1.1. The Kleene Recursion Theorem

This brief note covers Kleene's recursion Theorem and a few applications.
1.1.1 Theorem. (Kleene's recursion theorem) If $\lambda z \vec{x} . f\left(z, \vec{x}_{n}\right) \in \mathcal{P}$, then for some e,

$$
\phi_{e}^{(n)}\left(\vec{x}_{n}\right)=f\left(e, \vec{x}_{n}\right) \text { for all } \vec{x}_{n}
$$

Proof. Let $\phi_{a}^{(n+1)}=\lambda z \vec{x}_{n} \cdot f\left(S_{1}^{n}(z, z), \vec{x}_{n}\right)$. Then

$$
\begin{array}{rlr}
f\left(S_{1}^{n}(a, a), \vec{x}_{n}\right) & =\phi_{a}^{(n+1)}\left(a, \vec{x}_{n}\right) \\
& =\phi_{S_{1}^{n}(a, a)}^{(n)}\left(\vec{x}_{n}\right) \quad \text { by S-m-n the }
\end{array}
$$

Take $e=S_{1}^{n}(a, a)$.
1.1.2 Corollary. Let $f \in \mathcal{R}$. Then there is an $e \in \mathbb{N}$ such that $\phi_{e}=\phi_{f(e)}$.

Proof. $\lambda x y \cdot \phi_{f(y)}(x) \in \mathcal{P}$ by the Normal Form Theorem. By 1.1.1, there is an $e \in \mathbb{N}$ such that $\phi_{e}(x)=\phi_{f(e)}(x)$, for all x.

For short, $\phi_{e}=\phi_{f(e)}$.

1.1.1. Two Applications of the Recursion Theorem

1.1.3 Definition. Recall that a complete index set is a set $A=\left\{x: \phi_{x} \in \mathcal{C}\right\}$ for some $\mathcal{C} \subseteq \mathcal{P}$.

We call A trivial ff $A=\emptyset$ or $A=\mathbb{N}$ (correspondingly, $\mathcal{C}=\emptyset$ or $\mathcal{C}=\mathcal{P}$). Otherwise it is called non trivial.
1.1.4 Theorem. (Rice) A complete index set is recursive iff it is trivial.

Thus, "algorithmically" we can only "decide" trivial properties of "programs".
Proof. (The idea of this proof is attributed in [Rog67] to G.C. Wolpin.)
$i f$-part. Immediate, since $\chi_{\emptyset}=\lambda x .1$ and $\chi_{\mathbb{N}}=\lambda x .0$.
only if-part. By contradiction, suppose that $A=\left\{x: \phi_{x} \in \mathcal{C}\right\}$ is non trivial, yet $A \in \mathcal{R}_{*}$. So, let $a \in A$ and $b \notin A$. Define f by

$$
f(x)= \begin{cases}b & \text { if } x \in A \\ a & \text { if } x \notin A\end{cases}
$$

Clearly,

$$
\begin{equation*}
x \in A \text { if } f(x) \notin A, \text { for all } x \tag{1}
\end{equation*}
$$

By the Corollary, there is an e such that $\phi_{e}=\phi_{f(e)}$.
Thus, $e \in A$ iff $\phi_{e} \in \mathcal{C}$ iff $\phi_{f(e)} \in \mathcal{C}$ iff $f(e) \in A$, contradicting (1).

The second application is about self-referential (recursive) definitions of functions F such as the one below

$$
\begin{equation*}
F\left(\vec{x}_{n}\right)=f(\ldots F(\ldots F(\ldots) \ldots) \ldots F(\ldots F(\ldots F(\ldots) \ldots) \ldots) \ldots) \tag{1}
\end{equation*}
$$

where nesting of occurrences of F can be anything.
We are interested in just those cases that, as we say, the right hand side of (1) -as a function of \vec{x}_{n} - is partial recursive in F.
1.1.5 Definition. We say that a function is partial recursive in F iff it is in the closure of $I \cup$ $\{F\}$ under composition, primitive recursion and (μy). Here I denoted by " I " the standard initial functions of \mathcal{P}.

For short, a function is partial recursive in F tiff is obtained by a finite number of partial recursive operations using as initial functions F and those in I.
1.1.6 Remark. It follows from 1.1 .5 that if $F \in \mathcal{P}$, then a function that is partial recursive in F is just partial recursive.

In particular, if we replace F throughout the right hand side of (1) by a partial recursive function $\phi_{e}^{(n)}$ of the same arity n as F, then we end up with a partial recursive function.

In (1) F acts as a "function variable" to solve for. A solution h for F is a specific function that makes (1) true for all \vec{x}_{n} if we replace all occurrences of F by h.

We show that if the right hand side of (1) is partial recursive in F, then (1) always has a partial recursive solution for F. That is,
$(\exists e)$ (if we replace F in (1) by $\lambda \vec{x}_{n} \cdot \phi_{e}^{(n)}\left(\vec{x}_{n}\right)$, then the resulting relation is true for all \vec{x}_{n})
Indeed, the function $\lambda z \vec{x}_{n} . G\left(z, \vec{x}_{n}\right)$ given below is partial recursive by 1.1.6.

$$
\begin{equation*}
G\left(z, \vec{x}_{n}\right)=f\left(\ldots \phi_{z}^{(n)}\left(\ldots \phi_{z}^{(n)}(\ldots) \ldots\right) \ldots \phi_{z}^{(n)}\left(\ldots \phi_{z}^{(n)}\left(\ldots \phi_{z}^{(n)}(\ldots) \ldots\right) \ldots\right) \ldots\right) \tag{3}
\end{equation*}
$$

By the recursion theorem there is an e such that

$$
G\left(e, \vec{x}_{n}\right)=\phi_{e}^{(n)}\left(\vec{x}_{n}\right), \text { for all } \vec{x}_{n}
$$

Thus, (3) yields

$$
\begin{equation*}
\phi_{e}^{(n)}\left(\vec{x}_{n}\right)=G\left(e, \vec{x}_{n}\right)=f\left(\ldots \phi_{e}^{(n)}\left(\ldots \phi_{e}^{(n)}(\ldots) \ldots\right) \ldots \phi_{e}^{(n)}\left(\ldots \phi_{e}^{(n)}\left(\ldots \phi_{e}^{(n)}(\ldots) \ldots\right) \ldots\right) \ldots\right) \tag{4}
\end{equation*}
$$

That is, setting the "function variable F " equal to $\phi_{e}^{(n)}$ we have solved (1), and with a \mathcal{P}-solution at that!
1.1.7 Example. Here is a second solution to the question " $\lambda n x . A_{n}(x) \in \mathcal{R}$?".

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2018<circle> by George Tourlakis
$A_{n}(x)$ is given by

$$
A_{n}(x)= \begin{cases}x+2 & \text { if } n=0 \\ 2 & \text { else if } x=0 \\ A_{n-1}\left(A_{n}(x \dot{-1})\right) & \text { otherwise }\end{cases}
$$

We re-write the above using F as a function variable and setting $F(n, x)=A_{n}(x)$.
Thus, F is "given" by

$$
F(n, x)= \begin{cases}x+2 & \text { if } n=0 \tag{5}\\ 2 & \text { else if } x=0 \\ F(n \dot{1}, F(n, x \dot{1})) & \text { otherwise }\end{cases}
$$

(5) has the form (1) and all assumptions are met. Thus, for some $e, F=\phi_{e}^{(2)}$ works. But is this $\phi_{e}^{(2)}$ the same as $A_{n}(x)$? Yes, provided (5) has a unique solution! That (5) indeed does have a unique total solution is an easy (double) induction exercise that shows $A_{n}(x)=B_{n}(x)$ for all n, x if

$$
B_{n}(x)= \begin{cases}x+2 & \text { if } n=0 \\ 2 & \text { else if } x=0 \\ B_{n-1}\left(B_{n}(x \dot{-1})\right) & \text { otherwise }\end{cases}
$$

Indeed we start the proof of $(\forall n)(\forall x) A_{n}(x)=B_{n}(x)$ by induction on n :
$n=0: A_{0}(x)=x+2=B_{0}(x)$.
I.H. fix n and assume for all $x: A_{n}(x)=B_{n}(x)$.
I.S. for $n+1$: Prove for all x and the fixed n : $A_{n+1}(x)=B_{n+1}(x)$.

Do the latter by induction on x :
$x=0: A_{n+1}(0)=2=B_{n+1}(0)$.
I.H. fix x and assume for the n above: $A_{n+1}(x)=B_{n+1}(x)$.
I.S. for $x+1$: For the fixed n and x we provide the last proof step:

$$
A_{n+1}(x+1)=A_{n}\left(A_{n+1}(x)\right) \stackrel{\text { I.H. on } n}{=} B_{n}\left(A_{n+1}(x)\right) \stackrel{\text { I.H.on } x}{=} B_{n}\left(B_{n+1}(x)\right)=B_{n+1}(x+1)
$$

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2018® by George Tourlakis

Bibliography

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

