
1

0.1 Gödel’s first incompleteness theorem

We offer here a näıve presentation of Gödel’s first incompleteness theorem that
relies on recursion theoretic techniques. It says that any “reasonable” axiomatic
system that attempts to have as theorems precisely all the “true” (first-order)
formulas of arithmetic will fail: There will be infinitely many true formulas
that are not theorems. The qualifier “reasonable” could well be replaced by
“practical”: One must be able to tell, algorithmically, whether a formula is an
axiom or not—for how else can one check a proof, let alone write one? “True”
means true in the “standard” interpretation over the structure

N = (N; 0, λx.x + 1, λxy.x + y, λxy.x × y, λxy.x < y)

where after the semicolon I have listed “important” constants, functions and
predicates (see the table of interpretations below).

To set the stage more accurately, we will need some definitions and notation.
In order to do arithmetic we need, first of all, a first-order (logical) language
which we use to write down formulas and proofs. Before we get to the language
(that is, a set of strings) we need an “alphabet”.

This alphabet has two parts: One that is standard in all such languages (log-
ical symbols), namely variables of natural number type (or “object variables”)
denoted by x, y, z, u, v,w with or without accents and subscripts. The logical
part also contains the symbols

¬,∨,∧,→,≡,=,∃,∀, (,)

The other part of the alphabet is specific to doing arithmetic. It contains the
“abstract” symbols

0, S,+,×,<

These are the nonlogical symbols which we can interpret any way we please.
However we decide to interpret them in the standard way:

Abstract (language) symbol Concrete interpretation

0 0 (zero)
S λx.x + 1
+ λxy.x + y
× λxy.x × y
< λxy.x < y

One forms now in the well known manner (see for example [Tou08]) the
symbols for “1”, “2” and “112056734555”. An arbitrary n ∈ N has the formal
counterpart

SS⋯S
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
n times

0

which we denote by ñ.
Thus, an axiomatic system (or theory) that we use to formally (i.e., syntac-

tically) prove theorems of arithmetic contains:

Supplementary Notes on Gödel’s Incompleteness©by G. Tourlakis, EECS 4111/5111, F18

2

(1) The briefly described first-order language above.∗

(2) A recursive set of strings: The well-formed formulas (wff).†

(3) A recursive subset of wff, MA: The mathematical (or nonlogical) axioms
for arithmetic.‡

(4) The logical axioms, Λ1, of [Tou08, End72]

(5) The rules of inference, namely just modus ponens (MP) (cf. [Tou08, End72]§)

0.1.1 Remark. (i) Intuitively, (2) above says that there is an algorithm that
for every string over our alphabet

¬,∨,∧,→,≡,=,∃,∀, (,), v,1,0, S,+,×,< (A)

will decide the string’s membership in wff—i.e., whether or not the string
parses correctly as a formula. But what do we mean when we say that a set
of strings is recursive? After all, until now all our recursive sets were sets
of numbers (or of tuples of numbers). Well, nothing has changed! Imagine
that the symbols in our alphabet (A) above, in precisely the order given,
are just (strange) symbols for the numbers 1 through 17. Then any string
over the alphabet denotes a number base 18¶ (if you buy hexadecimal
numbers like BBC —i.e., 3004 in decimal— then you have to buy what I
have just said). For example, (∃v1v)v1v = 0 denotes (in decimal notation)
33651680537461.

Thus, to speak of a set of strings over (A) is the same as talking about a
subset of N.

(ii) We have said right at the beginning that the set of axioms must be “rea-
sonable”, i.e., “recognizable”. That is precisely what item (3) above asks
for in stipulating “recursive”. But don’t we want to be able to recognize all

∗As we know from MATH 1090, first-order means that we are only allowed to quantify
object variables, i.e., write things such as ∃x and ∀x. We are not allowed to write “for some
(all) predicates” for example.

†It is easy to do the following: (a) Generate all object variables —what we casually called
by the meta names x, y, x′′, z′′′104, etc— by the regular expression v1∗v over {v,1}. (b) Carefully
define syntax of formulas so that the language is context-free. It then follows (cf. EECS 2001)
that the language —the set of all wff— is recursive.

‡A particularly famous choice of axioms is due to Peano—the so-called Peano Arithmetic,
for short “PA”. It has axioms that give the behaviour of every nonlogical symbol, plus the
induction “axiom schema”:

P (0) ∧ (∀x)(P (x)→ P (Sx))→ (∀x)P (x)

The “schema” (or “form”, or “template” in English) gives one axiom for each choice of wff P .
§The rule generalisation is a derived rule in these two foundations of logic.
¶Why not number the symbols in (A) by 0 through 16 and work base 17? Because we will

have trouble with things like ¬0 < 0. The “digit” in the most significant position is (of value)
0 and we lose information as we pass to numerical value. I.e., both ¬0 < 0 and 0 < 0 denote
the same number.

Supplementary Notes on Gödel’s Incompleteness©by G. Tourlakis, EECS 4111/5111, F18

3

the axioms, including the logical ones? Yes, but these do form a recursive
(recognizable) set. You can easily check so after you refresh your memory
on which are the logical axioms (cf. [Tou08]).

It is also worth stating that the rules of inference are algorithmically ap-
plicable. For example, if we are to use the rules introduced in MATH1090,
then they are all algorithmic. Take modus ponens for example

if A→ B and A, then B

Whether it applies or not is determined by its form, and it is easy to check
algorithmically if two strings have the forms A→ B and A. ◻

0.1.2 Lemma. (Informal) The set of all theorems of an axiomatic arithmetic
as this has been described in (1)–(5) above is r.e. (semi-recursive).

Proof. (Informal) Let us add one new symbol, # to the alphabet (A), to form
the augmented alphabet

¬,∨,∧,→,≡,=,∃,∀, (,), v,1,0, S,+,×,<,# (B)

We use # as “glue” to concatenate all the formulas in any given proof that we
may write. I.e., we “code” a proof sequence

F1, F2, . . . , Fn

as a single string (over (B)) as follows

#F1#F2# . . .#Fn# (iii)

Giving the “digit value” 18 to # we can think of any expression (string) like (iii)
above as a number notation base 19 (with nonzero digits: ¬ = 1,∨ = 2,∧ =
3, . . . ,# = 18).

Next define the “provability predicate” P (y, x) by

P (y, x) ≡ “y, written base-19, has the form (iii), while x represents an Fi in it”

We argue that P (y, x) ∈ R∗, however we do so relying on Church’s Thesis
in order to avoid tedious but straightforward details with yet another cod-
ing/decoding.

Here is the informal algorithm to compute P (y, x), inputs y, x from N, out-
puts in {f , t}.

1: Input y and x

2: Obtain the base-19 representation of y and express it as a string S over the
alphabet (B). If S does NOT code a proof in the precise form (iii), then
return f and halt. Comment. This test has two parts:

Supplementary Notes on Gödel’s Incompleteness©by G. Tourlakis, EECS 4111/5111, F18

4

• One, ascertain that the form (iii) is what we get for S, with nonempty
Fi.

• Two, ascertain that the sequence Fi IS a proof : This checking is ob-
viously algorithmic since we need to check for each Fi that it is either
an axiom —a recursive process, this, since the axiom set MA ∪ Λ1

is recursive— or we have some Fk, Fm in the sequence such that, in
string form, Fk = Fm → Fi and k,m are both < i; a situation that is
algorithmically checkable as to whether it obtains or not.

3: Obtain the base-19 representation of x and express it as a string T . If T is
NOT a substring Fi of S, placed between successive #, then return f and
halt; else return t and halt.

By Church’s Thesis, P (y, x) is recursive.

To conclude the proof of the lemma note that (∃y)P (y, x) says that x (ex-
pressed base-19) is a theorem. Thus, by strong projection, the set of theorems
is semi-recursive or r.e. ◻

� By taking universal closures of all axioms in MA as in [End72] we have a
foundation of PA with closed axioms.‖ But then we can obtain a corollary of
the lemma at once:

0.1.3 Corollary. The set of all theorems that are closed (sentences) is semi-
recursive as well.

The reason is that from a recursive enumeration of all theorems we can al-
gorithmically obtain a recursive enumeration of all closed theorems: For each
theorem A listed recursively in List 1 (of all theorems), its universal closure∗∗

A′ is also a theorem (and is closed); so add this to List 2. �

0.1.4 Definition. Let us call Complete Arithmetic, for short CA, the set

{S ∶ S is a sentence that is true when interpreted in N as per table on p.1}

◻

We now have:

0.1.5 Theorem. (Gödel’s First Incompleteness Theorem) Every axiomatic
system for arithmetic that satisfies (1)–(5) above is incomplete in the sense that
its set of theorems cannot equal the set CA.

‖A closed formula or sentence is one with no free variables.
∗∗Two things: One, a universal closure of a formula A is obtained from A by adding a

prefix (∀x)(∀y)(∀z) . . . for each free variable x, y, z, . . . that occurs in A. Two, we learnt in
MATH 1090 that if our hypotheses other than Λ1 —such as MA— are sentences, then if A is
a theorem so is (∀x)A.

Supplementary Notes on Gödel’s Incompleteness©by G. Tourlakis, EECS 4111/5111, F18

5

Proof. In view of the preceding lemma and its corollary, it suffices to prove that
CA is not r.e./semi-recursive.

To this end, consider the two sets of wffs below:

K̃ = {φã(ã) ↑∶ φã(ã) ↑ is true as interpreted in N}

and

Q = {φã(ã) ↑∶ a ∈ N} (1)

Before we proceed, let me note that “φã(ã) ↑” is an abbreviation of the formula
of arithmetic (see Appendix) ¬(∃y)T (ã, ã, y)—in other words, it can be written
down, in principle, using no more than the symbols from the alphabet (A). This
wff will say, when interpreted “in the standard way” (see table on p.1), precisely,

a ∈K

Thus,

K̃ = {φã(ã) ↑∶ a ∈K} (2)

Now, given any a ∈ N, I can construct the formula ¬(∃y)T (ã, ã, y) since the
string for T can be constructed by a (very long!) primitive recursive derivation
that depends on the constant a —and then just concatenate “¬(∃y)” to the
string at its left end.

That is, viewing strings as numbers, the function f that on input a outputs
(the number denoted by the string abbreviated by) φã(ã) ↑ is, intuitively at
least, recursive. By Church’s Thesis, we will accept that it is recursive.

Thus

K ≤fm K̃ (3)

by (2), since (2) says a ∈K iff f(a) ∈ K̃. On the other hand,

Q = ran(f) (4)

by (1). Thus, K̃ is not r.e., while Q is r.e.
Note that

CA ∩Q = K̃

thus CA cannot be r.e. by closure properties (set-theoretic ∩ corresponds with
logical ∧). ◻

Note the emphasized “every” in the theorem. It draws attention to the
fact that we have not fixed any particular “reasonable” theory —whatever we
said holds for all recursive theories that can do arithmetic, thus, for which the
Appendix applies. “Every” moreover implies that every theory that the theorem
speaks of misses an infinite chunk of CA. Indeed, if it only misses a finite chunk,
C, then adding the formulas of C as axioms we still get a recursive set of axioms
(closure properties, and the fact that finite sets are recursive). But this new set
covers all of CA (why?) contrary to Gödel’s theorem.

Supplementary Notes on Gödel’s Incompleteness©by G. Tourlakis, EECS 4111/5111, F18

6

0.2 Appendix:
φã(ã) ↑ is a formula of arithmetic

To show that φã(ã) ↑ abbreviates a formula of arithmetic, it suffices to prove that
there is a formula of arithmetic that expresses the Kleene predicate T (x, y, z).
It will so follow if we can prove that for every function f ∈ PR its graph is
expressible arithmetically, for then if cT is the characteristic function of T ,
cT (x, y, z) = w —and therefore cT (x, y, z) = 0— can be written down as a
formula of our language of arithmetic.

To make life easy we add one more binary function symbol to the language
—let us call it “@”— that we interpret as λxy.xy. This will allow us —when
the time comes in the present argument— to continue using prime power coding
as we have been doing all along.††

This Appendix is informal and its formulas are proxies of formal wff of
PA obtained by interpreting formal symbols in the standard way according to
the table on p.1. In particular, you will not see the symbols @, S,×, nor the
metasymbol ã in this section. Rather you will see λxy.xy, λx.x + 1 and λxy.xy
and a (∈ N) instead, etc.

0.2.1 Lemma. ([Grz53]) The following relations can be written in our formal
language.

1. z = x � y

2. x ∣ y

3. Pr(x)

4. Seq(z)

5. Cons(x, y) (meaning x < y are consecutive primes)

6. pow(z, x, y) (meaning x > 1 and y is the highest power of x dividing z)

7. W (z) (meaning z has the form p0p
2
1p

3
2⋯pn+1n for some n)

8. y = pn
9. z = exp(x, y)

� If we keep a keen eye on the task at hand we realize that we do not worry about
bounding our quantifications, for it is not our purpose to show these relations
in PR∗. Indeed we know from earlier work that they all are in this set.

This time we want to show that we can express them within our language,
which allows us to write down, in the first instance, only the symbols for 0,
successor, addition, multiplication, exponentiation (added in this section) and
“less than”. We want to show that our language is rich enough to allow us write
down a lot of other things, including all of 1–9 above, and, in the end of all this,
to write down y = f(x⃗), for any f ∈ PR. �

††Using the so-called Chinese Remainder Theorem of number theory Gödel effected the
coding with his “beta function” not needing to add exponentiation to the system.

Supplementary Notes on Gödel’s Incompleteness©by G. Tourlakis, EECS 4111/5111, F18

7

Proof.

1. z = x � y: This is expressed by z = 0 ∧ x ≤ y ∨ x = z + y‡‡

2. x ∣ y: This is expressed by (∃z)y = xz (we are using “implied multipli-
cation” throughout: “xy” rather than the formally correct “x × y” —see
remark in between � signs above.)

3. Pr(x): This is expressed by x > 1 ∧ (∀y)(y ∣x→ y = 1 ∨ y = x)§§

4. Seq(z): This is expressed by

z > 1 ∧ (∀x)(∀y)(Pr(x) ∧ Pr(y) ∧ x < y ∧ y ∣ z → x ∣ z)

5. Cons(x, y): This is expressed by

Pr(x) ∧ Pr(y) ∧ x < y ∧ ¬(∃z)(Pr(z) ∧ x < z ∧ z < y)

6. pow(z, x, y): This is expressed by x > 1 ∧ xy ∣ z ∧ ¬xy+1 ∣ z¶¶

7. W (z): This is expressed by

Seq(z) ∧ ¬4 ∣ z∧
(∀x)(∀y)(Cons(x, y) ∧ y ∣ z → (∃w)(pow(z, x,w) ∧ pow(z, y,w + 1)))

8. y = pn: This is expressed by (∃z)(W (z) ∧ pow(z, y, n + 1))

9. z = exp(x, y): This is expressed by

(∃w)(pow(y,w, z) ∧w = px)

◻
We can now prove the following theorem that concludes the business of this
section.

0.2.2 Theorem. For every f ∈ PR, its graph y = f(x⃗n) is expressible in our
language of arithmetic (that now includes —as you recall— a symbol for expo-
nentiation).

Proof. We do induction on PR:

(1) Basis. There are three graphs to worry about here: y = x + 1, y = 0
and y = x (or, fancily, y = xi; or more fancily y = uni (x⃗n)). Clearly, all are
expressible in our language (e.g., the first looks somewhat different in the
formal notation: y = Sx; the other two look the same whether formally or
informally).

‡‡In the PA language x ≤ y is defined to be x < y ∨ x = y —no surprise here!
§§If we wanted to be pedantic we would have written “S0” or 1̃” instead of “1”. But we

adhere to the remark that immediately precedes this proof.
¶¶Once again, we wrote “y + 1” rather than the formal “Sy”. By the way, in defining pow

we benefitted from the presence of exponentiation.

Supplementary Notes on Gödel’s Incompleteness©by G. Tourlakis, EECS 4111/5111, F18

8

(2) Composition. Say, the property is true for the graphs of f, g1, . . . , gn.
This is the induction hypothesis (I.H.)

How about y = f(g1(x⃗m), g2(x⃗m), . . . , gn(x⃗m))? Well, this graph is express-
ible as

(∃u1)⋯(∃un)(y = f(u⃗n) ∧ u1 = g1(x⃗m) ∧⋯ ∧ un = gn(x⃗m))

and we are done by the I.H.

(3) Primitive recursion. This is the part that needs the previous lemma.
Here’s why: Assume (I.H.) that the graphs of h and g are expressible, and
let f be given for all x, y⃗ by

f(0, y⃗) = h(y⃗)
f(x + 1, y⃗) = g(x, y⃗, f(x, y⃗))

Now, to say z = f(x, y⃗) is equivalent to saying

(∃m0)(∃m1)⋯(∃mx)(m0 = h(y⃗) ∧ z =mx

∧ (∀w)(w < x→mw+1 = g(w, y⃗,mw)))
(i)

The trouble with the “formula” (i) above is that it is not a formula at
all, because it has a variable length prefix: (∃m0)(∃m1)⋯(∃mx), since the
length is the value of the input x. Coding to the rescue! Let us use a single
number,∗∗∗

m = pm0

0 pm1

1 ⋯pmx
x

to represent all the mi, for i = 0, . . . , x. Clearly,

mi = exp(i,m), for i = 0, . . . , x

We can now rewrite (i) as

(∃m)(exp(0,m) = h(y⃗) ∧ z = exp(x,m)

∧ (∀w)(w < x→ exp(w + 1,m) = g(w, y⃗, exp(w,m))))
(ii)

The above is a formula of arithmetic because of the I.H. Some parts of it
are a bit cryptic. For example, the part

exp(w + 1,m) = g(w, y⃗, exp(w,m))

can be expressed in more detail —using graphs, rather than function call
substitutions— as

(∃u)(∃v)(u = exp(w + 1,m) ∧ v = exp(w,m) ∧ u = g(w, y⃗, v))

The above is expressible by the I.H. and the preceding Lemma. This com-
pletes the proof. ◻

∗∗∗We do not need the more fancy ⟨m0, . . . ,mx⟩ here.

Supplementary Notes on Gödel’s Incompleteness©by G. Tourlakis, EECS 4111/5111, F18

9

Bibliography

[End72] Herbert B. Enderton, A Mathematical Introduction to Logic, Academic
Press, New York, 1972.

[Grz53] A. Grzegorczyk, Some classes of recursive functions, Rozprawy Matem-
atyczne 4 (1953), 1–45.

[Tou08] G. Tourlakis, Mathematical Logic, John Wiley & Sons, Hoboken, NJ,
2008.

Supplementary Notes on Gödel’s Incompleteness©by G. Tourlakis, EECS 4111/5111, F18

	Gödel's first incompleteness theorem
	Appendix: ()"38013D5 is a formula of arithmetic

