## York University

Faculty of Science and Engineering

### MATH 1090: Facts-List for the December 2017 Examination (to be held Dec 7, 2017)

The following are the axioms of Propositional Calculus: In what follows,  $A, \overline{B, C}$  stand for arbitrary formulae.

Properties of  $\equiv$  $((A \equiv B) \equiv C) \equiv (A \equiv (B \equiv C))$ Associativity of  $\equiv$ (1) $(A \equiv B) \equiv (B \equiv A)$ Symmetry of  $\equiv$ (2)Properties of  $\bot$ ,  $\top$  $\top \equiv \bot \equiv \bot$  $\top$  vs.  $\bot$ (3)Properties of  $\neg$  $\neg A \equiv A \equiv \bot$ Introduction of  $\neg$ (4)Properties of  $\vee$ Associativity of  $\lor$  $(A \lor B) \lor C \equiv A \lor (B \lor C)$ (5)Symmetry of  $\lor$  $A \lor B \equiv B \lor A$ (6) $A\vee A\equiv A$ Idempotency of  $\lor$ (7)Distributivity of  $\lor$  over  $\equiv$  $A \lor (B \equiv C) \equiv A \lor B \equiv A \lor C$ (8) $A \vee \neg A$ **Excluded Middle** (9)Properties of  $\wedge$ Golden Rule  $A \wedge B \equiv A \equiv B \equiv A \vee B$ (10)Properties of  $\rightarrow$  $A \to B \equiv A \lor B \equiv B$ **Implication** (11)

The **Primary** Boolean rules are:

$$\frac{A, A \equiv B}{B} \tag{Eqn}$$

and

$$\frac{A \equiv B}{C[\mathbf{p} := A] \equiv C[\mathbf{p} := B]} \tag{Leib}$$

The following are the Predicate Calculus Axioms:

Any <u>partial generalisation</u> of any formula in groups Ax1-Ax6 is an axiom for Predicate Calculus.

Groups **Ax1–Ax6** contain the following schemata:

**Ax1.** Every tautology.

**Ax2.**  $(\forall \mathbf{x})A \to A[\mathbf{x} := t]$ , for any term t.

**Ax3.**  $A \to (\forall \mathbf{x})A$ , provided **x** is not free in A.

**Ax4.**  $(\forall \mathbf{x})(A \to B) \to (\forall \mathbf{x})A \to (\forall \mathbf{x})B$ .

**Ax5.** For each object variable  $\mathbf{x}$ , the formula  $\mathbf{x} = \mathbf{x}$ .

**Ax6.** For any terms t, s, the schema  $t = s \to (A[\mathbf{x} := t] \equiv A[\mathbf{x} := s])$ .

The **Primary** First-Order rules are the same as the Boolean; to be exact:

$$\frac{A, A \equiv B}{B} \tag{Eqn}$$

and

$$A \equiv B$$
 $C[\mathbf{p} := A] \equiv C[\mathbf{p} := B]$ , where  $\mathbf{p}$  is not in the scope of any quantifier (BL)

"BL" stands for "Boolean Leibniz".

- 1. Redundant  $\top$ .  $\Gamma \vdash A$  iff  $\Gamma \vdash A \equiv \top$
- 2. Modus Ponens (MP).  $A, A \rightarrow B \vdash B$
- 3. Cut Rule.  $A \vee B, \neg A \vee C \vdash B \vee C$
- 4. Deduction Theorem. If  $\Gamma, A \vdash B$ , then  $\Gamma \vdash A \rightarrow B$
- 5. Proof by contradiction.  $\Gamma, \neg A \vdash \bot \text{ iff } \Gamma \vdash A$
- 6. Post's Theorem. (Also called "tautology theorem", or even "completeness of Propositional Calculus theorem")

If  $\models_{\text{taut}} A$ , then  $\vdash A$ .

**Also**: If  $\Gamma \models_{\text{taut}} A$  for finite  $\Gamma$ , then also  $\Gamma \vdash A$ .

7. Proof by cases.  $A \rightarrow B, C \rightarrow D \vdash A \lor C \rightarrow B \lor D$ 

Also the special case:  $A \rightarrow B, C \rightarrow B \vdash A \lor C \rightarrow B$ 

#### The Existential Quantifier $\exists$

$$(\exists \mathbf{x}) A \text{ stands for } \neg (\forall \mathbf{x}) \neg A$$

therefore  $(\exists \mathbf{x})A \equiv \neg(\forall \mathbf{x})\neg A$  is a tautology, hence an absolute theorem.

# Useful facts from Predicate Calculus (proved in class—you may use them without proof):

We **know** that SL and WL (not stated here; you should know them well!) are derived rules useful in equational proofs within predicate calculus.

- ▶ More "rules" and (meta)theorems.
- (i) "Dummy renaming".

If **z** does not occur in  $(\forall \mathbf{x})A$  as either free or bound, then  $\vdash (\forall \mathbf{x})A \equiv (\forall \mathbf{z})(A[\mathbf{x} := \mathbf{z}])$ 

If **z** does not occur in  $(\exists \mathbf{x})A$  as either free or bound, then  $\vdash (\exists \mathbf{x})A \equiv (\exists \mathbf{z})(A[\mathbf{x} := \mathbf{z}])$ 

(ii)  $\forall$  over  $\circ$  distribution, where " $\circ$ " is " $\vee$ " or " $\rightarrow$ ".

$$\vdash A \circ (\forall \mathbf{x})B \equiv (\forall \mathbf{x})(A \circ B)$$
, **provided**  $\mathbf{x}$  is not free in  $A$ 

 $\exists over \land distribution$ 

$$\vdash A \land (\exists \mathbf{x})B \equiv (\exists \mathbf{x})(A \land B)$$
, **provided**  $\mathbf{x}$  is not free in  $A$ 

(iii)  $\forall over \land distribution$ .

$$\vdash (\forall \mathbf{x}) A \wedge (\forall \mathbf{x}) B \equiv (\forall \mathbf{x}) (A \wedge B)$$

 $\exists over \lor distribution.$ 

$$\vdash (\exists \mathbf{x}) A \lor (\exists \mathbf{x}) B \equiv (\exists \mathbf{x}) (A \lor B)$$

(iv)  $\forall$  commutativity (symmetry).

$$\vdash (\forall \mathbf{x})(\forall \mathbf{y})A \equiv (\forall \mathbf{y})(\forall \mathbf{x})A$$

- (v) Specialisation. "Spec"  $(\forall \mathbf{x})A \vdash A[\mathbf{x} := t]$ , for any term t. Dual of Specialisation. "Dual Spec"  $A[\mathbf{x} := t] \vdash (\exists \mathbf{x})A$ , for any term t.
- (vi) Generalisation. "Gen" If  $\Gamma \vdash A$  and if, moreover, the formulae in  $\Gamma$  have **no free x occurrences**, then also  $\Gamma \vdash (\forall \mathbf{x})A$ .
- (vii)  $\forall$  Monotonicity. If  $\Gamma \vdash A \rightarrow B$  so that the formulae in  $\Gamma$  have **no free x occurrences**, then we can infer

$$\Gamma \vdash (\forall \mathbf{x}) A \to (\forall \mathbf{x}) B$$

(viii)  $\forall$  Introduction; a special case of  $\forall$  Monotonicity. If  $\Gamma \vdash A \rightarrow B$  so that neither the formulae in  $\Gamma$  nor A have **any free x occurrences**, then we can infer

$$\Gamma \vdash A \to (\forall \mathbf{x})B$$

(ix) Finally, the Auxiliary Variable ("witness") Metatheorem. If  $\Gamma \vdash (\exists \mathbf{x})A$ , and if  $\mathbf{y}$  is a variable that **does not** occur as either free or bound variable in any of  $(\exists \mathbf{x})A$  or B or the formulae of  $\Gamma$ , then

$$\Gamma, A[\mathbf{x} := \mathbf{y}] \vdash B \text{ implies } \Gamma \vdash B$$

#### **Semantics facts**

| Propositional Calculus                                           | Predicate Calculus                                                             |
|------------------------------------------------------------------|--------------------------------------------------------------------------------|
| (Boolean Soundness) $\vdash A$ implies $\models_{\text{taut}} A$ | $\vdash A \text{ does } \mathbf{NOT} \text{ imply } \models_{\mathbf{taut}} A$ |
| $(Post) \models_{taut} A \text{ implies} \vdash A$               | However, (Post) $\models_{\text{taut}} A \text{ implies} \vdash A$             |
|                                                                  | (Pred. Calc. Soundness) $\vdash A$ implies $\models A$                         |



**CAUTION!** The above facts/tools are only a fraction of what we have covered in class. They are *very important and very useful*, and that is why they are listed for your reference here.

You can also use without proof **ALL** the things we have covered (such as the absolute theorems known as "∃-definition", "de Morgan's laws", etc.).

But these —the unlisted ones— are up to you to remember and to correctly state!

Whenever in doubt of whether or not a "tool" you are about to use was indeed covered in class, prove the validity/fitness of the tool before using it!

