
A Programming Formalism for PR∗

George Tourlakis

October 9, 2002

1 Syntax and Semantics of Loop Programs

Loop programs were introduced by D. Ritchie and A. Meyer ([MR67]) as program-theoretic
counterpart to the number theoretic introduction of the set of primitive recursive functions
PR. This programming formalism among other things connected the definitional (or struc-
tural) complexity of primitive recursive functions with their (run time) computational com-
plexity.

Loop programs are very similar to programs written in FORTRAN, but have a number
of simplifications, notably they lack an unrestricted do-while instruction (equivalently, goto
instruction). What they do have is

(1) Each program references (uses) a finite number of variables that we denote metamath-
ematically by single letter names (upper or lower case is all right) with or without sub-
scripts or primes.1

(2) Instructions are of the following types (X, Y could be any variables below, including the
case of two identical variables):

(i) X = 0

(ii) X = Y

(iii) X = X + 1

(iv) Loop X . . . end, where “. . .” represents syntactically valid instructions. The Loop
part is matched or balanced by the end part.

Informally, the structure of loop programs can be defined by induction: Every instruction
of type (i)–(iii) standing by itself is a loop program. If we already have two loop programs P

and Q we can build two new ones. One is built by superposition or concatenation:

P

Q

∗Lecture notes for CS4111 and CS6113; Fall 2002
1The precise syntax of variables will be given shortly, but even after this fact we will continue using signs such

as X, A, Z′, Y ′′

3
4 for variables—i.e., we will continue using metanotation.

1



The other is built by loop closure. For any variable X (that may or may not be in P ), we form
the new program:

Loop X

P

end

More formally we define the syntax of loop programs in BNF2 as follows (the notation
〈name〉 is reserved to name (“name”) syntactic categories, or, as we call these, nonterminals).

We start with the alphabet of symbols (terminals):

Σ = {v, 1, =, +, 0,Loop, end, ; } (1)

The grammar rules are3

G1 (Variables):

〈var〉 → v1

∣
∣
∣
∣
〈var〉1

where “→” and “

∣
∣
∣
∣
” are metanotational symbols (part of the BNF descriptive notation,

not of Σ) and mean “is defined as” and “alternatively” respectively.

G2

〈stmt〉 →〈var〉 = 0
∣
∣
∣
∣
〈var〉 = 〈var〉

∣
∣
∣
∣
+ 〈var〉

∣
∣
∣
∣
Loop 〈var〉; 〈prog〉; end

G3

〈prog〉 →〈stmt〉
∣
∣
∣
∣
〈prog〉; 〈stmt〉

Thus, G1 describes that a variable really is a string like v1 or v111 or, in general, v1n—where
1n is a string of n “1” (n ≥ 1).

G2 describes “single” statements. Just as in Algol descriptions (case of for-statements,
blocks, etc.) we found it convenient to say that a whole construct such as “Loop X ; P ; end”—
where P is some program—is a single statement. “;” acts a separator in our formal BNF, a

2Backus-Naur Form, that is, context free grammar notation that is used to describe (the “context free part” of)
Algol-like languages like Pascal, PL/1 or Algol itself.

3Familiarity with COSC2001 or equivalent is taken as a fact.

2



symbol we normally suppress in informal discussions where we write loop programs verti-
cally. Note that “+X” (where, as we have agreed, X is an informal variable name) is meant
to stand for the informal “X = X + 1”. The former syntax makes the definition context free
no matter how variables are defined, thus avoiding the well-known non-context free construct
{w#w : w ∈ {0, 1}∗}.4

G3 describes programs as nonempty finite sequences of statements (or instructions). The
second alternative in the definition makes the separator “;” left associative thus guiding any
(reasonable) translation scheme to execute statements from left to right (or top to bottom in a
vertical layout).5

It is profitable to recast the above BNF in an ordinary inductive definition in the manner
that, say, one defines the formulas of propositional or predicate calculus, or one defines PR.

In theoretical discussions about loop programs we will use the shorthand notation

v1, v2, . . . , vi, . . .

to denote the sequence
v1, v11, . . . , v1i, . . .

of variables. We will always denote loop programs by the letters P, Q, R,6 with or without
primes and subscripts. We can now state:

Definition 1.1 The set of loop programs, L, is the smallest set of strings over Σ ((1), p.2)
that includes all the initial strings7

{vi = 0 : i ≥ 1} ∪ {vi = vj : i ≥ 1 ∧ j ≥ 1} ∪ {+vi : i ≥ 1}

and is closed under the following string-operations:

1. If P is in, then so is
Loop vi; P ; end

for any i ≥ 1.

2. If P and Q are in,8 then—for all i and j (both ≥ 1)—so are

(a) P ; vi = 0

(b) P ; vi = vj

(c) P ; +vi

4With variables defined to be v1n, a somewhat different context free grammar can effectively allow “X =
X + 1”.

5It says that once we figured out that—in a string “P ; I”—the P -part is a program, then if I is a statement we can
proclaim that the whole thing is a program. This recognition has proceeded from left to right and correspondingly
execution of these statements ought to proceed from left to right.

6These are informal meta-names entirely analogous to the meta-names X, Y,Z that we use for variables. In other
contexts one acts analogously: For example, in logic one usually uses capital letters such as A,B, C—sometimes
calligraphic, A , B,C —to denote arbitrary formulas, p, q, r to denote Boolean variables and x, y, z, u, v, w to
denote so-called “object variables”.

7Compare in other analogous contexts: Initial functions in PR; initial formulas (p, q, r, . . ., true, false) in
Boolean logic.

8Of course, P and Q may—but don’t have to—name the same string (program). The same holds for vi and vj :
It is allowed to have i = j.

3



(d) P ; Loop vj ; Q; end �

The semantics of loop programs describe what the execution of such a program does to
the values (or “contents”) of its list, or vector, of variables. Throughout this note will use
the notations “[a1, a2, . . . , ar]”, “a1, a2, . . . , ar” and “~ar” for vectors interchangeably. The
first notation is typographically clearer in some contexts as—via bracketing—it emphasizes
that we view the sequence a1, . . . , ar as one object; for example, as output of a vector-valued
function.9

Definition 1.2 (Loop Program Semantics) Let the sequence v1, . . . , vn include all the vari-
ables referenced in a program P . We denote by λ~vn.P (~vn) the vector-valued function from
N

n → N
n defined by induction on the definition of P (using 1.1) as follows:

For all (values of) v1, . . . , vn, if P is

1. vi = 0: Then P (~vn) = [v1, . . . , vi−1, 0, vi+1, . . . , vn], for 1 ≤ i ≤ n.

2. vi = vj : Then P (~vn) = [v1, . . . , vi−1, vj , vi+1, . . . , vn], for 1 ≤ i ≤ n.

3. +vi: Then P (~vn) = [v1, . . . , vi−1, vi + 1, vi+1, . . . , vn], for 1 ≤ i ≤ n.

4. Loop vk; Q; end: Then P (~vn) = Qvk(~vn),10 where the vector valued iteration Qa(~vn)
is defined by

Q0(~vn) = [v1, . . . , vn]

Qa+1(~vn)= Q
(

Qa(~vn)
) (2)

5. R; S, where S is a program that consists of a single instruction, one among 1–4 above:
Then

P (v1, . . . , vn) = S
(

R(v1, . . . , vn)
)

(3)

�

Case 4 above warrants a comment. It says that if vk = a then the effect of Loop vk; Q; end
is the same as that of the program

Q; Q; · · · ; Q
︸ ︷︷ ︸

a copies of Q

regardless of what may be happening to vk inside Q. That is, if vk is changed by Q this does
not affect the number of times the loop executes; this depends only on the value a of vk just
prior to entering the loop. In particular, if a = 0 the loop is skipped.

Note that the vector primitive recursion (2) above is shorthand for an ordinary simulta-
neous recursion of number theoretic functions (right field N). Indeed, renaming Qa(~vn) as
g(a,~vn) and setting

g(a,~vn) = [g1(a,~vn), . . . , gn(a,~vn)]

and
Q(~vn) = [q1(a,~vn), . . . , qn(a,~vn)]

9In which case it is clearer to write, say, “f(a) = [c, d, e, f ]” rather than “f(a) = c, d, e, f”.
10In the case of functions, the notation fk means composition k times; not exponentiation.

4



we have for i = 1, . . . , n:

gi(0, ~vn) = vi

gi(a + 1, ~vn)= qi

(

g1(a,~vn), . . . , gn(a,~vn)
) (2′)

Thus, if all the vector-components of the Q-function—the λ~vn.qi(~vn) above—are in PR,
then so are all the λa~vn.gi(a,~vn), and therefore all the components of λ~vn.P (~vn), namely
the λ~vn.pi(~vn), because P (~vn) = Qvk(~vn) = g(vk, ~vn)—hence pi(~vn) = gi(vk , ~vn).

Similar comments apply to (3) above: Let us write p for the vector valued function
λ~vn.P (~vn) and similarly r for λ~vn.R(~vn) and s for λ~vn.S(~vn). Then p = [p1, . . . , pn],
q = [q1, . . . , qn] and s = [s1, . . . , sn]. Thus each pi, qi, si is a number theoretic function of
n variables (i.e., from N

n to N). Clearly, pi = si ◦ [r1, . . . , rn], where “◦” denotes function
composition. Thus, if all the ri and all the si are in PR, then so are all the pi functions.

We have done all the work that allows us to now state

Theorem 1.3 For any loop program P whose variables are among ~vn, each of the functions
λ~vn.un

i

(
P (~vn)

)
—for i = 1, . . . , n—is in PR.

Proof Induction of programs P . If P corresponds to 1–3 in Definition 1.2, then each of
λ~vn.un

i

(
P (~vn)

)
is initial.

For case 4, we are done by the I.H. (induction hypothesis) on P and earlier remarks.
For case 5, if S is of type 1-3, then we are done by (3) and the I.H. on R. If S is of type 4,

then we are done by (3) and the I.H. on R and Q. �

2 PR vs. L

We next define what it means for a program P—whose list of variables is v1, . . . , vn—to
compute a number theoretic function: First we decide which ones among the ~vn we want to
be the input variables; say11

v1, . . . , vr (4)

We also decide on one output variable; say, vk.
We assume that the agent that executes a loop program, implicitly—i.e., not via instruc-

tions that are contained in the program—initializes to 0 all the variables other than those
in the list (4) and then starts to execute P .12 At termination13 we read off what vk holds.
This correspondence, ~vr 7→ vk , induced by the execution of P is the function that P com-
putes with input ~vr and output vk. In symbols P~vr

vk
. This informal description is captured as

follows:

Definition 2.1 For a program P whose variable list is ~vn we define the symbol P~vr

vk
, where

1 ≤ r, k ≤ n, to mean

λ~vr.u
n
k

(

P (~vr, 0, . . . , 0
︸ ︷︷ ︸

n−r 0’s

)
)

�

11More generally, we could have chosen vi1 , . . . , vir
for input. Since renaming of variables is up to us we can

avoid the ugly notational acrobatics that this choice entails.
12Compare: A Turing machine is initialized with the input anywhere on its two-way infinite tape. It is assumed

that the tape is automatically initialized everywhere else with the blank symbol. We then let the machine run.
13Since λ~v.P (~v) has all its components in PR for all choices of P , all loop programs terminate.

5



We also define

Definition 2.2
L = {P~vr

vk
: P ∈ L ∧ the ~vr and vk occur in P}

�

By 1.3, we have at once

Theorem 2.3 L ⊆ PR.

The converse is true

Theorem 2.4 PR ⊆ L .

Proof By induction on PR and brute-force programming:
Basis: λx.x + 1 is P X

X where P is X = X + 1 (we have reverted to the “relaxed”

metanotation). Similarly, λ~xn.xi is P
~Xn

Xi
where P is

X1 = X1; X2 = X2; . . . ; Xn = Xn

The case of λx.0 is as easy.
How does one compute λx.f(g(x)) if g is GX

X and f is F X
X ? One uses

(
G′

F

)X

X

where G′ is G modified to avoid side-effects: One must ensure that all the variables of G other
than X are set to 0 upon exit from G, for F expects all these variables to be 0 in order to
compute f correctly. G′ does that, if necessary, by placing at the end of G several statements
of the type Y = 0.

The general case f ◦ (g1, . . . , gn) is programmed similarly.
Finally, we indicate in pseudo-code how to compute f(x, ~yn) where

f(0, ~yn) = h(~yn)

f(x + 1, ~yn) = g(x, ~yn, f(x, ~yn))

assuming we have loop programs for h and g. The pseudo-code is

z= h(~yn)

i= 0

Loop x

z = g(i, ~yn, z)

i = i + 1

end

Once again one has to eliminate side-effects. For example, ~yn must not change. Program G

(for g) expects all the variables other than i, ~yn, z to hold 0 at each invocation. This must be
ensured by explicit programming. �

All in all
PR = L

6



3 Incompleteness of PR

We can now see that PR cannot possibly contain all the intuitively computable total func-
tions. We see this as follows:

(A) Since the language L is context free, we can decide (algorithmically, intuitively speak-
ing) for any string α whether it belongs to L (is a well-formed program) or not.

(B) We can algorithmically build the list, List1, of all strings over Σ: List by length; in each
length group lexicographically.14

(C) Simultaneously to building List1 build List2 as follows: For every string α generated
in List1, copy it into List2 iff α ∈ L (which we can test by (A)).

(D) Simultaneously to building List2 build List3: For every P (program) copied in List2
copy all the finitely many strings P X

Y (for all choices of X and Y in P ) alphabetically
(think of the string as “P ; X ; Y ”).

At the end of all this we have an algorithmic list of all the functions λx.f(x) of PR, listed
by their aliases, the P X

Y . Let us call this list

f0, f1, f2, . . . , fx, . . .

By Cantor’s “diagonalization method” we define a new function d for all x as follows:

d(x) = fx(x) + 1 (1)

Two observations:

1. d is total (obvious, since each fx is) and intuitively computable. Indeed, to com-
pute d(a) generate the lists long enough until you have the a-th item (counting as
in 0, 1, 2, . . . , a) in List3. This item has the format P X

Y . I.e., we have a loop program
and designated input (one) and output variables. Start this program with input the value
a (in X). On termination add 1 to what Y holds and return. This is d(a).

2. d is not in the list! For otherwise, d = fi for some i ≥ 0. We get a contradiction:

fi(i)
by d=fi

= d(i)
by (1) above

= fi(i) + 1

References

[MR67] A. R. Meyer and D. M. Ritchie, Computational complexity and program structure,
Technical Report RC-1817, IBM, 1967.

14Fix the ordering of Σ as listed in (1) on p.2.

7


