
Notes on a (very) Elementary Set
Theory—Part V

1 Special Relations;
Relational closures

We continue within informal mathematics until otherwise stated.1

� We will continue for a while looking only at relations S : A → A, however
the definition below applies to any relations, possibly with distinct left and
right fields. Indeed, the definition is independent of the fields. �

Definition 1.1 (Relational Inverse). For any relation R, we define

R−1 Def.
= {〈x, y〉|yRx} (1)

We call R−1 the inverse of R. �

� Of course, the definition could have been given as

(∀x)(∀y)(xR−1y ≡ yRx)

a fact that is equivalent to (1). As it is usual, one omits the quantifiers (in
one direction by specialisation, in the other by—the allowed in set theory—
generalisation) and writes:

xR−1y ≡ yRx

Clearly, (R−1)−1 = R. Indeed,

x(R−1)−1y

≡
〈

1.1
〉

yR−1x

≡
〈

1.1
〉

xRy

�
1But we still apply proper logic to get results proved. In particular, we are responsible

for what we assume at every step. Our “assumptions” must be realistic and not wishful
thinking.
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Exercise 1.2. Prove that (R ∪ S)−1 = R
−1

∪ S
−1. �

Exercise 1.3. Prove that (R ◦ S)−1 = S
−1

◦ R
−1. �

Remark 1.4. We defined dom(R) = {x|(∃y)xRy} and ran(R) = {y|(∃x)xRy}
in Part IV. Since we have (∃y)xRy ≡ (∃y)yR−1x by sWLUS, we get

dom(R) = {x|(∃y)xRy} = {x|(∃y)yR−1x} = ran(R−1)

Similarly,

dom(R−1) = ran(R)

In particular, R is total iff R−1 is onto and R is onto iff R−1 is total. �

There is a number of relation types that are of interest:

Definition 1.5. Given a relation R : A → A.

1. It is reflexive iff (∀x ∈ A)xRx.

2. It is irreflexive iff (∀x)¬xRx

3. It is symmetric iff (∀x)(∀y)(xRy ⇒ yRx)

4. It is antisymmetric iff (∀x)(∀y)(xRy ∧ yRx ⇒ x = y)

5. It is transitive iff (∀x)(∀y)(∀z)(xRy ∧ yRz ⇒ xRz) �

� Only part 1 of the definition needs to refer to A. Indeed it depends very
much on it. Consider R = {〈1, 1〉}. If A = {1}, then R is reflexive. If
A = {1, 2}, then it is not reflexive, because now it should have the pair
〈2, 2〉 in it, but it does not.

R is all of 3–5 regardless of A. An example of an irreflexive relation
is {〈1, 2〉}. Other examples are < on N and ⊂ on sets. Examples of anti-
symmetric relations, beyond the particular R of this example, are ≤ on N

and ⊆ on sets (by extensionality).
Note that

(∀x)(∀y)(xRy ⇒ yRx) ≡ (∀y)(∀x)(yRx ⇒ xRy) ≡ (∀x)(∀y)(yRx ⇒ xRy)

where the first ≡ is by dummy renaming (and WLUS) and the second by
commuting the ∀’s. Thus we get the ⇐ direction in 3 for free, and we have
the theorem “R is symmetric iff (∀x)(∀y)(xRy ≡ yRx)”. Actually, we have
just proved the “only if” (⇒) direction. The “if” direction is by ∀-MON
and the tautology (A ≡ B) ⇒ (A ⇒ B). �
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Example 1.6. R : A → A is given. Then

(i) R is reflexive iff 1A ⊆ R.

(ii) R is symmetric iff R = R−1.

(iii) R is irreflexive iff R ∩ 1A = ∅.

(iv) R is transitive iff R2 ⊆ R.

(v) R is antisymmetric iff R ∩ R−1 ⊆ 1A.

Let us do (i) and (ii) and leave the rest as exercises.
(i): Assume 1A ⊆ R.
Now prove that R is reflexive. So let x ∈ A and prove xRx. Since

1A = {〈x, x〉|x ∈ A} by definition (Part IV, 3.5), we have x1Ax. By the
hypothesis, I have xRx. Done.

For the other direction, assume that R is reflexive.
Prove 1A ⊆ R. Well, let x1Ax. By definition of identity, x ∈ A. By

definition of reflexivity and by the hypothesis, xRx. Connecting with our
“let”, we have what we want.

(ii): Assume that R = R−1.
I want2 xRy ≡ yRx (remember: I can place the universal quantifier

afterwards). Well, xRy ≡ yR−1x ≡ yRx, where the 2nd ≡ is by hypothesis.
Conversely, assume that (∀x)(∀y)(xRy ≡ yRx). Thus, (∀x)(∀y)(xRy ≡

xR−1y) by sWLUS and definition of inverse. Therefore (by extensionality)
R = R−1. �

We now turn to “closing” relations. I get a closure of R with respect
to a property (such as reflexivity, symmetry, etc.) by adding just enough,
but no more than needed pairs to R so as to make it have the required
property. Rigourously then, we define

Definition 1.7 (“Popular” closures). We are back to relations on a set
A. So let R : A → A be given.

(a) The reflexive closure of R is the ⊆-smallest reflexive S such that extends
R, i.e., R ⊆ S.
We write S = r(R).

(b) The symmetric closure of R is the ⊆-smallest symmetric S such that
extends R, i.e., R ⊆ S.
We write S = s(R).

2You haven’t forgotten what I proved just before this example, have you?
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(c) The transitive closure of R is the ⊆-smallest transitive S such that
extends R, i.e., R ⊆ S.
We write S = t(R) or S = R+. �

� Let us “parse” the definition. Of course, the “extends” part is R ⊆ S.
What do I mean by ⊆-smallest? Intuitively, I mean that I do not add to R
more pairs than I need to make R one of reflexive, symmetric, transitive.

Formally the definition translates into:

(1) The reflexive closure of R is a relation S such that

(a) R ⊆ S (the extends part)

(b) S is reflexive
(c) If R ⊆ T and T is also reflexive, then S ⊆ T . This is the “⊆-

smallest” part. That is, any other reflexive extension is equal to
or larger than the closure (“larger” meaning “superset”).

Similarly,

(2) The symmetric closure of R is a relation S such that

(a) R ⊆ S

(b) S is symmetric
(c) If R ⊆ T and T is also symmetric, then S ⊆ T .

(3) The transitive closure of R is a relation S such that

(a) R ⊆ S

(b) S is transitive

(c) If R ⊆ T and T is also transitive, then S ⊆ T .

�

Remark 1.8 (Uniqueness of closures). We have used the definite ar-
ticle in the definition of closures, 1.7. This is justified, because any of the
three closures we defined for a relation R is unique if it exists.

We will worry about existence shortly. Uniqueness is easy.
Let S be a reflexive (symmetric, transitive) closure of R, and let also

T be another one.
So, each of S and T extend R, and each is reflexive (symmetric, tran-

sitive).
Since S is ⊆-smallest such, we have S ⊆ T . But T is also smallest such,

because we assumed it is a closure too. That is, T ⊆ S. By extensionality,
S = T . �
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Example 1.9. Thus, if R = {〈1, 2〉, 〈2, 3〉, 〈3, 1〉}, then

r(R) = {〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈1, 2〉, 〈2, 3〉, 〈3, 1〉}

s(R) = {〈2, 1〉, 〈3, 2〉, 〈1, 3〉, 〈1, 2〉, 〈2, 3〉, 〈3, 1〉}

and

t(R) = {〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈1, 2〉, 〈2, 3〉, 〈3, 1〉, 〈2, 1〉, 〈3, 2〉, 〈1, 3〉}

Lest you think that t(R) always ends up symmetric and reflexive, here
is a counterexample: Start with S = {〈1, 2〉, 〈2, 3}. Then

t(S) = {〈1, 2〉, 〈2, 3〉, 〈1, 3〉}

�

We settle the existence of closures constructively, by showing how to
compute them:

Theorem 1.10 (Existence of closures). For any relation R : A → A,
(1) r(R) = 1A ∪ R
(2) s(R) = R ∪ R−1

(3) t(R) =
⋃

i≥1

Ri

� Before we embark with the proof, let me explain the symbol

⋃

i≥1

Ri (4)

It means, intuitively,

R ∪ R2 ∪ R3 ∪ . . . ∪ Ri ∪ . . . without end

That is, 〈x, y〉 is in (4) iff it is in at least one of the positive powers Ri.
Formally then, it means

⋃

i≥1

Ri = {〈x, y〉|(∃i ≥ 1)xRiy} (5)

We can now turn to the proof of the theorem. �
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Proof. (1) Trivially, R ⊆ 1A∪R. Also, 1A∪R is reflexive by example 1.6.
We need to show that our “solution” is smallest. Let then also

R ⊆ T (6)

and T be reflexive. Again by 1.6, 1A ⊆ T which by (6) gives 1A ∪ R ⊆ T .
(2) Trivially R ⊆ R ∪ R−1. Moreover, our proposed solution is

symmetric by 1.6 and exercise 1.2. Here is the contribution of exercise 1.2:

(R ∪ R−1)−1 = R−1 ∪ (R−1)−1 = R−1 ∪ R

The last “=” is by the remark following 1.1.
To see that the proposed solution works I must show it is smallest.

Let then R ⊆ T and T be symmetric. Clearly R−1 ⊆ T−1,3 hence R−1 ⊆ T
since T = T−1 by example 1.6. All told, R ∪ R−1 ⊆ T .

(3) Let us call
⋃

i≥1

Ri “S”. Clearly, R ⊆ S, since S = R ∪ R2 ∪ . . .4

Next we show that S is transitive, so let xSySz. Thus I have

(∃i ≥ 1)xRiy (7)

and
(∃i ≥ 1)yRiz (8)

Informally, let i = k work for (7) and i = m work for (8), so we have5

k ≥ 1 ∧ xRky (7′)

and
m ≥ 1 ∧ yRmz (8′)

(7′) and (8′) yield k + m ≥ 1 ∧ xRk ◦ Rmz, hence, using proposition 3.10
of Part IV,

k + m ≥ 1 ∧ xRk+mz

Just as in footnote 4, the above yields (∃i ≥ 1)xRiz, i.e., xSz.

3Conjunctionally, xR−1y ⇒ yRx
hypothesis

⇒ yTx ⇒ xT−1y.
4 A formal Hilbert proof without the numbering goes like this: Let xRy. Then

xR1y since R = R1. Since 1 ≥ 1 is a theorem—that is, 1 = 1 ∨ 1 < 1—I now have
1 ≥ 1 ∧ xR1y. Apply now the rule A[x := t] ` (∃x)A to get (∃i)(i ≥ 1 ∧ xRiy), or for
short (∃i ≥ 1)xRiy. But that says x

S

i≥1

Riy, i.e., xSy.

5Formally, we say the same thing like this: Let k be a fresh variable and assume (7′).
Moreover, let m be a fresh variable and assume (8′). Note how the “freshness” for you
against the error of choosing the same “value” of i both (7′) and (8′). The informal
proof speaks of “values”, the formal speaks of “names”. One tracks the other faithfully.
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Finally! Let us prove that our “solution” S is the smallest transitive
extension of R. So let T be another transitive extension:

R ⊆ T and T is transitive (9)

It suffices to prove that
(∀i ≥ 1)(Ri ⊆ T ) (10)

for then T is a superset of each set in the union

R ∪ R2 ∪ R3 ∪ . . .

and therefore a superset of the union itself.
So let us prove (10) by induction on i. The basis i = 1 is the assump-

tion (9).
So assume Ri ⊆ T (I.H.)
We next goto i+1: Let xRi+1y. By definition of powers, this means

xR ◦ Riy. Hence for some z (formally this would be a fresh variable) I
have xRz and zRiy. The first of these two conclusions gives xTz by (9).
The second gives zTy by I.H. Since T is transitive, I got xTy and I am
done. �

� In class we formalised the part “for then T is a superset of each set in the
union

R ∪ R2 ∪ R3 ∪ . . .

and therefore a superset of the union itself”. Can you reproduce that formal
proof, which was based on the formal definition of

⋃

i≥1

Ri?

What does xR2y say intuitively? That R allows us to go from x to y
in two R-steps, since there must be a z such that xRzRy. Similarly, xR3y
says that we can go from x and y in 3 steps, and, in general, xRny says
that we can go from x to y in n steps. No wonder then that

R+ = R ∪ R2 ∪ R3 ∪ . . .

for the first term, R, is what we start with. The 2nd, R2 adds to R
those pairs that allow one to bridge x, y in one step, whereas without this
addition it may have (if R is not transitive) taken two steps. Similarly, the
pairs that R3 adds are those x, y that originally we could bridge in 3 steps.
Adding the pair outright means that I can also go from x, y in one step, as
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transitivity would require. Think about it: If R were transitive to begin
with, would it not be that xRzRwRy implies xRy? That is, along with
the 3-step route there must be a “direct” route as well? The infinite union
that “computes” R+ ensures that all direct routes are added.

One more thought: xR+y is true iff I can get from x to y in one or
more R-steps. Indeed, xR+y says just that: (∃i ≥ 1)xRiy. �

Remark 1.11. One often uses r(t(R)). This turns out to be equal to
t(r(R)). The literature usually uses the symbol R∗ for either, and calls it
the reflexive transitive closure of R. It can be computed by

R∗ = 1A ∪ R ∪ R2 ∪ . . . =
⋃

i≥0

Ri

Clearly, assuming that the above computation for R∗ is correct, xR∗y is
true iff I can get from x to y in zero or more R-steps. Zero steps means
x = y (from xR0y or x1Ay). �

2 Equivalence Relations
A relation R : A → A that is all of reflexive, symmetric and transitive
is called an equivalence relation. These play a major role in computer
science and mathematics. For example, a practical application is in the
minimisation of finite automata (a topic that may be found in COSC2001
or in COSC3302).

Example 2.1. Any 1A and the “≡” of logic are equivalence relations.
Here is a more interesting one on Z = {. . . ,−2,−1, 0, 1, 2, . . .}. For

any m > 1 define the relation ≡m defined by:

a ≡m b iff m is a factor of a − b (1)

A number theorist will probably rather write “a ≡m b” as “a ≡ b (mod m)”
or “a ≡ b (m)”.

In any case we pronounce “a ≡m b”—by this or any other notation—
“a is congruent to b modulo m”.

Enough jargon. Let us verify that ≡m is indeed an equivalence relation
on Z.

Reflexivity is trivial, for a − a = 0 and m is certainly a factor of 0.
For symmetry, say a ≡m b. Thus m is a factor of a − b. But then so is of
b − a.
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Finally, let a ≡m b ≡m c. Let us rewrite the hypothesis in “factor of”
notation. So

a − b = m · k

and
b − c = m · n

for some k, n. Add and get a − c = m · (k + n). Done.
By the way, this is an equivalence relation that is not antisymmetric.

Indeed, for any fixed m, 0 ≡m m and m ≡m 0, yet 0 6= m (recall that
m > 1). Note that 1A is antisymmetric. However the ≡ of logic is not. For
example, p ≡ (p ∧ p) and (p ∧ p) ≡ p, but p 6= (p ∧ p) (as strings, that is,
they are different; equivalence does not force them to be the same). �

The following concept is important:

Definition 2.2 (Equivalence classes). Let R : A → A be an equivalence
relation. We define for each x ∈ A a special set that we call “the equivalence
class of R represented by x”. The symbol is [x]R, where we may omit the
subscript if the context makes it clear.

[x]R
Def.
= {y ∈ A|yRx}

�

� It is immediate that a ∈ [a]R since reflexivity gives aRa.
If all the relations in a given discussion are on the same set A, then

we may omit the obvious “y ∈ A” above and write instead [x]R={y|yRx} �

Example 2.3. The equivalence classes “modulo 2” are the sets [x]≡2
. It

is easy to verify that there are only two classes, one with representative 0
and one with representative 1. The first contains all the even numbers the
second contains all the odd numbers. �

Hey wait a minute! I think that I can represent all the even numbers
using 2 as the representative, i.e., [0]≡2

= [2]≡2
.

This is not an accident:

Lemma 2.4. Let R : A → A be an equivalence relation. Then (for all
a, b) aRb iff [a] = [b].

Proof. (⇒) Assume aRb.
We want [a] = [b]. Towards that,
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(⊆) Let x ∈ [a]. Hence (def. 2.2), xRa. The underlined assumption
and transitivity yields xRb, hence x ∈ [b].

(⊇) Let x ∈ [b]. Hence xRb. Since the underlined assumption and
symmetry gives bRa, transitivity now yields xRa, hence x ∈ [a].

(⇐) Assume [a] = [b].
We want aRb. Well, a ∈ [a], hence, by assumption, a ∈ [b]. Defini-

tion 2.2 yields aRb. �

� Thus any x ∈ [a] is as good as a in the job of representative. Indeed, the
assumption yields xRa by 2.2, hence [x] = [a] by the lemma. �

We can now easily prove:

Theorem 2.5. Let R : A → A be an equivalence relation. Then

(1) If x ∈ A, then [x] 6= ∅

(2) If x and y are in A, then [x] ∩ [y] 6= ∅ ⇒ [x] = [y]

(3)
⋃

x∈A[x] = A.

Proof. (1) By x ∈ [x] (see remark following definition 2.2).

(2) Assume [x]∩[y] 6= ∅. So let z ∈ [x]∩[y]. Thus zRx and zRy. The 1st of
these conclusions yields xRz by symmetry. Along with the second and
transitivity I get xRy. By lemma 2.4 I now have [x] = [y] as needed.

(3) I get
⋃

x∈A[x] ⊆ A trivially, since for any x ∈ A I have [x] ⊆ A by
definition 2.2. For ⊇ note that [x] ⊇ {x}. Taking unions on both sides
I have

⋃

x∈A[x] ⊇
⋃

x∈A{x}. But
⋃

x∈A{x} = A. �

Abstracting properties (1)–(3) of equivalence classes one defines par-
titions of sets:

Definition 2.6 (Partitions). A family of subsets of a set A is a partition
of (or “on”) A iff F satisfies:

(1) (∀S ∈ F )S 6= ∅

(2) (∀S ∈ F )(∀T ∈ F )(S ∩ T 6= ∅ ⇒ S = T )

(3)
⋃

F = A.

Sometimes the members of the partition, i.e., the various S in F , are called
blocks. �

Example 2.7. So, if R : A → A is an equivalence relation, then F =
{[x]|x ∈ A} is a partition on A.

By the way, this kind of partition that arises from an equivalence
relation is often denoted by A/R. �
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Actually, partitions are not more general than sets of equivalence
classes as the following shows.

Theorem 2.8. Let F be a partition on A. Define a relation R : A → A
by

aRb
Def.
≡ (∃S ∈ F )(a ∈ S ∧ b ∈ S)

Then

(1) R is an equivalence relation

(2) A/R = F

Proof. (2) I leave as an interesting exercise (Problem set #5). Let me
do (1):

Reflexivity: So let a ∈ A. By property (3) in definition 2.6, there is
an S ∈ F such that a ∈ S. In symbols, (∃S ∈ F )(a ∈ S ∧ a ∈ S) holds.
This says aRa.

Symmetry: So let aRb. Thus, (∃S ∈ F )(a ∈ S ∧ b ∈ S) by the
definition of R. sWLUS now gives (∃S ∈ F )(b ∈ S ∧ a ∈ S), that is, bRa.

Transitivity: So let aRb and bRc. The definition of R gives

(∃S ∈ F )(a ∈ S ∧ b ∈ S) (∗)

and
(∃S ∈ F )(b ∈ S ∧ c ∈ S) (∗∗)

Let S = T work in (∗), that is,

a ∈ T ∧ b ∈ T (I)

Let S = W work in (∗∗), that is,6

b ∈ W ∧ c ∈ W (II)

Since b ∈ T ∩ W , property (2) of F (see 2.6) yields T = W . Thus, a ∈
T ∧ c ∈ T from (I), (II). So an S ∈ F exists—take S = T—such that
a ∈ S ∧ c ∈ S. For short, aRc, as needed. �

6We have no a priori right to say “let S = T”, i.e., to use the same “value” for S
in both (∗) and (∗∗). Of course, if we later prove them equal, that is fine. Note how
the formal approach protects us from “letting” S = T in both cases, because formally
we eliminate ∃ from (∗) and introduce a fresh variable T in the place of S. When we
eliminate the second ∃ we are again obliged to get a new variable, one that has not been
used yet.
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3 Functions
Functions, intentionally are agents (“devices”) that receive inputs, and for
each input return at most one output. Extensionally then they are nothing
but relations, i.e., sets of in/out pairs,7 except for the important restriction
of “single-valued-ness” of output, the “at most” qualification.

We define below which relations are functions. We return our atten-
tion to relations R : A → B where A 6= B, in general, for the balance of
Part V. Moreover, for the balance of this section “function” is exclusively
an extensional object, a set of ordered pairs, as defined below.

Definition 3.1 (Functions). A relation f : A → B is a function iff it is
single-valued in the 2nd projection, that is,

(∀x)(∀y)(∀z)(xfy ∧ xfz ⇒ y = z)

You noticed the “f”. Generically, we will denote functions by f, g, h, with
primes and/or subscripts if we run out of letters. �

� Informally, one could have just implied the quantifiers and written instead
“xfy ∧ xfz ⇒ y = z”.

The convention that f, g, h stand for functions and the notation f :
A → B allow us to be terse (and ungrammatical) when we want : “Let
f : A → B such that . . .” means “Let f be a function from A to B, such
that . . .”

Needless to emphasise that f, g, h are generic. We may, and do, use
specific symbols for specific functions such as cos, +, 1A. �

The terminology left field, right field, domain, range, onto, total, non-
total, partial, inverse (f−1, as a relation) and the corresponding definitions
are inherited from those for relations (Part IV) and need no further com-
ment. Except one: Note that GS use “partial” to mean “nontotal”. This
is in conflict with the literature on, for example, computability.

There are two new pieces of terminology for functions

Definition 3.2. A function f : A → B is 1-1 (algebraists also say injec-
tive8) iff

(∀x)(∀y)(∀z)(yfx ∧ zfx ⇒ y = z) (1)

7No loss of generality here: The “in” part could be an n-tuple. Then the in/out pair

is an n + 1-tuple.
8Algebraists call “onto” surjective.
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That is, the function maps distinct inputs to distinct outputs, since (1) says
that any two inputs (y and z) that map to the same output (x) must be
equal.

A function f : A → B is a 1-1 correspondence9 iff it is all three: Total,
onto, and 1-1. �

� You must have noticed that neither the definition of function, nor the one of
1-1ness depends on the fields. However, the definition of 1-1 correspondence
does depend on both left and right fields. �

Remark 3.3. If we rewrite (1) (using sWLUS) in the equivalent form

(∀x)(∀y)(∀z)(xf−1y ∧ xf−1z ⇒ y = z) (1)

we have the very important:

� f : A → B is 1-1 iff the inverse relation f−1 : B → A is a function. �

Example 3.4. {〈1, 2〉, 〈1, 3〉} is not a function. {〈1, 2〉, 〈2, 2〉} is a function,
but it is not 1-1. 1A : A → A is a 1-1 correspondence. ∅ is 1-1 function. �

Definition 3.5. If f : A → B is a function, then the formula afb is
normally denoted by f(a) = b, which is the same as b = f(a). �

Since functions are relations we can compose them. So, if we have

A
f

−−−−→ B
g

−−−−→ C
h

−−−−→ D

then we can write unambiguously (but informally)

A
f◦g◦h
−−−−→ D

for their composition as relations, without any brackets, because of asso-
ciativity.

Functions have a peculiar additional notation for composition. It is
arrived at as follows: Suppose af ◦ gb. Then, on one hand we have

(f ◦ g)(a) = b (1)

by 3.5. On the other hand, there is a c such that afcgb, hence f(a) = c
and g(c) = b. Substituting c by f(a) in the last one we get

9Algebraists also say bijective.
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g(f(a)) = b (2)

Comparing (1) and (2) we note an awkwardness: First, there is an order
reversal between f and g. Secondly, (2) is more “natural”, as it places the
input a near the function that will work on it, f . By contrast, (1) places
the input next to the function, g, that wouldn’t care less about a.

We fix this by adding notation for “function composition” (or “func-
tional composition”):

Definition 3.6 (Functional composition). For functions f and g we
define

g • f
Def.
= f ◦ g

�

We can now rewrite (1) as

(g • f)(a) = b (1′)

or, combining (1′) and (2), with the implicit understanding that a causes
some output (b),

(g • f)(a) = g(f(a))

And this now looks “natural”.
We next turn to inverses.

Definition 3.7 (One-sided inverses). Let us have

A
f

−−−−→ B
g

−−−−→ A

and assume that we have f ◦ g = 1A.
Write this g • f = 1A. We say that g is a left inverse of f and f is a

right inverse of g. �

� In definition 3.7 note two things:
(1) The emphasis on the indefinite article. One-sided inverses are not

unique (see the example that follows).
(2) Who’s on left and who’s on right is with respect to functional

composition notation, •. �
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Example 3.8. Let A = {a, b}, where a 6= b, and B = {1, 2, 3, 4}. Consider
the following functions:

f1 = {〈a, 1〉, 〈b, 3〉}

f2 = {〈a, 1〉, 〈b, 4〉}

g1 = {〈1, a〉, 〈3, b〉, 〈4, b〉}

g2 = {〈1, a〉, 〈2, b〉, 〈3, b〉}

g3 = {〈1, a〉, 〈2, b〉, 〈3, b〉, 〈4, b〉}

g4 = {〈1, a〉, 〈2, a〉, 〈3, b〉, 〈4, b〉}

g5 = {〈1, a〉, 〈3, b〉}

We observe that

g1•f1 = g2•f1 = g3 •f1 = g4•f1 = g5•f1 = g1 •f2 = g3 •f2 = g4•f2 = 1A

What emerges is:

(1) The “equation” x•f = 1A does not necessarily have unique x-solutions,
not even when only total solutions are sought.

(2) The equation x • f = 1A can have nontotal x-solutions. Neither a total
nor a nontotal solution is 1-1 necessarily.

(3) An x-solution to x • f = 1A can be 1-1 without being total.

(4) The equation g • x = 1A does not necessarily have unique x-solutions.
Solutions do not have to be onto. �

In the previous example we saw what we cannot infer about f and g
from g ◦ f = 1A. Let us next see what we can infer.

Proposition 3.9. Given f : A → B and g : B → A such that g • f = 1A.
Then

(1) f is total and 1-1.
(2) g is onto.

Proof. (1) Since g •f is total, it follows that f is too: Indeed, I need show
that for any a ∈ A a b ∈ B exists so that afb. Well, starting from a1Aa I
get af ◦ ga. Thus, for some b ∈ B, afbga. Look no further; we got afb.

Next, let afc ∧ bfc, and thus f(a) = f(b). Then g(f(a)) = g(f(b)),
hence (g • f)(a) = (g • f)(b), that is, 1A(a) = 1A(b).
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Hence a = b.

(2) For ontoness of g we argue that there exists an x-solution of the equation
g(x) = a for any a ∈ A. Indeed, x = f(a) is a solution. �

� Was the onto case too fast? Well, “g : B → A is onto” means by definition
(check Part IV): ran(g) = A, that is

{y|(∃x ∈ B)xgy} = A

By the extensionality theorem and writing g(x) = y for xgy I have

(∀y)
(

(∃x ∈ B)g(x) = y ≡ y ∈ A
)

(1)

For a g : B → A the ⇒ direction of (1) is for free (true), hence (1) amounts
to (equivalent: By true ∧ A ≡ A and sWLUS)

(∀y)
(

y ∈ A ⇒ (∃x ∈ B)g(x) = y
)

or
(∀y ∈ A)(∃x ∈ B)g(x) = y

In words: For every y ∈ A, I can “solve” g(x) = y for x”. �

Corollary 3.10. Not all functions f : A → B have left (or, right) inverses.

Proof. Not all functions f : A → B are 1-1 (or, onto). �

Corollary 3.11. Functions with neither left nor right inverses exist.

Proof. Any f : A → B which is neither 1-1 nor onto fits the bill. For
example, take f = {〈1, 2〉, 〈2, 2〉} from {1, 2} to {1, 2}. �

Proposition 3.12. If f : A → B is a 1-1 correspondence, then x•f = 1A

and f • x = 1B have the unique common solution f−1.

NB. This unique common solution, f−1, is called the inverse function of f .

Of course, f−1 is the same as the inverse relation of f , but it has additional
properties. For starters, it is a function.

Proof. (1) First off, we already know that f−1 is a function by remark 3.3.
You are also asked to verify that it is a common solution in problem set
#5.
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So we turn to

(2) (Uniqueness of solution) Let x • f = 1A.
Then (x • f) • f−1 = 1A • f−1 = f−1.10 By associativity of •, this

says x • (f • f−1) = f−1, i.e., x = x • 1B = f−1. Therefore a left inverse
has to be f−1. The same can be similarly shown for the right inverse. �

Corollary 3.13. If f : A → B has both left and right inverses, then it is
a 1-1 correspondence, and hence the two inverses equal f−1.

Proof. From h • f = 1A (h is some left inverse) follows that f is 1-1 and
total. From f • g = 1B (g is some right inverse) follows that f is onto. �

Theorem 3.14 (Algebraic characterization of 1-1ness). f : A → B
is total and 1-1 iff it is left-invertible.11

Proof. The if-part is proposition 3.9(1). As for the only if-part note that
f−1 : B → A is single-valued (f is 1-1) and verify that f−1 • f = 1A:

For the ⊇ direction pick any a ∈ A and prove af ◦ f−1a. Well, f
is total, so there is a (unique) b such that afb. Since this is the same as
bf−1a we have afbf−1a, hence af ◦ f−1a.

For the ⊆ direction assume that af ◦ f−1b and prove that a = b, from
which a1Ab follows.

OK, there must be a c such that afcf−1b. Hence afc and bfc. By
1-1ness I get a = b as needed. �

� � One can also prove that if f : A → B is onto, then it is right-invertible,
that is, a g : B → A exists such that f • g = 1B . This result needs a new
axiom, the axiom of choice so that one can be allowed to pick a potentially
infinite set of elements in the sets {x ∈ A|f(x) = y}—one element for each
y ∈ B.

The text
(1) sweeps the need for the Axiom of Choice under the rug.

10The last equality is by the similar result that we proved for relations

A
R

−−−−−→ A
1A

−−−−−→ A

The proof when we have

B
f−1

−−−−−→ A
1A

−−−−−→ A

where, possibly, A 6= B is identical. You are encouraged to try it out!
11That is, it has a left inverse.
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(2) (incorrectly) argues as if every set {x ∈ A|f(x) = y}, for each
y ∈ B can be enumerated as a sequence with natural number subscripts.
This is false in general. E.g., if one of these sets is R—the set of reals—then
no such enumeration is possible.

The right thing to do, without messing with a new and esoteric axiom
is to leave this story untold. � �
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