More Examples of Hilbert-style proofs

I give you here a couple of Hilbert-style proofs for "visual practice". Of course, the *best practice* is when you prove things yourselves, not just reading other people's proofs. By the way, I use " \square " to mark the end of a proof.

A.1 "Distributivity" (This is 8.15 in the GS text).

$$\vdash (\forall x)(A \Rightarrow B) \land (\forall x)(A \Rightarrow C) \equiv (\forall x)(A \Rightarrow B \land C) \tag{1}$$

In GS's notation—recall the translation: $(\forall x | A : B)$ stands for $(\forall x)(A \Rightarrow B)$ —this is

$$\vdash (\forall x | A : B) \land (\forall x | A : C) \equiv (\forall x | A : B \land C)$$

Taking A (range) to be the formula *true* we have the special case mentioned in our "Toolbox", namely,

$$\vdash (\forall x)B \land (\forall x)C \equiv (\forall x)(B \land C)$$
(2)

Let us prove (1). We split \equiv in two directions and use the DThm in each. (\Rightarrow direction)

1.	$(\forall x)(A \Rightarrow B) \land (\forall x)(A \Rightarrow C)$	<i>(assume)</i>
2.	$(\forall x)(A \Rightarrow B)$	$\langle 1. \text{ and taut. implication} \rangle$
3.	$(\forall x)(A \Rightarrow C)$	$\langle 1. \text{ and taut. implication} \rangle$
4.	$A \Rightarrow B$	$\langle 2. \text{ and } specialization} \rangle$
5.	$A \Rightarrow C$	$\langle 3. \text{ and } specialization} \rangle$
6.	$A \Rightarrow B \wedge C$	$\langle 4., 5. \text{ and taut. implication} \rangle$
7.	$(\forall x)(A \Rightarrow B \land C)$	$\langle 6. \text{ and generalization; OK: no free } x \text{ in } 1. \rangle$

By the Deduction Theorem, we are done.

(\Leftarrow) With amended "annotation", the above proof can be reversed (7.–1.)

A.2 (8.16)–(8.18) in GS boil down to just (8.18) if "∗" is "∀". GS call (8.18) "Range split". This is

$$\vdash (\forall x)(A \lor B \Rightarrow C) \equiv (\forall x)(A \Rightarrow C) \land (\forall x)(B \Rightarrow C)$$

To prove the above we again split \equiv and use the DThm for each direction. Again we show only one direction as the other is entirely similar.

$$(\Rightarrow)$$

1.	$(\forall x)(A \lor B \Rightarrow C)$	(assume)
2.	$A \lor B \Rightarrow C$	$\langle 1. \text{ and } specialization} \rangle$
3.	$A \Rightarrow C$	$\langle 2. \text{ and taut. implication} \rangle$
4.	$B \Rightarrow C$	$\langle 2. \text{ and taut. implication} \rangle$
5.	$(\forall x)(A \Rightarrow C)$	$\langle 3. \text{ and generalization; OK: no free } x \text{ in } 1. \rangle$
6.	$(\forall x)(B \Rightarrow C)$	$\langle 4. \text{ and generalization; OK: no free } x \text{ in } 1. \rangle$
7.	$(\forall x)(A \Rightarrow C) \land (\forall x)(B \Rightarrow C)$	$\langle 5., 6.$ and taut. implication \rangle

By the Deduction Theorem, we are done.

 (\Leftarrow) Reverse the above proof.

A.3 The following is a famous result of Bertrand Russell's:

Let *P* be any predicate of **arity 2**^{*} (this could be anything: E.g., $=, <, >, \leq, \in$) Russell proved that the following is an *absolute theorem* (provable *without* any nonlogical assumptions—in particular, no axioms about *P* are needed)

$$\neg(\exists y)(\forall x)(P(x,y) \equiv \neg P(x,x)) \tag{3}$$

Now (3) is tautologically equivalent^{\dagger} to

$$(\exists y)(\forall x)(P(x,y) \equiv \neg P(x,x)) \equiv false$$
(4)

and since \vdash false \Rightarrow A (Why?), to show (4) I only need to show

$$(\exists y)(\forall x)(P(x,y) \equiv \neg P(x,x)) \Rightarrow false \tag{5}$$

I prove (5) using the DThm:

1.	$(\exists y)(\forall x)(P(x,y) \equiv \neg P(x,x))$	(assume)
2.	$(\forall x)(P(x,z) \equiv \neg P(x,x))$	\langle by 1, add new assumption with $z \text{ new} \rangle$
3.	$P(z,z) \equiv \neg P(z,z)$	$\langle 2. \text{ and Axiom 2 (using } z \text{ for "}t") \rangle$
4.	false	$\langle 3. and taut. implication \rangle$

To sum up "in slow motion", the proof 1-4 establishes

 $1., 2. \vdash false$

Lecture notes in MATH2090-Fall 2003© George Tourlakis

^{*}Recall that "arity" is a word that mathematicians made up. It denotes the number of arguments that are syntactically appropriate for a function or predicate. It came from words such as "bin**ary**", "tern**ary**" (three argument slots), "*n*-ary".

[†]"A is tautologically equivalent to B" means $\models_{taut} A \equiv B$.

But z is in neither in 1. nor in *false*, thus, by the Auxiliary Variable Metatheorem, we have also 1. \vdash *false*. The DThm immediately gives (5).

Why is (3) famous? Well, if you choose P to be specifically the "is a member of" predicate of set theory, " \in ", then we have—in particular—proved that

$$(\exists y)(\forall x)(x \in y \equiv \neg x \in x) \tag{6}$$

is a contradiction; or as we say $refutable^{\ddagger}$.

But (6), in plain English, says "There is a set (y) whose members (x) are precisely those objects that *are not members of themselves*". Russell's result of the refutability of (6) means that no such set exists. (More on this when we do set theory).

[‡]The negation is provable.

Lecture notes in MATH2090-Fall 2003© George Tourlakis