Chapter IX

APPENDIX Why mathematicians need not lose sleep over automatic theorem provers

This appendix presents the technical fact that any creative set L has trivially describable (hence trivially recognizable) infinite recursive ${ }^{\dagger}$ subsets such that any "verifier" for L-i.e., a ϕ_{i} such that $L=W_{i}$-takes an unreasonably-horrendously-outrageously humongous amount of time to verify membership in such subsets.

More precisely, we will define a particular creative set L and show that for any choice of a recursive $\phi_{j_{0}}$-e.g., one with a horrendously big run time, see Chapter 7-and for $\boldsymbol{a n y} \phi_{i_{0}}$ such that $L=W_{i_{0}}$ there is a "trivially recognizable" infinite subset $T \subseteq L$ such that, for every $x \in T$, the computation of $\phi_{i_{0}}(x)$ will take at least as many steps as that of $\phi_{j_{0}}(x)$.

We will then offer an interpretation of this fact in the context of recursively axiomatized theories such as Peano arithmetic and Set Theory.

1. A creative set

1.1 Definition. We define the set L as follows:

$$
\begin{aligned}
L=\{ & \langle i, j, x\rangle:\left(\phi_{i}(\langle i, j, x\rangle) \downarrow \vee \phi_{j}(\langle i, j, x\rangle) \downarrow\right) \wedge \\
& \left.\phi_{i}(\langle i, j, x\rangle) \text { needs at least as many steps as } \phi_{j}(\langle i, j, x\rangle)\right\}
\end{aligned}
$$

1.2 Theorem. L defined above is creative.

Proof. (1) L is semi-recursive (r.e.). Indeed, let

$$
g(i, j, x) \stackrel{\text { def }}{=}(\mu y)(T(i,\langle i, j, x\rangle, y) \vee T(j,\langle i, j, x\rangle, y))
$$

[^0]Why mathematicians need not lose sleep over automatic theorem provers
Then,

$$
\begin{gathered}
\langle i, j, x\rangle \in L \leftrightarrow(\exists y)(T(i,\langle i, j, x\rangle, y) \vee T(j,\langle i, j, x\rangle, y)) \wedge \\
T(j,\langle i, j, x\rangle, g(i, j, x))
\end{gathered}
$$

and we are done by strong projection, closure properties of \mathcal{P}_{*}, including the fact that \mathcal{P}_{*} is closed under substitution of \mathcal{P}-functions into variables. ${ }^{\dagger}$
(2) Next we prove that \bar{L} is productive. We will argue that $f=\lambda i .\langle i, i, 0\rangle$ is a productive function for $\bar{L} . \ddagger$

Let then

$$
\begin{equation*}
W_{i} \subseteq \bar{L} \tag{2.1}
\end{equation*}
$$

Question. Can it be $\langle i, i, 0\rangle \in L$? Well, if yes, then, in particular, $\phi_{i}(\langle i, i, 0\rangle) \downarrow$, that is ${ }^{\S}\langle i, i, 0\rangle \in W_{i}$ contradicting (2.1).

We conclude that $\langle i, i, 0\rangle \in \bar{L}$.
Question. Can it be $\langle i, i, 0\rangle \in W_{i}$? Well, if yes, then $\phi_{i}(\langle i, i, 0\rangle) \downarrow$. Moreover $\phi_{i}(\langle i, i, 0\rangle)$ takes no more time to compute than $\phi_{i}(\langle i, i, 0\rangle)$ (i.e., itself). Thus, the entrance requirement for L is met: $\langle i, i, 0\rangle \in L$, contradicting (2.1) once more. Thus, $\langle i, i, 0\rangle \notin W_{i}$ and we are done.

With the theorem out of the way-for now-let us choose and fix any recursive $\phi_{j_{0}}$ whatsoever. Next, let us choose any verifier whatsoever ${ }^{\boldsymbol{\top}} \phi_{i_{0}}$ for L. That is

$$
\begin{equation*}
L=W_{i_{0}} \tag{3}
\end{equation*}
$$

Let also

$$
\begin{equation*}
T \stackrel{\text { def }}{=}\left\{\left\langle i_{0}, j_{0}, x\right\rangle: x \in \mathbb{N}\right\} \tag{4}
\end{equation*}
$$

We will argue two things:
(I) $T \subseteq L$
(II) For all $x \in \mathbb{N}, \phi_{i_{0}}\left(\left\langle i_{0}, j_{0}, x\right\rangle\right)$ takes at least as much time as $\phi_{j_{0}}\left(\left\langle i_{0}, j_{0}, x\right\rangle\right)$ to compute.

OK, fix an arbitrary x and let us pose and answer some questions:
Question. Can it be $\phi_{i_{0}}\left(\left\langle i_{0}, j_{0}, x\right\rangle\right) \uparrow$? If yes, then surely $\phi_{i_{0}}\left(\left\langle i_{0}, j_{0}, x\right\rangle\right)$ takes at least as much time as $\phi_{j_{0}}\left(\left\langle i_{0}, j_{0}, x\right\rangle\right)$ since the former is undefined and the latter is defined (recall that $\phi_{j_{0}} \in \mathcal{R}$). Thus the entrance conditions for L are met:

$$
\left\langle i_{0}, j_{0}, x\right\rangle \in L
$$

But $\phi_{i_{0}}\left(\left\langle i_{0}, j_{0}, x\right\rangle\right) \uparrow$ means

$$
\left\langle i_{0}, j_{0}, x\right\rangle \notin W_{i_{0}}
$$

[^1]contradicting (3). Thus,
\[

$$
\begin{equation*}
\phi_{i_{0}}\left(\left\langle i_{0}, j_{0}, x\right\rangle\right) \downarrow \tag{5}
\end{equation*}
$$

\]

By (3), $\left\langle i_{0}, j_{0}, x\right\rangle \in L$, establishing (I).
Now for (II):
Question. Can it be that $\phi_{i_{0}}\left(\left\langle i_{0}, j_{0}, x\right\rangle\right) \downarrow$ in strictly fewer steps than $\phi_{j_{0}}\left(\left\langle i_{0}, j_{0}, x\right\rangle\right) \downarrow$?

NO. Otherwise, we have the entrance sub-condition (for L) to the left of " \wedge " true, but the sub-condition to the right false. Hence $\left\langle i_{0}, j_{0}, x\right\rangle \notin L$ (yet $\left\langle i_{0}, j_{0}, x\right\rangle \in W_{i_{0}}$) contradicting (3) again. Thus, (II) is proved.

Since we can arrange to pick a $\phi_{j_{0}}$ that runs horrendously-outrageouslyhumongously slowly (Ch.7), what we have proved is that for any such $\phi_{j_{0}}$ and any choice of verifier "program" i_{0} for L, we can build an infinite subset T (see (4)) of L that, despite being trivially recognizable on its own, the verifier i_{0} for L will be horrendously-impractically-slow on every input in T.

Let us now bring into the discussion the fact that L is creative. We cite two facts without proof (for proofs see Ch. 9 of "Computability").
(2) By the way, we can hope for no more than a verifier for a creative set. We can have no yes/no recognizer (that is, decider) since such a set is not recursive (its complement is productive, i.e., effectively non-r.e.).

Fact 1. The set of theorems of each of Peano arithmetic and (axiomatic) Set Theory is creative.

Fact 2. Any two creative sets, A and B are recursively isomorphic. This means that there is a recursive 1-1 and onto function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f[A]=B$.

Thus, there is, essentially, only one creative set. In particular, L can be thought (within two-way 1-1 recursive encoding) that it $i s$ the set of all theorems of Peano arithmetic.

Select now, as above, a very-very-very slowly computable total $\phi_{j_{0}}$ and pick any verifier $\phi_{i_{0}}$ for L.

Consider the associated set T. This is a (sub)set of theorems (an infinite one at that) of Peano arithmetic, since $T \subseteq L$. Now, "humanly" speaking, the T-theorems are trivial to recognize, since we can tell at a glance if a number has the form $\left\langle i_{0}, j_{0}, x\right\rangle$-i.e., $2^{i_{0}+1} 3^{j_{0}+1} 5^{x+1}$-or not.

On the other hand, our arbitrary verifier $\phi_{i_{0}}$ will have loads of trouble on every theorem in T : it will take more time on each such than what $\phi_{j_{0}}$ needs.

Mathematicians (and computer scientists who prove theorems) will sleep easy tonight.
(2) If we think of natural numbers as strings over $\{0,1\}$, that is, if we identify \mathbb{N} I. with $\{0,1\}^{*}$, then the set of theorems T is a regular language over the alphabet $\{0,1,(), ;$,$\} where ";" represents ",". I mean, we can think of " \left\langle i_{0}, j_{0}, x\right\rangle$ " as the string " $\left(i_{0} ; j_{0} ; x\right)$ ", $x \in\{0,1\}^{*}$.

[^2]
[^0]: ${ }^{\dagger}$ Indeed under some mild assumptions, regular.

[^1]: ${ }^{\dagger}$ If $Q(y, \vec{x}) \in \mathcal{P}_{*}$ and $\lambda \vec{z} . f(\vec{z}) \in \mathcal{P}$, then $Q(f(\vec{z}), \vec{x}) \in \mathcal{P}_{*}$ since $Q(f(\vec{z}), \vec{x}) \leftrightarrow(\exists y)(y=$ $f(\vec{z}) \wedge Q(y, \vec{x}))$. Now use the fact that the graph of f is in \mathcal{P}_{*}, and closure under \wedge and \exists.
 ${ }^{\ddagger}$ So is $\lambda i .\langle i, i, k\rangle$ for any $k \in \mathbb{N}$.
 ${ }^{\S}$ Recall the definition: $W_{i}=\operatorname{dom}\left(\phi_{i}\right)$.
 "Recall the terminology "verifier". It means that if $z \in L$ then $\phi_{i_{0}}(z) \downarrow$-i.e., "program" i_{0} verifies membership-else $\phi_{i_{0}}(z) \uparrow$, i.e., program i_{0} runs forever.

[^2]: Supplementary Lecture Notes, C5111/C4111 (Winter 2002) © by George Tourlakis

