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Section A

Probl. 1. From the text p.213–215: Do the problems

(i) 11.7(c). Do ST ` {b, c} = {b, e} ≡ c = e.

Proof. The ⇐ is by “replacing equals for equals in terms”
theorem applied to terms (see ToolBox for statement of
theorem, or see “All about Leibniz” to see a proof).

For the ⇒ note that by Part I (2.7) and definition of pair
(Part II, 1.7) we need to prove

ST ` (∀x)(x = b ∨ x = c ≡ x = b ∨ x = e) ⇒ c = e

OK, use ded-thm.

(1) (∀x)(x = b ∨ x = c ≡ x = b ∨ x = e)
(

assume
)

(2) c = b ∨ c = c ≡ c = b ∨ c = e
(

(1) and spec.
)

(3) c = b ∨ c = e
(

(2), c = c and red. true
)

(4) e = b ∨ e = c ≡ e = b ∨ e = e
(

(1) and spec.
)

(5) e = b ∨ e = c
(

(4), e = e and red. true
)

(6) (c = b ∨ c = e) ∧ (e = b ∨ e = c)
(

(3, 5) and taut. impl.
)

(7) (c = b ∧ e = b) ∨ (c = b ∧ e = c) ∨ (c =e ∧ e = b) ∨ (c = e ∧ e = c)
(

(6) and taut. impl.
)

Now (7) yields what we want by proof by cases:

Case A. c = b∧ e = b: Conclude c = e by transitivity of =.

Case B. c = b ∧ e = c: Conclude c = e by taut. implica-
tion.∗

∗Symmetry of = also used. This and transitivity are trivially provable from Ax5 and
Ax6.
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Case C. c = e∧e = b: Conclude c = e by taut. implication.

Case D. c = e∧e = c: Conclude c = e by taut. implication.

�

(ii) 11.12(a)

Proof. (Informal) So, assume (use ded-thm) S ⊆ T and
U ⊆ V and also let x ∈ S ∪ U . By def. of ∪, we have two
cases:

Case 1. x ∈ S. Then x ∈ T by assumption, and also x ∈
T ∪ V by def. of ∪.

Case 2. x ∈ U . Then x ∈ V by assumption, and also
x ∈ T ∪ V by def. of ∪.

(iii) 11.15: Prove (∃x)(x ∈ S ∧ x /∈ T ) ⇒ S 6= T .

Proof. Prove the contrapositive: S = T ⇒ ¬(∃x)(x ∈ S ∧
x /∈ T ). That is, prove S = T ⇒ (∀x)¬(x ∈ S ∧ x /∈ T ).

But that is S = T ⇒ (∀x)(x ∈ S ⇒ x ∈ T ), i.e., a tauto-
logical consequence of the logical half of the Extensionality
theorem. �

(iv) 11.18: Prove S ∈ P(S).

Proof. We want S ∈ {x|x ⊆ S}.

S ∈ {x|x ⊆ S}

≡
〈

by ∈-elim. Note that the next line is (x ⊆ S)[x := S]
〉

S ⊆ S

The previous line is a theorem. �

For 11.7(c) and 11.18 in the list above, formal proofs
are required.

Also do

Probl. 2. Prove informally ST ` (∀a, b, c, d)
(

{a, {a, b}} = {c, {c, d}} ⇒
a = c ∧ b = d).

� To avoid an embarrassing situation I note that the above is not
the same problem that I assigned last year. Do you see the
difference? �
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Proof. Suffices to prove this without the ∀ (I can then introduce
the ∀ by generalisation, since ST has closed axioms).

Assume then {a, {a, b}} = {c, {c, d}}.

That is,

(∀x)(x = a ∨ x = {a, b} ≡ x = c ∨ x = {c, d})

By specialisation I get

c = a ∨ c = {a, b} ≡ c = c ∨ c = {c, d} (1)

and
a = a ∨ a = {a, b} ≡ a = c ∨ a = {c, d} (2)

Hence (see also proof on p.1)

c = a ∨ c = {a, b} (3)

and
a = c ∨ a = {c, d} (4)

(3) and (4) and taut. implication yield as on p.1

(c = a∧a = c)∨(c = a∧a = {c, d})∨(c = {a, b}∧a = c)∨(c = {a, b}∧a = {c, d})
(5)

The disjunction (5) yields just

a = c (6)

by cases (by the 1st disjunct), since each of the other three dis-
juncts yield false by foundation: The 2nd yields c ∈ c; the 3rd
yields a ∈ a and the 4th yields a ∈ c ∈ a.

(6) transforms our hypothesis to {a, {a, b}} = {a, {a, d}}. This
by problem 11.7(c) yields {a, b} = {a, d} and one more applica-
tion of problem 11.7(c) yields b = d. Done! �

Probl. 3. Give a formal proof of ST ` S ⊂ T ⇒ (∃x)(x /∈ S).

Proof. Invoke the deduction theorem, and assume hypothesis
(line (1) below).

(1) (∀x)(x ∈ S ⇒ x ∈ T ) ∧ ¬(∀x)(x ∈ S ≡ x ∈ T )
(

assume
)

(2) (∀x)(x ∈ S ⇒ x ∈ T )
(

(1) and Post’s theorem
)
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(3) ¬(∀x)(x ∈ S ≡ x ∈ T )
(

(1) and Post’s theorem
)

(4) (∃x)(x ∈ S ≡ ¬x ∈ T )
(

(3), Post and WLUS
)

(5) z ∈ S ≡ ¬z ∈ T
(

by (4): assume; z fresh
)

(6) z ∈ S ⇒ z ∈ T
(

(2) and specialisation
)

(7) z /∈ S
(

(5,6) and Post
)

(8) (∃x)x /∈ S
(

(7) and A ` ∃A-rule
)

�

Probl. 4. Prove without using the axiom of foundation that 1 6= {1} and
∅ 6= {∅}.

For 1 6= {1} we argue as in GS, p.197: The lhs is type N (atom)
and the rhs is of type SET. So they cannot be equal.†

As for ∅ 6= {∅}, recall from class that ST ` ∅ 6= T ≡ (∃x)x ∈ T .

Well, from ∅ ∈ {∅} we get (∃x)x ∈ {∅} by the ∃-rule (A[t] `
(∃x)A[x]). Thus, ∅ 6= {∅}.

†This is informal, but common-sensically correct. The rigorous way to go about it is to
have an axiom that says “x ∈ y is false for any y of type atom”—in symbols, ¬(∃y)y ∈ x

for any atom-type x. This axiom captures the “obvious truth” that atoms have no set
structure, they cannot contain any members. An atom is not equal to ∅ however, for the
latter has type SET.
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