
Chapter IX

APPENDIX
Why mathematicians need not lose sleep
over automatic theorem provers

This appendix presents the technical fact that any creative set L has trivially
describable (hence trivially recognizable) infinite recursive† subsets such that
any “verifier” for L—i.e., a φi such that L = Wi—takes an unreasonably-
horrendously-outrageously humongous amount of time to verify membership
in such subsets.

More precisely, we will define a particular creative set L and show that for
any choice of a recursive φj0—e.g., one with a horrendously big run time, see
Chapter 7—and for any φi0 such that L = Wi0 there is a “trivially recognizable”
infinite subset T ⊆ L such that, for every x ∈ T , the computation of φi0(x) will
take at least as many steps as that of φj0(x).

We will then offer an interpretation of this fact in the context of recursively
axiomatized theories such as Peano arithmetic and Set Theory.

1. A creative set

1.1 Definition. We define the set L as follows:

L =
{

〈i, j, x〉 :
(

φi(〈i, j, x〉) ↓ ∨φj(〈i, j, x〉) ↓
)

∧

φi(〈i, j, x〉) needs at least as many steps as φj(〈i, j, x〉)
}

�

1.2 Theorem. L defined above is creative.

Proof. (1) L is semi-recursive (r.e.). Indeed, let

g(i, j, x)
def
= (µy)

(

T (i, 〈i, j, x〉, y) ∨ T (j, 〈i, j, x〉, y)
)

†Indeed under some mild assumptions, regular.



2 IX. APPENDIX
Why mathematicians need not lose sleep
over automatic theorem provers

Then,

〈i, j, x〉 ∈ L ↔(∃y)
(

T (i, 〈i, j, x〉, y) ∨ T (j, 〈i, j, x〉, y)
)

∧

T
(

j, 〈i, j, x〉, g(i, j, x)
)

and we are done by strong projection, closure properties of P∗, including the
fact that P∗ is closed under substitution of P-functions into variables.†

(2) Next we prove that L is productive. We will argue that f = λi.〈i, i, 0〉 is
a productive function for L.‡

Let then
Wi ⊆ L (2.1)

Question. Can it be 〈i, i, 0〉 ∈ L? Well, if yes, then, in particular, φi(〈i, i, 0〉) ↓,
that is,§ 〈i, i, 0〉 ∈ Wi contradicting (2.1).

We conclude that 〈i, i, 0〉 ∈ L.

Question. Can it be 〈i, i, 0〉 ∈ Wi? Well, if yes, then φi(〈i, i, 0〉) ↓. Moreover
φi(〈i, i, 0〉) takes no more time to compute than φi(〈i, i, 0〉) (i.e., itself). Thus,
the entrance requirement for L is met: 〈i, i, 0〉 ∈ L, contradicting (2.1) once
more. Thus, 〈i, i, 0〉 /∈ Wi and we are done. �

With the theorem out of the way—for now—let us choose and fix any re-

cursive φj0 whatsoever. Next, let us choose any verifier whatsoever¶ φi0 for
L. That is

L = Wi0 (3)

Let also
T

def
=

{

〈i0, j0, x〉 : x ∈ N

}

(4)

We will argue two things:

(I) T ⊆ L

(II) For all x ∈ N, φi0 (〈i0, j0, x〉) takes at least as much time as φj0(〈i0, j0, x〉)
to compute.

OK, fix an arbitrary x and let us pose and answer some questions:

Question. Can it be φi0 (〈i0, j0, x〉) ↑? If yes, then surely φi0(〈i0, j0, x〉)
takes at least as much time as φj0 (〈i0, j0, x〉) since the former is undefined and
the latter is defined (recall that φj0 ∈ R). Thus the entrance conditions for L
are met:

〈i0, j0, x〉 ∈ L

But φi0(〈i0, j0, x〉) ↑ means
〈i0, j0, x〉 /∈ Wi0

†If Q(y, ~x) ∈ P∗ and λ~z.f(~z) ∈ P , then Q(f(~z), ~x) ∈ P∗ since Q(f(~z), ~x) ↔ (∃y)(y =
f(~z) ∧ Q(y, ~x)). Now use the fact that the graph of f is in P∗, and closure under ∧ and ∃.

‡So is λi.〈i, i, k〉 for any k ∈ N.
§Recall the definition: Wi = dom(φi).
¶Recall the terminology “verifier”. It means that if z ∈ L then φi0

(z) ↓—i.e., “program”
i0 verifies membership—else φi0

(z) ↑, i.e., program i0 runs forever.

Supplementary Lecture Notes, C5111/C4111 (Winter 2002) c© by George

Tourlakis



1. A creative set 3

contradicting (3). Thus,
φi0(〈i0, j0, x〉) ↓ (5)

By (3), 〈i0, j0, x〉 ∈ L, establishing (I).

Now for (II):

Question. Can it be that φi0(〈i0, j0, x〉) ↓ in strictly fewer steps than
φj0(〈i0, j0, x〉) ↓?

NO. Otherwise, we have the entrance sub-condition (for L) to the left of
“∧” true, but the sub-condition to the right false. Hence 〈i0, j0, x〉 /∈ L (yet
〈i0, j0, x〉 ∈ Wi0 ) contradicting (3) again. Thus, (II) is proved.

Since we can arrange to pick a φj0 that runs horrendously-outrageously-
humongously slowly (Ch.7), what we have proved is that for any such φj0 and
any choice of verifier “program” i0 for L, we can build an infinite subset T
(see (4)) of L that, despite being trivially recognizable on its own, the verifier
i0 for L will be horrendously-impractically-slow on every

input in T .

Let us now bring into the discussion the fact that L is creative. We cite two
facts without proof (for proofs see Ch.9 of “Computability”).

� By the way, we can hope for no more than a verifier for a creative set. We can
have no yes/no recognizer (that is, decider) since such a set is not recursive (its
complement is productive, i.e., effectively non-r.e.). �

Fact 1. The set of theorems of each of Peano arithmetic and (axiomatic)
Set Theory is creative.

Fact 2. Any two creative sets, A and B are recursively isomorphic. This
means that there is a recursive 1-1 and onto function f : N → N such that
f [A] = B.

Thus, there is, essentially, only one creative set. In particular, L can be
thought (within two-way 1-1 recursive encoding) that it is the set of all theorems
of Peano arithmetic.

Select now, as above, a very-very-very slowly computable total φj0 and pick
any verifier φi0 for L.

Consider the associated set T . This is a (sub)set of theorems (an infinite
one at that) of Peano arithmetic, since T ⊆ L. Now, “humanly” speaking, the
T -theorems are trivial to recognize, since we can tell at a glance if a number
has the form 〈i0, j0, x〉—i.e., 2i0+13j0+15x+1—or not.

On the other hand, our arbitrary verifier φi0 will have loads of trouble on
every theorem in T : it will take more time on each such than what φj0 needs.

Mathematicians (and computer scientists who prove theorems) will sleep
easy tonight.

� If we think of natural numbers as strings over {0, 1}, that is, if we identify N

with {0, 1}∗, then the set of theorems T is a regular language over the alphabet
{0, 1, (, ), ; } where “;” represents “,”. I mean, we can think of “〈i0, j0, x〉” as
the string “(i0; j0; x)”, x ∈ {0, 1}∗. �

Supplementary Lecture Notes, C5111/C4111 (Winter 2002) c© by George

Tourlakis


