York University

Faculties of Pure and Applied Science, Arts, Atkinson
MATH 2090. Problem Set \#2 (Sample Solutions).
Posted October 21, 2003

Section A

Probl. 1. From the text p.213-215: Do the problems
(i) 11.7(c). Do $S T \vdash\{b, c\}=\{b, e\} \equiv c=e$.

Proof. The \Leftarrow is by "replacing equals for equals in terms" theorem applied to terms (see ToolBox for statement of theorem, or see "All about Leibniz" to see a proof).
For the \Rightarrow note that by Part I (2.7) and definition of pair (Part II, 1.7) we need to prove

$$
S T \vdash(\forall x)(x=b \vee x=c \equiv x=b \vee x=e) \Rightarrow c=e
$$

OK, use ded-thm.
(1) $\quad(\forall x)(x=b \vee x=c \equiv x=b \vee x=e) \quad$ (assume)
(2) $c=b \vee c=c \equiv c=b \vee c=e \quad$ ((1) and spec.)
(3) $c=b \vee c=e \quad$ ((2), $c=c$ and red. true)
(4) $e=b \vee e=c \equiv e=b \vee e=e \quad$ ((1) and spec.)
(6) $(c=b \vee c=e) \wedge(e=b \vee e=c) \quad((3,5)$ and taut. impl.)
(7) $\quad(c=b \wedge e=b) \vee(c=b \wedge e=c) \vee(c=e \wedge e=b) \vee(c=e \wedge e=c)$

$$
((6) \text { and taut. impl. })^{\prime}
$$

Now (7) yields what we want by proof by cases:
Case A. $c=b \wedge e=b$: Conclude $c=e$ by transitivity of $=$.
Case B. $c=b \wedge e=c$: Conclude $c=e$ by taut. implication.*

[^0]Page 1
G. Tourlakis

Case C. $c=e \wedge e=b$: Conclude $c=e$ by taut. implication.
Case D. $c=e \wedge e=c$: Conclude $c=e$ by taut. implication.
(ii) $11.12(\mathrm{a})$

Proof. (Informal) So, assume (use ded-thm) $S \subseteq T$ and $U \subseteq V$ and also let $x \in S \cup U$. By def. of \cup, we have two cases:

Case 1. $x \in S$. Then $x \in T$ by assumption, and also $x \in$ $T \cup V$ by def. of \cup.
Case 2. $x \in U$. Then $x \in V$ by assumption, and also $x \in T \cup V$ by def. of \cup.
(iii) 11.15: Prove $(\exists x)(x \in S \wedge x \notin T) \Rightarrow S \neq T$.

Proof. Prove the contrapositive: $S=T \Rightarrow \neg(\exists x)(x \in S \wedge$ $x \notin T)$. That is, prove $S=T \Rightarrow(\forall x) \neg(x \in S \wedge x \notin T)$.
But that is $S=T \Rightarrow(\forall x)(x \in S \Rightarrow x \in T)$, i.e., a tautological consequence of the logical half of the Extensionality theorem.
(iv) 11.18: Prove $S \in \mathscr{P}(S)$.

Proof. We want $S \in\{x \mid x \subseteq S\}$.

$$
\begin{aligned}
& S \in\{x \mid x \subseteq S\} \\
\equiv & \langle\text { by } \in \text {-elim. Note that the next line is }(x \subseteq S)[x:=S]\rangle \\
& S \subseteq S
\end{aligned}
$$

The previous line is a theorem.

For 11.7(c) and 11.18 in the list above, formal proofs are required.

Also do
Probl. 2. Prove informally $S T \vdash(\forall a, b, c, d)(\{a,\{a, b\}\}=\{c,\{c, d\}\} \Rightarrow$ $a=c \wedge b=d)$.

To avoid an embarrassing situation I note that the above is not the same problem that I assigned last year. Do you see the difference?

Proof. Suffices to prove this without the \forall (I can then introduce the \forall by generalisation, since ST has closed axioms).
Assume then $\{a,\{a, b\}\}=\{c,\{c, d\}\}$.
That is,

$$
(\forall x)(x=a \vee x=\{a, b\} \equiv x=c \vee x=\{c, d\})
$$

By specialisation I get

$$
\begin{equation*}
c=a \vee c=\{a, b\} \equiv c=c \vee c=\{c, d\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a=a \vee a=\{a, b\} \equiv a=c \vee a=\{c, d\} \tag{2}
\end{equation*}
$$

Hence (see also proof on p.1)

$$
\begin{equation*}
c=a \vee c=\{a, b\} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
a=c \vee a=\{c, d\} \tag{4}
\end{equation*}
$$

(3) and (4) and taut. implication yield as on p. 1
$(c=a \wedge a=c) \vee(c=a \wedge a=\{c, d\}) \vee(c=\{a, b\} \wedge a=c) \vee(c=\{a, b\} \wedge a=\{c, d\})$
The disjunction (5) yields just

$$
\begin{equation*}
a=c \tag{6}
\end{equation*}
$$

by cases (by the 1st disjunct), since each of the other three disjuncts yield false by foundation: The 2nd yields $c \in c$; the 3rd yields $a \in a$ and the 4th yields $a \in c \in a$.
(6) transforms our hypothesis to $\{a,\{a, b\}\}=\{a,\{a, d\}\}$. This by problem 11.7(c) yields $\{a, b\}=\{a, d\}$ and one more application of problem 11.7(c) yields $b=d$. Done!

Probl. 3. Give a formal proof of $S T \vdash S \subset T \Rightarrow(\exists x)(x \notin S)$.
Proof. Invoke the deduction theorem, and assume hypothesis (line (1) below).
(1)

$$
\begin{array}{lll}
\text { (1) } & (\forall x)(x \in S \Rightarrow x \in T) \wedge \neg(\forall x)(x \in S \equiv x \in T) & \text { (assume) } \\
\text { (2) } & (\forall x)(x \in S \Rightarrow x \in T) & \text { ((1) and Post's theorem) }
\end{array}
$$

Page 3

G. Tourlakis
(3) $\neg(\forall x)(x \in S \equiv x \in T)$
(4) $(\exists x)(x \in S \equiv \neg x \in T)$
(5) $z \in S \equiv \neg z \in T$
(6) $z \in S \Rightarrow z \in T$
(7) $z \notin S$
(8) $\quad(\exists x) x \notin S$
((1) and Post's theorem)
((3), Post and WLUS)
(by (4): assume; z fresh)
((2) and specialisation)
($(5,6)$ and Post)
(7) and $A \vdash \exists A$-rule)

Probl. 4. Prove without using the axiom of foundation that $1 \neq\{1\}$ and $\emptyset \neq\{\emptyset\}$.
For $1 \neq\{1\}$ we argue as in GS, p.197: The lhs is type \mathbb{N} (atom) and the rhs is of type SET. So they cannot be equal. ${ }^{\dagger}$
As for $\emptyset \neq\{\emptyset\}$, recall from class that $S T \vdash \emptyset \neq T \equiv(\exists x) x \in T$.
Well, from $\emptyset \in\{\emptyset\}$ we get $(\exists x) x \in\{\emptyset\}$ by the \exists-rule $(A[t] \vdash$ $(\exists x) A[x])$. Thus, $\emptyset \neq\{\emptyset\}$.

[^1]
[^0]: *Symmetry of $=$ also used. This and transitivity are trivially provable from Ax5 and Ax6.

[^1]: ${ }^{\dagger}$ This is informal, but common-sensically correct. The rigorous way to go about it is to have an axiom that says " $x \in y$ is false for any y of type atom"-in symbols, $\neg(\exists y) y \in x$ for any atom-type x. This axiom captures the "obvious truth" that atoms have no set structure, they cannot contain any members. An atom is not equal to \emptyset however, for the latter has type SET.

