Chapter IX

APPENDIX Why mathematicians need not lose sleep over automatic theorem provers

This appendix presents the technical fact that any *creative* set L has trivially describable (hence trivially recognizable) infinite recursive[†] subsets such that any "verifier" for L—i.e., a ϕ_i such that $L = W_i$ —takes an unreasonably-horrendously-outrageously humongous amount of time to verify membership in such subsets.

More precisely, we will define a particular creative set L and show that for *any* choice of a *recursive* ϕ_{j_0} —e.g., one with a horrendously big run time, see Chapter 7—and for **any** ϕ_{i_0} such that $L = W_{i_0}$ there is a "trivially recognizable" *infinite* subset $T \subseteq L$ such that, for every $x \in T$, the computation of $\phi_{i_0}(x)$ will take at least as many steps as that of $\phi_{i_0}(x)$.

We will then offer an interpretation of this fact in the context of recursively axiomatized theories such as Peano arithmetic and Set Theory.

1. A creative set

1.1 Definition. We define the set L as follows:

$$\begin{split} L &= \Big\{ \langle i, j, x \rangle : \left(\phi_i(\langle i, j, x \rangle) \downarrow \lor \phi_j(\langle i, j, x \rangle) \downarrow \right) \land \\ &\qquad \phi_i(\langle i, j, x \rangle) \text{ needs at least as many steps as } \phi_j(\langle i, j, x \rangle) \Big\} \end{split}$$

1.2 Theorem. L defined above is creative.

Proof. (1) L is semi-recursive (r.e.). Indeed, let

$$g(i,j,x) \stackrel{\text{def}}{=} (\mu y) \big(T(i,\langle i,j,x\rangle,y) \lor T(j,\langle i,j,x\rangle,y) \big)$$

 $^{^\}dagger \mathrm{Indeed}$ under some mild assumptions, $\mathit{regular}.$

2 IX. APPENDIX Why mathematicians need not lose sleep over automatic theorem provers Then,

$$\begin{split} \langle i, j, x \rangle \in L \leftrightarrow (\exists y) \big(T(i, \langle i, j, x \rangle, y) \lor T(j, \langle i, j, x \rangle, y) \big) \land \\ T\big(j, \langle i, j, x \rangle, g(i, j, x) \big) \end{split}$$

and we are done by strong projection, closure properties of \mathcal{P}_* , including the fact that \mathcal{P}_* is closed under substitution of \mathcal{P} -functions into variables.[†]

(2) Next we prove that \overline{L} is productive. We will argue that $f = \lambda i \langle i, i, 0 \rangle$ is a productive function for \overline{L} .[‡]

Let then

$$W_i \subseteq \overline{L} \tag{2.1}$$

Question. Can it be $\langle i, i, 0 \rangle \in L$? Well, if yes, then, in particular, $\phi_i(\langle i, i, 0 \rangle) \downarrow$, that is,[§] $\langle i, i, 0 \rangle \in W_i$ contradicting (2.1).

We conclude that $\langle i, i, 0 \rangle \in \overline{L}$.

Question. Can it be $\langle i, i, 0 \rangle \in W_i$? Well, if yes, then $\phi_i(\langle i, i, 0 \rangle) \downarrow$. Moreover $\phi_i(\langle i, i, 0 \rangle)$ takes no more time to compute than $\phi_i(\langle i, i, 0 \rangle)$ (i.e., itself). Thus, the entrance requirement for L is met: $\langle i, i, 0 \rangle \in L$, contradicting (2.1) once more. Thus, $\langle i, i, 0 \rangle \notin W_i$ and we are done.

With the theorem out of the way—for now—let us choose and fix any recursive ϕ_{j_0} whatsoever. Next, let us choose any verifier whatsoever $\oint \phi_{i_0}$ for L. That is

$$L = W_{i_0} \tag{3}$$

Let also

$$T \stackrel{\text{def}}{=} \left\{ \langle i_0, j_0, x \rangle : x \in \mathbb{N} \right\}$$
(4)

We will argue two things:

- (I) $T \subseteq L$
- (II) For all $x \in \mathbb{N}$, $\phi_{i_0}(\langle i_0, j_0, x \rangle)$ takes at least as much time as $\phi_{j_0}(\langle i_0, j_0, x \rangle)$ to compute.

OK, fix an arbitrary x and let us pose and answer some questions:

Question. Can it be $\phi_{i_0}(\langle i_0, j_0, x \rangle) \uparrow$? If yes, then surely $\phi_{i_0}(\langle i_0, j_0, x \rangle)$ takes at least as much time as $\phi_{j_0}(\langle i_0, j_0, x \rangle)$ since the former is undefined and the latter is *defined* (recall that $\phi_{j_0} \in \mathcal{R}$). Thus the entrance conditions for L are met:

$$\langle i_0, j_0, x \rangle \in L$$

But $\phi_{i_0}(\langle i_0, j_0, x \rangle) \uparrow$ means

 $\langle i_0, j_0, x \rangle \notin W_{i_0}$

[†]If $Q(y, \vec{x}) \in \mathcal{P}_*$ and $\lambda \vec{z} \cdot f(\vec{z}) \in \mathcal{P}$, then $Q(f(\vec{z}), \vec{x}) \in \mathcal{P}_*$ since $Q(f(\vec{z}), \vec{x}) \leftrightarrow (\exists y)(y = f(\vec{z}) \land Q(y, \vec{x}))$. Now use the fact that the graph of f is in \mathcal{P}_* , and closure under \land and \exists .

Supplementary Lecture Notes, C5111/C4111 (Winter 2002) C by George Tourlakis

[†]So is $\lambda i \langle i, i, k \rangle$ for any $k \in \mathbb{N}$.

[§]Recall the definition: $W_i = \operatorname{dom}(\phi_i)$.

[¶]Recall the terminology "verifier". It means that if $z \in L$ then $\phi_{i_0}(z) \downarrow$ —i.e., "program" i_0 verifies membership—else $\phi_{i_0}(z) \uparrow$, i.e., program i_0 runs forever.

1. A creative set

contradicting (3). Thus,

$$\phi_{i_0}(\langle i_0, j_0, x \rangle) \downarrow \tag{5}$$

By (3), $\langle i_0, j_0, x \rangle \in L$, establishing (I).

Now for (II):

Question. Can it be that $\phi_{i_0}(\langle i_0, j_0, x \rangle) \downarrow$ in strictly fewer steps than $\phi_{j_0}(\langle i_0, j_0, x \rangle) \downarrow$?

NO. Otherwise, we have the entrance sub-condition (for L) to the left of " \wedge " true, but the sub-condition to the right **false**. Hence $\langle i_0, j_0, x \rangle \notin L$ (yet $\langle i_0, j_0, x \rangle \in W_{i_0}$) contradicting (3) again. Thus, (II) is proved.

Since we can arrange to pick a ϕ_{j_0} that runs horrendously-outrageouslyhumongously slowly (Ch.7), what we have proved is that for any such ϕ_{j_0} and any choice of verifier "program" i_0 for L, we can build an infinite subset T (see (4)) of L that, despite being trivially recognizable on its own, the verifier i_0 for L will be horrendously-impractically-slow on every input in T.

Let us now bring into the discussion the fact that L is creative. We cite two facts without proof (for proofs see Ch.9 of "Computability").

By the way, we can hope for no more than a verifier for a creative set. We can have **no** yes/no recognizer (that is, decider) since such a set is not recursive (its complement is productive, i.e., *effectively non-r.e.*).

Fact 1. The set of theorems of each of Peano arithmetic and (axiomatic) Set Theory is creative.

Fact 2. Any two creative sets, A and B are recursively isomorphic. This means that there is a recursive 1-1 and onto function $f : \mathbb{N} \to \mathbb{N}$ such that f[A] = B.

Thus, there is, essentially, only *one* creative set. In particular, L can be thought (within two-way 1-1 recursive encoding) that it *is* the set of all theorems of Peano arithmetic.

Select now, as above, a very-very-very slowly computable total ϕ_{j_0} and pick **any** verifier ϕ_{i_0} for L.

Consider the associated set T. This is a (sub)set of theorems (an infinite one at that) of Peano arithmetic, since $T \subseteq L$. Now, "humanly" speaking, the T-theorems are trivial to recognize, since we can tell at a glance if a number has the form $\langle i_0, j_0, x \rangle$ —i.e., $2^{i_0+1}3^{j_0+1}5^{x+1}$ —or not.

On the other hand, our arbitrary verifier ϕ_{i_0} will have loads of trouble on every theorem in T: it will take more time on each such than what ϕ_{j_0} needs.

Mathematicians (and computer scientists who prove theorems) will sleep easy tonight.

Ŝ

Ş

If we think of natural numbers as strings over $\{0,1\}$, that is, if we identify \mathbb{N} with $\{0,1\}^*$, then the set of theorems T is a regular language over the alphabet $\{0,1,(,),;\}$ where ";" represents ",". I mean, we can think of " $\langle i_0, j_0, x \rangle$ " as the string " $(i_0; j_0; x)$ ", $x \in \{0,1\}^*$.

Supplementary Lecture Notes, C5111/C4111 (Winter 2002) \odot by George Tourlakis

Ş