\right)\right) \dots\right) \dots\right) \right)$$
(1)

where nesting of occurrences of F can be anything.

We are interested in just those cases that, as we say, the right hand side of (1) —as a function of \vec{x}_n — is partial recursive in F.

1.1.5 Definition. We say that a function is *partial recursive in* F iff it is in the closure of $I \cup \{F\}$ under composition, primitive recursion and (μy) . Here I denoted by "I" the standard initial functions of \mathcal{P} .

For short, a function is partial recursive in F iff is obtained by a finite number of partial recursive operations using as initial functions F and those in I.

1.1.6 Remark. It follows from 1.1.5 that if $F \in \mathcal{P}$, then a function that is partial recursive in F is just partial recursive.

In particular, if we replace F throughout the right hand side of (1) by a partial recursive function $\phi_e^{(n)}$ of the same arity n as F, then we end up with a partial recursive function.

Ś

In (1) F acts as a "function <u>variable</u>" to solve for. A solution h for F is a <u>specific function</u> that makes (1) true for all \vec{x}_n if we replace all occurrences of F by h.

We show that if the right hand side of (1) is partial recursive in F, then (1) always has a partial recursive solution for F. That is,

$$(\exists e) \Big(\text{if we replace } F \text{ in } (1) \text{ by } \lambda \vec{x}_n . \phi_e^{(n)}(\vec{x}_n), \text{ then the resulting relation is true for all } \vec{x}_n \Big)$$
 (2)

Indeed, the function $\lambda z \vec{x}_n G(z, \vec{x}_n)$ given below is partial recursive by 1.1.6.

$$G(z,\vec{x}_n) = f\left(\dots\phi_z^{(n)}\left(\dots\phi_z^{(n)}(\dots)\right)\dots\right)\dots\phi_z^{(n)}\left(\dots\phi_z^{(n)}\left(\dots\phi_z^{(n)}(\dots)\right)\dots\right)\dots\right)$$
(3)

By the recursion theorem there is an e such that

$$G(e, \vec{x}_n) = \phi_e^{(n)}(\vec{x}_n)$$
, for all \vec{x}_n

Thus, (3) yields

$$\phi_{e}^{(n)}(\vec{x}_{n}) = G(e, \vec{x}_{n}) = f\left(\dots\phi_{e}^{(n)}\left(\dots\phi_{e}^{(n)}(\dots)\right)\dots\right)\dots\phi_{e}^{(n)}\left(\dots\phi_{e}^{(n)}(\dots)\phi_{e}^{(n)}(\dots)\dots\right)\dots\right) \dots$$
(4)

That is, setting the "function variable F" equal to $\phi_e^{(n)}$ we have solved (1), and with a \mathcal{P} -solution at that!

1.1.7 Example. Here is a second solution to the question " $\lambda nx.A_n(x) \in \mathcal{R}$?".

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2018© by George Tourlakis

1.1. The Kleene Recursion Theorem

 $A_n(x)$ is given by

$$A_n(x) = \begin{cases} x+2 & \text{if } n=0\\ 2 & \text{else if } x=0\\ A_{n-1}(A_n(x-1)) & \text{otherwise} \end{cases}$$

We re-write the above using F as a function variable and setting $F(n, x) = A_n(x)$.

Thus, F is "given" by

$$F(n,x) = \begin{cases} x+2 & \text{if } n=0\\ 2 & \text{else if } x=0\\ F\left(n-1, F(n,x-1)\right) & \text{otherwise} \end{cases}$$
(5)

(5) has the form (1) and all assumptions are met. Thus, for some $e, F = \phi_e^{(2)}$ works. But is this $\phi_e^{(2)}$ the same as $A_n(x)$? Yes, provided (5) has a unique solution! That (5) indeed does have a unique total solution is an easy (double) induction exercise that shows $A_n(x) = B_n(x)$ for all n, x if

$$B_n(x) = \begin{cases} x+2 & \text{if } n=0\\ 2 & \text{else if } x=0\\ B_{n-1}(B_n(x-1)) & \text{otherwise} \end{cases}$$
(5')

Indeed we start the proof of $(\forall n)(\forall x)A_n(x) = B_n(x)$ by induction on n:

n = 0: $A_0(x) = x + 2 = B_0(x)$. I.H. fix n and assume for all x: $A_n(x) = B_n(x)$. I.S. for n + 1: Prove for all x and the fixed n: $A_{n+1}(x) = B_{n+1}(x)$.

Do the latter by induction on x:

x = 0: $A_{n+1}(0) = 2 = B_{n+1}(0)$. I.H. fix x and assume for the n above: $A_{n+1}(x) = B_{n+1}(x)$. I.S. for x + 1: For the fixed n and x we provide the last proof step:

$$A_{n+1}(x+1) = A_n(A_{n+1}(x)) \stackrel{\text{I.H. on } n}{=} B_n(A_{n+1}(x)) \stackrel{\text{I.H. on } x}{=} B_n(B_{n+1}(x)) = B_{n+1}(x+1) \qquad \Box$$

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2018© by George Tourlakis

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2018© by George Tourlakis

4

Bibliography

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2018© by George Tourlakis