
1

Feb 26

0.0.1 The Ackermann Function

The “Ackermann function” was proposed, of course, by Ackermann. The version
here is a simplification offered by Robert Ritchie.

What the function does is to provide us with an example of a number-
theoretic intuitively computable, total function that is not in PR. But this func-
tion is more than just intuitively computable! It is computable—no hedging—as
we will show by showing it to be a member of R.

Another thing it does is that it provides us with an example of a function
λ~x.f(~x) that is “hard to compute” (f /∈ PR) but whose graph—that is, the
predicate λy~x.y = f(~x)—is nevertheless “easy to compute” (∈ PR∗).∗

0.0.1 Definition. The Ackermann function, λnx.An(x), is given, for all n ≥
0, x ≥ 0 by the equations

A0(x) = x+ 2

An+1(x) = Ax
n(2)

where hx is function iteration. �

� For any λy.h(y), the function λxy.hx(y) is given by the primitive recursion

h0(y) = y

hx+1(y) = h
(
hx(y)

)
It is obvious then that if h ∈ PR then so is λxy.hx(y). �

� The λ-notation makes it clear that both n and x are arguments of the Ackermann
function. While we could have written A(n, x) instead, it is notationally less
challenging to use the chosen notation. We refer to the n as the subscript
argument, and to x as the inner argument. �

0.0.2 Remark. An alternative way to define the Ackermann function, ex-
tracted directly from Definition 0.0.1, is as follows:

A0(x) = x+ 2

An+1(0) = 2

An+1(x+ 1) = An(An+1(x)) �
∗Here the colloquialisms “easy to compute” and “hard to compute” are aliases for “primi-

tive recursive” and “not primitive recursive”, respectively. This is a hopelessly coarse rendering
of easy/hard and a much better gauge for the runtime complexity of a problem is on which
side of O(2n) it lies. However, our gauge will have to do for now: All I want to leave you with
is that for some functions it is easier to compute the graph—to the quantifiable extent that
it is in PR∗—than the function itself, to the extent that it fails being primitive recursive.

CSE 4111/5111. George Tourlakis. Winter 2018

2

0.0.2 Properties of the Ackermann Function

We present a sequence of less than earth-shattering—but useful—theorems. So
we will just call them lemmata.

0.0.3 Lemma. For each n ≥ 0, λx.An(x) ∈ PR.

Proof. Induction on n: For the basis, clearly A0 = λx.x + 2 ∈ PR. Assume
now the case for (arbitrary, fixed) n—i.e., An ∈ PR—and go to that for n+ 1.
Immediate from Definition 0.0.2, last two equations. �

It turns out that the function blows up in size far too fast with respect to
the argument n. We now quantify this remark.

The following unassuming lemma is the key to proving the growth properties
of the Ackermann function. It is also the least straightforward to prove, as it
requires a double induction—at once on n and x—as dictated by the fact that
the “recursion” of Definition 0.0.2 does not leave any argument fixed.

� The above shows in particular that, for all n and x, An(x) ↓. That is, λnx.An(x)
is total. �

0.0.4 Lemma. For each n ≥ 0 and x ≥ 0, An(x) > x+ 1.

Proof. We start an induction on n:
n-Basis. n = 0: A0(x) = x+ 2 > x+ 1; true.
n-I.H.† For all x and a fixed (but unspecified) n, assume An(x) > x+ 1.
n-I.S.‡ For all x and the above fixed (but unspecified) n, we must prove

An+1(x) > x+ 1.
We do the n-I.S. by induction on x:

x-Basis. x = 0: An+1(0) = 2 > 1; true.
x-I.H. For the above fixed n, we now fix an x (but leave it unspecified)

for which we assume An+1(x) > x+ 1.
x-I.S. For the above fixed (but unspecified) n and x, prove An+1(x+1) >

x+ 2.
Well,

An+1(x+ 1) = An(An+1(x)) by Def. 0.0.2

> An+1(x) + 1 by n-I.H.

> x+ 2 by x-I.H. �

0.0.5 Lemma. λx.An(x)↗.

� “λx.f(x) ↗” means that the (total) function f is strictly increasing, that is,
x < y implies f(x) < f(y), for any x and y. Clearly, to establish the property
one just needs to check for the arbitrary x that f(x) < f(x+ 1). �

†To be precise, what we are proving is “(∀n)(∀x)An(x) > x+ 1”. Thus, as we start on an
induction on n, its I.H. is “(∀x)An(x) > x + 1” for a fixed unspecified n.
‡To be precise, the step is to prove—from the basis and I.H.—“(∀x)An+1(x) > x+ 1” for

the n that we fixed in the I.H. It turns out that this is best handled by induction on x.

CSE 4111/5111. George Tourlakis. Winter 2018

3

Proof. We handle two cases separately.
A0: λx.x+ 2↗; immediate.
An+1: An+1(x+1) = An(An+1(x)) > An+1(x)+1—the “>” by Lemma 0.0.4.

�

0.0.6 Lemma. λn.An(x+ 1)↗.

Proof. An+1(x + 1) = An(An+1(x)) > An(x + 1)—the “>” by Lemmata 0.0.4
(left argument > right argument) and 0.0.5. �

� The “x + 1” in Lemma 0.0.6 is important since An(0) = 2 for all n. Thus
λn.An(0) is increasing but not strictly (constant). �

0.0.7 Lemma. λy.Ay
n(x)↗.

Proof. Ay+1
n (x) = An(Ay

n(x)) > Ay
n(x)—the “>” by Lemma 0.0.4. �

0.0.8 Lemma. λx.Ay
n(x)↗.

Proof. Induction on y: For y = 0 we want that λx.A0
n(x) ↗, that is, λx.x ↗,

which is true. We next take as I.H. that

Ay
n(x+ 1) > Ay

n(x) (1)

We want
Ay+1

n (x+ 1) > Ay+1
n (x) (2)

But (2) follows from (1) and Lemma 0.0.5, by applying An to both sides of
“>”. �

0.0.9 Lemma. For all n, x, y, Ay
n+1(x) ≥ Ay

n(x).

Proof. Induction on y: For y = 0 we want that A0
n+1(x) ≥ A0

n(x), that is, x ≥ x,
which is true. We now take as I.H. that

Ay
n+1(x) ≥ Ay

n(x)

We want
Ay+1

n+1(x) ≥ Ay+1
n (x)

This is true because

Ay+1
n+1(x) = An+1

(
Ay

n+1(x)
)

by Lemma 0.0.6
≥An

(
Ay

n+1(x)
)

Lemma 0.0.5 and I.H.
≥Ay+1

n (x) �

CSE 4111/5111. George Tourlakis. Winter 2018

4

0.0.10 Definition. Given a predicate P (~x), we say that P (~x) is true almost
everywhere—in symbols “P (~x) a.e.”—iff the set of (vector) inputs that make
the predicate false is finite. That is, the set {~x : ¬P (~x)} is finite.

A statement such as “λxy.Q(x, y, z, w) a.e.” can also be stated, less formally,
as

“Q(x, y, z, w) a.e. with respect to x and y”. �

0.0.11 Lemma. An+1(x) > x+ l a.e. with respect to x.

� Thus, in particular, A1(x) > x+ 10350000 a.e. �

Proof. In view of Lemma 0.0.6 and the note following it, it suffices to prove

A1(x) > x+ l a.e. with respect to x

Well, since

A1(x) = Ax
0(2) =

x 2’s︷ ︸︸ ︷
(· · · (((y + 2) + 2) + 2) + · · ·+ 2) ‖evaluated at y = 2 = 2 + 2x

we ask: Is 2 + 2x > x+ l a.e. with respect to x? It is so for all x > l − 2 (only
x = 0, 1, . . . , l − 2 fail). �

0.0.12 Lemma. An+1(x) > Al
n(x) a.e. with respect to x.

Proof. If one (or both) of l and n is 0, then the result is trivial. For example,

Al
0(x) =

l 2’s︷ ︸︸ ︷
(· · · (((x+ 2) + 2) + 2) + · · ·+ 2) = x+ 2l

We are done by Lemma 0.0.11.

Let us then assume that l ≥ 1 and n ≥ 1. We note that (straightforwardly,
via Definition 0.0.1)

Al
n(x) = An(Al−1

n (x))

= A
Al−1

n (x)
n−1 (2) = A

A
Al−2

n (x)
n−1 (2)

n−1 (2) = A
A
A
Al−3

n (x)
n−1 (2)

n−1 (2)
n−1 (2)

The straightforward observation that we have a “ladder” of k An−1’s precisely
when the topmost exponent is l−k can be ratified by induction on k (left to the
reader). Thus we state

Al
n(x) =

k An−1

{
A·
··
A
Al−k

n (x)
n−1 (2)

. . .
n−1 (2)

CSE 4111/5111. George Tourlakis. Winter 2018

5

In particular, taking k = l,

Al
n(x) =

l An−1

{
A·
··
A
Al−l

n (x)
n−1 (2)

. . .
n−1 (2) =

l An−1

{
A·
··
Ax

n−1(2)
. . .

n−1 (2) (∗)

Let us now take x > l.

Thus, by (∗),

An+1(x) = Ax
n(2) =

x An−1

{
A·
··
A2

n−1(2)
. . .

n−1 (2) (∗∗)

By comparing (∗) and (∗∗) we see that the first “ladder” is topped (after l An−1
“steps”) by x and the second is topped by

x−l An−1

{
A·
··
A2

n−1(2)
. . .

n−1 (2)

Thus—in view of the fact that Ay
n(x) increases with respect to each of the

arguments n, x, y—we conclude by asking . . .

“Is
x−l An−1

{
A·
··
A2

n−1(2)
. . .

n−1 (2) > x a.e. with respect to x?”

. . . and answering, “Yes”, because by (∗∗) this is the same question as “is
An+1(x − l) > x a.e. with respect to x?”, which we answered affirmatively
in 0.0.11. �

0.0.13 Lemma. For all n, x, y, An+1(x+ y) > Ax
n(y).

Proof.

An+1(x+ y) = Ax+y
n (2)

= Ax
n

(
Ay

n(2)
)

= Ax
n

(
An+1(y)

)
> Ax

n(y) by Lemmata 0.0.4 and 0.0.8 �

0.0.3 The Ackermann Function Majorises All the Func-
tions of PR

We say that a function f majorizes another function, g, iff g(~x) ≤ f(~x) for all ~x.
The following theorem states precisely in what sense “the Ackermann function
majorizes all the functions of PR”.

0.0.14 Theorem. For every function λ~x.f(~x) ∈ PR there are numbers n and
k, such that for all ~x we have f(~x) ≤ Ak

n(max(~x)).

CSE 4111/5111. George Tourlakis. Winter 2018

6

Proof. The proof is by induction with respect to PR. Throughout I use the
abbreviation |~x| for max(~x) as this is notationally friendlier.

For the basis, f is one of:

• Basis.

Basis 1. λx.0. Then A0(x) works (n = 0, k = 1).

Basis 2. λx.x+ 1. Again A0(x) works (n = 0, k = 1).

Basis 3. λ~x.xi. Once more A0(x) works (n = 0, k = 1): xi ≤ |~x| < A0(|~x|).

• Propagation with composition. Assume as I.H. that

f(~xm) ≤ Ak
n(|~xm|) (1)

and

for i = 1, . . . ,m, gi(~y) ≤ Aki
ni

(|~y|) (2)

Then

f(g1(~y), . . . , gm(~y)) ≤ Ak
n(|g1(~y), . . . , gm(~y)|), by (1)

≤ Ak
n(|Ak1

n1
(|~y|), . . . , Akm

nm
(|~y|)|), by 0.0.8 and (2)

≤ Ak
n

(
|Amax ki

maxni
(|~y|)

)
, by 0.0.8 and 0.0.9

≤ Ak+max ki

max(n,ni)
(|~y|), by 0.0.9

• Propagation with primitive recursion. Assume as I.H. that

h(~y) ≤ Ak
n(|~y|) (3)

and

g(x, ~y, z) ≤ Ar
m(|x, ~y, z|) (4)

Let f be such that

f(0, ~y) = h(~y)

f(x+ 1, ~y) = g(x, ~y, f(x, ~y))

I claim that

f(x, ~y) ≤ Arx
m

(
Ak

n(|x, ~y|)
)

(5)

I prove (5) by induction on x:

For x = 0, I want f(0, ~y) = h(~y) ≤ Ak
n(|0, ~y|). This is true by (3) since

|0, ~y| = |~y|.
As an I.H. assume (5) for fixed x.

CSE 4111/5111. George Tourlakis. Winter 2018

7

The case for x+ 1:

f(x+ 1, ~y) = g(x, ~y, f(x, ~y))

≤ Ar
m(|x, ~y, f(x, ~y)|), by (4)

≤ Ar
m

(∣∣∣x, ~y,Arx
m

(
Ak

n(|x, ~y|)
)∣∣∣), by the I.H. (5), and 0.0.8

= Ar
m

(
Arx

m

(
Ak

n(|x, ~y|)
))

, by 0.0.8 and Arx
m

(
Ak

n(|x, ~y|)
)
≥ |x, ~y|

= Ar(x+1)
m

(
Ak

n(|x, ~y|)
)

≤ Ar(x+1)
m

(
Ak

n(|x+ 1, ~y|)
)

, by 0.0.8

With (5) proved, let me set l = max(m,n). By Lemma 0.0.9 I now get

f(x, ~y) ≤ Arx+k
l (|x, ~y|) <

Lemma 0.0.13
Al+1(|x, ~y|+ rx+ k) (6)

Now, |x, ~y|+ rx+ k ≤ (r + 1)|x, ~y|+ k thus, (6) and 0.0.5 yield

f(x, ~y) < Al+1((r + 1)|x, ~y|+ k) (7)

To simplify (7) note that there is a number q such that

(r + 1)x+ k ≤ Aq
1(x) (8)

for all x. Indeed, this is so since (easy induction on y) Ay
1(x) = 2yx + 2y +

2y−1 + · · · + 2. Thus, to satisfy (8), just take y = q large enough to satisfy
r + 1 ≤ 2q and k ≤ 2q + 2q−1 + · · ·+ 2.

By (8), the inequality (7) yields, via 0.0.5,

f(x, ~y) < Al+1(Aq
1(|x, ~y|)) ≤ A1+q

l+1 (|x, ~y|)

(by Lemma 0.0.9) which is all we want. �

0.0.15� Remark. Reading the proof carefully we note that the subscript argu-
ment of the majorant§ is precisely the maximum depth of nesting of primitive
recursion that occurs in a derivation of f .

Pause. In which derivation? There are infinitely many.J

Indeed, the initial functions have a majorant with subscript 0; composition
has a majorant with subscript no more than the maximum subscript of the
component parts—no increase; primitive recursion has a majorant with a sub-
script that is bigger than the maximum subscript of the h- and g-majorants by
precisely 1. � �

0.0.16 Corollary. λnx.An(x) /∈ PR.

§The function that does the majorizing.

CSE 4111/5111. George Tourlakis. Winter 2018

8

Proof. By contradiction: If λnx.An(x) ∈ PR then also λx.Ax(x) ∈ PR (iden-
tification of variables). By the theorem above, for some n, k, Ax(x) ≤ Ak

n(x),
for all x, hence, by 0.0.12

Ax(x) < An+1(x), a.e. with respect to x (1)

On the other hand, An+1(x) < Ax(x) a.e. with respect to x—indeed for all
x > n+ 1 by 0.0.6—which contradicts (1). �

0.0.4 The Graph of the Ackermann Function is in PR∗
How does one compute a yes/no answer to the question

“An(x) = z?” (1)

Thinking “recursively” (in the programming sense of the word), we will look
at the question by considering three cases, according to the definition in the
Remark 0.0.2:

(a) If n = 0, then we will directly check (1) as “is x+ 2 = z?”.

(b) If x = 0, then we will directly check (1) as “is 2 = z?”.

(c) In all other cases, i.e., n > 0 and x > 0, we may naturally ask two questions
[both must be answerable “yes” for (1) to be true]:¶ “Is there a w such that
An−1(w) = z and also An(x− 1) = w?”

� Steps (a)–(c) are entirely analogous to steps in a proof. Just as in a proof we
verify the truth of a statement via syntactic means, here we are verifying the
truth of An(x) = z by such means.

Steps (a) and (b) correspond to writing down axioms. Step (c) corresponds
to attempting to prove B by applying MP (modus ponens) where we are looking
for an A such that we have a proof of both A and A→ B. In fact, closer to the
situation in (c) above is a proof step where we want to prove X → Y and are
looking for a Z such that both X → Z and Z → Y are known to us theorems.
Z plays a role entirely analogous to that of w above. �

Assuming that we want to pursue the process (a)–(c) by pencil and paper
or some other equivalent means, it is clear that the pertinent info that we
are juggling are ordered triples of numbers such as n, x, z, or n − 1, w, z, etc.
That is, the letter “A”, the brackets, the equals sign, and the position of the
arguments (subscript vs. inside brackets) are just ornamentation, and the string
“Ai(j) = k”, in this section’s context, does not contain any more information
than the ordered triple “(i, j, k)”.

Thus, to “compute” an answer to (1) we need to write down enough triples,
in stages (or steps), as needed to justify (1): At each stage we may write a triple
(i, j, k) down just in case one of (i)–(iii) holds:

¶Note that An(x) = An−1(An(x− 1)).

CSE 4111/5111. George Tourlakis. Winter 2018

9

(i) i = 0 and k = j + 2

(ii) j = 0 and k = 2

(iii) i > 0 and j > 0, and for some w, we have already written down the two
triples (i− 1, w, k) and (i, j − 1, w).

0.0.17� Remark. Since “(i, j, k)” abbreviates “Ai(j) = k”, Lemma 0.0.4 im-
plies that j < k. � �

Our theory is more competent with numbers (than with pairs, triples, etc.)
preferring to code tuples into single numbers. Thus if we were to carry out the
pencil and paper algorithm within our theory, then we would be well advised to
code all these triples, which we write down step by step, by single numbers: We
will use our usual prime-power coding, 〈i, j, k〉, to do so.

The verification process for An(x) = z, described in (a)–(c), is a sequence of
steps of types (a), (b) or (c) that ends with the (coded) triple 〈n, x, z〉.

We will code such a sequence We note that our computation is “tree-like”,
since a “complicated” triple such as that of case (iii) above requires two similar
others to be already written down, each of which in turn will require two earlier
similar others, etc., until we reach “leaves” [cases (i) or (ii)] that can be dealt
with directly without passing the buck.

This “tree”, just like the tree of a mathematical proof, can be “linearised”
and thus be arranged in a sequence of coded triples 〈i, j, k〉 so that the presence
of a “〈i, j, k〉” implies that all its dependencies appear earlier (to its left).

We will code the entire proof sequence by a single number, u, using prime-
power coding.

The major result in this subsection is the theorem below, that given any
number u, we can primitively recursively check whether or not it is a code of an
Ackermann function computation:

0.0.18 Theorem. The predicate

Comp(u)
Def
= u codes an Ackermann function computation

is in PR∗.

Proof. The auxiliary predicates λvu.v ∈ u and λvwu.v <u w mean

u = 〈. . . , v, . . .〉 (v is member of the coded sequence)

and
u = 〈. . . , v, . . . , w, . . .〉 (v appears before w in the code u)

respectively. Both are in PR∗ since

v ∈ u ≡ Seq(u) ∧ (∃i)<lh(u)(u)i = v

and
v <u w ≡ Seq(u) ∧ (∃i, j)<lh(u)

(
(u)i = v ∧ (u)j = w ∧ i < j

)
CSE 4111/5111. George Tourlakis. Winter 2018

10

The right hand side of “≡” below rests the case of the proof.

Comp(u)≡Seq(u) ∧ (∀v)≤u

(
v ∈ u→ Seq(v) ∧ lh(v) = 3 ∧

{Comment: Case (i), p. 9}
{

(v)0 = 0 ∧ (v)2 = (v)1 + 2 ∨

{Comment: Case (ii)} (v)1 = 0 ∧ (v)2 = 2 ∨

{Comment: Case (iii)}
(

(v)0 > 0 ∧ (v)1 > 0 ∧

(∃w)<(v)2

(
〈(v)0

.− 1, w, (v)2〉 <u v ∧ 〈(v)0, (v)1
.− 1, w〉 <u v

))})
Remark 0.0.17 justifies the bound on (∃w) above. �

Thus An(x) = z iff 〈n, x, z〉 ∈ u for some u that satisfies Comp. For short

An(x) = z ≡ (∃u)(Comp(u) ∧ 〈n, x, z〉 ∈ u) (1)

If we succeed in finding a bound for u that is a primitive recursive function of
n, x, z then we will have succeeded showing:

0.0.19 Theorem. λnxz.An(x) = z ∈ PR∗.

Proof. We assume a computation u that as soon as it verifies An(x) = z quits,
that is, it only includes 〈n, x, z〉 (at the very end) and all the needed predecessor
coded triples, but nothing else. How big can u be?

Note that
u = · · · p〈i,j,k〉+1

r · · · p〈n,x,z〉+1
l (2)

for appropriate l (=lh(u)− 1). For example, if all we want is to verify A0(10) =

12, then u = p
〈0,10,12〉+1
0 .

Similarly, if all we want is to verify A1(1) = 4, then—since the “recursive
calls” here are to A0(2) = 4 and A1(0) = 2—two possible u-values work: u =

p
〈0,2,4〉+1
0 p

〈1,0,2〉+1
1 p

〈1,1,4〉+1
2 or u = p

〈1,0,2〉+1
0 p

〈0,2,4〉+1
1 p

〈1,1,4〉+1
2 .

How big need l be? No bigger than needed to provide distinct positions (l+1
such) in the computation, for all the “needed” triples 〈i, j, k〉. Since z is the
largest possible output (and larger than any input) that is computed, there are
no more than (z + 1)3 triples possible, so l+ 1 ≤ (z + 1)3. Therefore, (2) yields

u ≤ · · · p〈z,z,z〉+1
r · · · p〈z,z,z〉+1

l

=
(

Πi≤lpi

)〈z,z,z〉+1

≤ p(l+1)(〈z,z,z〉+1)
l

≤ p(z+1)3(〈z,z,z〉+1)
(z+1)3

Setting g = λz.p
(z+1)3(〈z,z,z〉+1)
(z+1)3 we have g ∈ PR and we are done by (1):

An(x) = z ≡ (∃u)≤g(z)(Comp(u) ∧ 〈n, x, z〉 ∈ u) �

CSE 4111/5111. George Tourlakis. Winter 2018

11

� Worth saying: If f is total and y = f(~x) is in PR∗, then it does not necessarily
follow that f ∈ PR, as 0.0.19 exemplifies. On the other hand, if f is total and
y = f(~x) is in R∗, then, trivially, f ∈ R since f = λx.(µy)(y = f(~x)).

What is missing from the preceding expression is a primitive recursive bound
on the search (µy), and this absence does not allow us to conclude that f
is primitive recursive even when its graph is. For example, such a bound is
impossible in the Ackermann case as we know from its growth properties. �

0.0.20 Theorem. λnx.An(x) ∈ R.

Proof. λnx.An(x) = λnx.(µz)(z = An(x)). But λnxz.z = An(x) is in PR∗,
thus λnx.An(x) ∈ P. But this function is total! �

CSE 4111/5111. George Tourlakis. Winter 2018

	The Ackermann Function
	Properties of the Ackermann Function
	The Ackermann Function Majorises All the Functions of PR
	The Graph of the Ackermann Function is in PR*

