
Notes on a (very) Elementary Set
Theory—Part IV

1 Ordered pair; ordered n-tuple;
Cartesian Product

We continue within informal mathematics until otherwise stated.1 We will
want next to look at Cartesian products. This requires the notion of an
ordered pair, that is, an object 〈a, b〉, where a and b are sets or atoms,
whose “value” depends on the position of its two members, a and b.

By this we mean that

〈a, b〉 = 〈a′, b′〉 ⇒ a = a′ ∧ b = b′ (1)

� By now it has become a habit to omit the obvious universal quantifiers.
Thus, the above is “slang” for

(∀a)(∀b)
(
〈a, b〉 = 〈a′, b′〉 ⇒ a = a′ ∧ b = b′

)

where a, b are variables of type set or atom. �
Note that (1) implies that if a 6= b then 〈a, b〉 6= 〈b, a〉, because what I

just said is the contrapositive of 〈a, b〉 = 〈b, a〉 ⇒ a = b ∧ b = a.
Thus 〈. . .〉 is not the same as {. . .}, since we have {a, b} = {b, a}.
So 〈a, b〉 is an ordered pair of elements, unlike {a, b}. But what sort of

animal is it? It would be very awkward to have to introduce a new “type”
at this point of our development and have atoms, sets, and “ordered sets”.
Fortunately, we do not have to do this. We can “implement” the pair as a

set, using a trick invented by the Polish mathematician Kuratowski.
There are several implementations—that is, possible definitions of

〈a, b〉 in terms of a and b, using set-theoretic operations. The two based on
Kuratowski’s idea are

(A) Implement 〈a, b〉 as {a, {a, b}}. We know from a previous assignment
that

{a, {a, b}} = {a′, {a′, b′}} ⇒ a = a′ ∧ b = b′ (i)

so this implementation works—that is, it satisfies (1) above.

1But we still apply proper logic to get results proved. In particular, we are responsible
for what we assume at every step. Our “assumptions” must be realistic and not wishful
thinking.



1. ORDERED PAIR; ORDERED N -TUPLE;

CARTESIAN PRODUCT

This implementation is sometimes criticised by purists in that it re-
quires a sledgehammer: foundation. Here is another implementation
that does not require foundation.

(B) Implement 〈a, b〉 as {{a}, {a, b}}. To see that this works we assume

{{a}, {a, b}} = {{a′}, {a′, b′}} (2)

and prove
a = a′ (3)

and
b = b′ (4)

By ` x = y ⇒ t(x, . . .) = t(y, . . .) of logic, apply
⋂

to both sides of (2)
and get

{a} =
⋂

{{a}, {a, b}} =
⋂

{{a′}, {a′, b′}} = {a′}

from which (3) follows at once.
Now apply

⋃
to both sides of (1), remembering that we have (3):

{a, b} =
⋃

{{a}, {a, b}} =
⋃

{{a}, {a, b′}} = {a, b′}

The above yields (4) by an earlier assignment.

To fix ideas, and having tossed a coin, we will adopt implementation (B).
Note, of course, that for any a, b that are sets or atoms {{a}, {a, b}} is a
set (apply the axiom of [unordered] pair three times). Thus we define

Definition 1.1. For any variables x and y (set or atom type) 〈x, y〉 stands
for the set {{x}, {x, y}}. We can use therefore “=”:

〈x, y〉 = {{x}, {x, y}}

We call x (respectively, y) the first (respectively, second) component or
projection of the ordered pair. �

The following is useful:

Proposition 1.2.

ST ` 〈a, b〉 = 〈a′, b′〉 ≡ a = a′ ∧ b = b′

Proof. The ⇒ is (1) of p.1 via definition 1.1. The ⇐ is from the logical
theorem ` x = y ∧ x′ = y′ ⇒ t(x, x′, . . .) = t(y, y′, . . .) proved in the “the
last word on Leibniz” web notes. �

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 2



1. ORDERED PAIR; ORDERED N -TUPLE;

CARTESIAN PRODUCT

We are familiar with ordered pairs from analytic geometry: For exam-
ple the coordinates of a point on the Cartesian plane are an ordered pair
of real numbers. The Cartesian plane consists of all those points that are
characterised by coordinates that have both the first and second projec-
tion in R (set of all reals). There is notation for that: If we identify the
arbitrary point on the plane with the pair of real numbers, 〈a, b〉, that are
its coordinates, we then write 〈a, b〉 ∈ R × R. This leads to the general
definition of “×”:

Definition 1.3 (Cartesian Product). For any set variables S and T ,
S×T stands for the collection—that we will shortly show is “small enough”
to be a set—{〈x, y〉|x ∈ S ∧ y ∈ T}. Since this is a set, we can write
S × T = {〈x, y〉|x ∈ S ∧ y ∈ T}.

We call S × T the Cartesian product of S and T (in that order). �

The following theorem uses the specific implementation—of 1.1—that
we chose for the ordered pair. This is the last time we will refer to the

implementation. After this, all we need to remember is that the ordered
pair is a set that satisfies (1) of p.1.

Theorem 1.4. For any choice of sets S and T , S × T of definition 1.3 is

a set.

Proof. (Informal) So, what we collect in S×T are pairs 〈x, y〉 where x ∈ S

and y ∈ T . Thus,
{x} ⊆ S (1)

and
{x, y} ⊆ S ∪ T (2)

We rewrite (1) and (2) using the definition of P(a) for sets a:

{x} ∈ P(S) (1′)

and
{x, y} ∈ P(S ∪ T ) (2′)

Hence,
{{x}, {x, y}} ⊆ P(S) ∪ P(S ∪ T ) (3)

by (1′) and (2′). Rewriting (3) as before, we get

{{x}, {x, y}} ∈ P
(
P(S) ∪ P(S ∪ T )

)

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 3



1. ORDERED PAIR; ORDERED N -TUPLE;

CARTESIAN PRODUCT

or, using the ordered pair implementation 1.1,

〈x, y〉 ∈ P
(
P(S) ∪ P(S ∪ T )

)

This shows that S × T is part of the set2 P
(
P(S) ∪ P(S ∪ T )

)
so it is

itself a set by the axiom of subsets. �

Remark 1.5. Of course (see Part I notes), {〈x, y〉|x ∈ S ∧ y ∈ T} is
shorthand for

{

z|(∃x)(∃y)
(
z = 〈x, y〉 ∧ x ∈ S ∧ y ∈ T

)}

In a formal setting one would now want to verify the “obvious”:

〈x, y〉 ∈ S × T ≡ x ∈ S ∧ y ∈ T

Of course, in an informal setting you omit proofs of the “obvious”.3 Here
goes a formal proof:

〈x, y〉 ∈ S × T

≡

〈x, y〉 ∈
{

z|(∃x)(∃y)
(
z = 〈x, y〉 ∧ x ∈ S ∧ y ∈ T

)}

≡
〈

Change dummies to avoid clash with the “external” x, y; use ∈-elim.
〉

(∃u)(∃v)
(
〈x, y〉 = 〈u, v〉 ∧ u ∈ S ∧ v ∈ T

)

≡
〈

Proposition 1.2 and sWLUS
〉

(∃u)(∃v)
(
x = u ∧ y = v ∧ u ∈ S ∧ v ∈ T

)

≡
〈

1pt rule and WLUS
〉

(∃u)
(
x = u ∧ u ∈ S ∧ y ∈ T

)

≡
〈

1pt rule
〉

x ∈ S ∧ y ∈ T

�

2Use power-set and union axioms to see that this is a set indeed.
3The catch is that if your “obvious” is not obvious to the person to whom you are

selling your proof, then you are stuck.

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 4



1. ORDERED PAIR; ORDERED N -TUPLE;

CARTESIAN PRODUCT

Remark 1.6. As we know, set equality and set inclusion are proved by
arguments that start with “let z ∈ lhs”.

If the lhs (left hand side) is S×T , a Cartesian product, we informally
simplify matters by starting such proofs with

(1) Let 〈x, y〉 ∈ S × T

(2) Hence x ∈ S ∧ y ∈ T by 1.5
(3) Etc.

In other words, we at once recognise that in “let z ∈ S × T” z must be an
ordered pair.

The wisdom in this can be seen in at least two ways: Informally first,
when we say “let z ∈ S × T” we are next presented with two cases:

1. z is not an ordered pair. Then “let z ∈ S × T” is false, and it thus
implies anything we want. Done.

2. z is an ordered pair. So it has the form 〈x, y〉 for some x and y, and
our “let” becomes Let 〈x, y〉 ∈ S × T . We take it from here; this is
the case with any real work in it.

There is a formal way in which we can also see that our short-cut “let”
is legitimate. Let us trace the first few steps of a formal proof that wants
to show S × T is a subset of some set:

(1) z ∈ S × T
(

assume
)

(2) (∃u)(∃v)(z = 〈u, v〉 ∧ u ∈ S ∧ v ∈ T )
(

elaboration on (1)
)

(3) z = 〈x, y〉 ∧ x ∈ S ∧ y ∈ T
(

assume by (2); x and y are fresh
)

(4) x ∈ S ∧ y ∈ T
(

(3) and taut. impl.
)

(5) Etc.

Step (4) above corresponds exactly to step (2) of the informal approach.
We have saved a couple of proof lines in the latter. �

Example 1.7. Let us prove that ∅ × S = ∅.
First off, we get the ⊇ direction “for free” (we know A ⊇ ∅ no matter

which set A is). Thus we prove only the ⊆ part.
We want to prove the implication z ∈ lhs ⇒ z ∈ ∅, that is,4

4By ∈-elimination in “z ∈ {x|false}” and Leibniz.

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 5



1. ORDERED PAIR; ORDERED N -TUPLE;

CARTESIAN PRODUCT

z ∈ lhs ⇒ false (1)

OK, let us do an informal proof first:
Let 〈x, y〉 ∈ lhs. Thus (definition of ×) x ∈ ∅. But this is false.

Now, let us do the same formally:

z ∈ ∅ × S

≡
〈

see also 1.5
〉

(∃x)(∃y)(z = 〈x, y〉 ∧ x ∈ ∅ ∧ y ∈ S)

≡
〈

ST ` x ∈ ∅ ≡ false and sWLUS
〉

(∃x)(∃y)(z = 〈x, y〉 ∧ false ∧ y ∈ S)

≡
〈

WLUS and taut. equiv.
〉

(∃x)(∃y)false

≡
〈

A ≡ (∃x)A if x not free in A
〉

false

This time the formal approach allowed us to do the two directions simul-
taneously. �

Example 1.8. Let us prove that S × (T ∪ T ′) = (S × T ) ∪ (S × T ′).

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 6



1. ORDERED PAIR; ORDERED N -TUPLE;

CARTESIAN PRODUCT

〈x, y〉 ∈ S × (T ∪ T ′)

≡
〈

1.5
〉

x ∈ S ∧ y ∈ T ∪ T ′

≡
〈

def. of union
〉

x ∈ S ∧ (y ∈ T ∨ y ∈ T ′)

≡
〈

∧ over ∨
〉

(x ∈ S ∧ y ∈ T ) ∨ (x ∈ S ∧ y ∈ T ′)

≡
〈

1.5 and Leib.
〉

〈x, y〉 ∈ S × T ∨ 〈x, y〉 ∈ S × T ′

≡
〈

def. of union
〉

〈x, y〉 ∈ (S × T ) ∪ (S × T ′)

�

Now that we have ordered pairs, we can also have ordered triples,
quadruples, etc. For example, “overloading” the symbol 〈. . .〉, we want
ordered triples to obey

〈a, b, c〉 = 〈a′, b′, c′〉 ⇒ a = a′ ∧ b = b′ ∧ c = c′ (1)

We can implement triples using pairs in at least two ways:5

(a) Either set

〈a, b, c〉
Def.
= 〈〈a, b〉, c〉

This is the “left-associative solution”.

(b) Or set

〈a, b, c〉
Def.
= 〈a, 〈b, c〉〉

This is the “right-associative solution”.

Similarly one can define quadruples, using triples and pairs, and so on.

� By the way, you can see immediately that either the left or right associative
solutions give us (1). �

5We saw a third way in class.

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 7



1. ORDERED PAIR; ORDERED N -TUPLE;

CARTESIAN PRODUCT

Instead of taking the “and so on” approach, let us compact these in-
finitely many definitions into one by using a recursive (inductive) definition
of “n-tuple”, for n ≥ 0:

Definition 1.9 (n-tuples). Overloading once again the 〈. . .〉 symbol we
define by recursion (induction) on n ≥ 1, where a, a1, . . . that we use below
are arbitrary terms of set theory:

〈a〉
Def.
= a

〈a1, . . . , an, an+1〉
Def.
= 〈〈a1, . . . , an〉, an+1〉

The outermost 〈. . .〉-application in the right hand side of the second equa-
tion above is the ordered pair of definition 1.1. The symbol 〈a1, . . . , an〉 is
called an ordered n-tuple. The ai is its i-th component or projection. �

� Note that 1.9 yields 〈a, b〉 = 〈〈a〉, b〉, thus the basis in the definition is the
right one: We want 〈a〉 = a in order to be consistent. �
Exercise 1.10. By induction on n prove informally that

ST ` 〈a1, . . . , an〉 = 〈b1, . . . , bn〉 ≡ a1 = b1 ∧ a2 = b2 ∧ · · · ∧ an = bn

�

Equipped with n-tuples we can now define A×B×C and, in general,

A1 ×A2 ×· · ·×An

Def.
= {〈x1, x2, · · · , xn〉|x1 ∈ A1 ∧x2 ∈ A2 ∧ · · · ∧xn ∈ An}

� Since 〈a, b, c, d〉 = 〈〈〈a, b〉, c〉, d〉, and so on for the n-tuple case,

A1 × A2 × · · · × An = (· · · (A1 × A2) × A3) × A4) × · · · ) × An)

i.e., brackets are inserted from left to right.
In particular, A ×B ×C means (A×B)×C by definition. However,

A × B × C 6= A × (B × C) since 〈x, y, z〉 = 〈〈x, y〉, z〉 6= 〈x, 〈y, z〉〉. Why?
For otherwise we need 〈x, y〉 = x, that is, {{x}, {x, y}} = x.6 Can we have
that? No, for it implies x ∈ {x} ∈ x, a pattern I can repeat forever and
get an infinite descending chain, contradicting foundation. �

6OK. So what’s a small white lie between friends? This is one more time that I had to
use the implementation of 〈. . .〉, even though I promised on p.3 just before theorem 1.4
that it was, then, “the last time”.

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 8



1. BINARY RELATIONS

Sometimes A1 = A2 = . . . = An = B. Then, instead of A1 × A2 ×
· · · × An we may write Bn.

2 Binary Relations
So far we have seen relations as “concrete” (interpreted) predicates. Such
as the various ≺ relations that we discussed in Part III, and also like ⊂,
⊆, =, etc. Any such (concrete) predicate P gives rise to an atomic formula
P (x, y), which is normally written in infix as xPy.

Such an atomic formula is a “device” that, intuitively, on “input”
〈a, b〉 returns the “output” aPb that is t or f.

We can look at relations also as being sets: In fact we can define the
extension, P, of P by

P = {〈x, y〉|xPy} (1)

� Wait a minute! How do we know that P in (1) is a set no matter what the
P ?

We don’t. It is not. But we will simply restrict attention to predicates
P that lead to sets P.

For example, if P is “=” then P is {〈x, x〉|true} which has one element,
〈x, x〉 for every x. Thus P is as big as V so it is not a set. �

We often (almost always) abuse notation (1) and use the same typeface
for the intention P and the extension P. Thus mathematicians rewrite (1)
as

P = {〈x, y〉|xPy} (2)

which leads to the important

〈x, y〉 ∈ P ≡ xPy (3)

“Important” because it allows the infix shorthand to represent the cum-
bersome 〈x, y〉 ∈ P .

Example 2.1 (Two weird examples of (3)).

〈x, y〉 ∈ < ≡ x < y

〈x, y〉 ∈ ∈ ≡ x ∈ y

�

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 9



2. BINARY RELATIONS

The forgoing discussion motivates the set-theoretic (as opposed to the
logic-theoretic that views them as predicates) definition of relations, R, as
arbitrary two-column tables like

input output

...
...

a b
...

...

that denote the (extension of) R as a set of pairs.

What set of pairs? Exactly those that appear as table rows.

Thus a row like the one illustrated above appears iff aRb. By (3) (p.9) this
is tantamount to 〈a, b〉 ∈ R.

� Note that in the predicate point of view we look at the entire pair 〈a, b〉 as
input and t or f—as the case may be—the output.

However, set theoretically we think of the “a” in aRb as the input, and
the b as one of the many possible outputs. For example, the table—written
as a set of rows—P = {〈1, 2〉, 〈1, 0〉} has exactly two rows. On input 1
there are two possible outputs, 2 or 0.

This point of view, that the left component is input and the right one
is output, will be useful when we look at the special relations that are also
“functions”. �

To summarise:

Definition 2.2 (Binary Relations). A binary relation, or simply rela-

tion, is any set of ordered pairs. �

� “Binary” because they are sets of pairs. We can also define “ternary”
relations—sets of triples—and in general n-ary, for n > 2.

We will not though: If n > 2, then 〈a1, . . . , an−1, an〉 = 〈〈a1, . . . , an−1〉, an〉.
Thus the n-tuple is also a pair and we gain no new insights by studying
n-ary relations, for n 6= 2, as different kinds of objects.

There is also such a thing as a 1-ary or unary relation. That is, any
set whose elements are not all pairs—in short, any set that is not a binary
relation is a unary relation. For example {1, 〈1, 2〉, 〈1, 2, 3〉} and {1, 2, 5}
are unary relations. �

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 10



2. BINARY RELATIONS

Example 2.3. Thus, ∅ is a relation and so is A × B for any sets A and
B. �

We will define a few concepts associated with relations. By the way, for
the balance of this Part IV “relation” means “set-theoretic binary relation”.

So let R be any relation. First off, its first column (think of R as a
table) forms a set called the domain of R. Its second column forms a set
called the range of the relation.

We often have a set in mind, A, where all the inputs are coming
from. However, not all these inputs need produce outputs. For example,
we may want inputs to come from N. But then the relation {〈1, 0〉, 〈1, 6〉}
produces no output on input 5. This A that we fix, the set of all “legal”
(or “allowed”) inputs of R, is called the left field of R.

Similarly on defines the right field of R, say B, as the set where all
the outputs will be.

Each of A and B we may be forced to define to be larger (more inclu-
sive) than the domain and range respectively of any particular relation R.
For example, A or B may indicate the “type” of the inputs or outputs (say,
both of type N) and we may be studying an arbitrary number of relations
simultaneously, a situation that renders it meaningless to take the set of
“legal outputs” equal to the range—to the range of which one relation if
we are studying infinitely many different relations? We might be looking
at once at all of

{〈0, 0〉}, {〈0, 0〉, 〈1, 1〉}, {〈0, 0〉, 〈1, 1〉, 〈2, 2〉}, . . .

Note how the domains and ranges keep “growing” forcing us to choose
as left and right fields N itself, or sets A and B that each contains N as
a subset. Yet all these relations have domains and ranges that are finite
subsets of N.

To summarise:

Definition 2.4. Let R be a relation. If A is a fixed set where the inputs of
R come from, and B is a fixed where its outputs go, then clearly R ⊆ A×B.7

We say “R is from A to B” and write this as “R : A → B” or “A
R
→B”.

We call A the left and B the right field of R.

7If aRb—that is, 〈a, b〉 ∈ R—then since a is an input, it is in A. Similarly, b ∈ B.
Thus, 〈a, b〉 ∈ R ⇒ 〈a, b〉 ∈ A × B.

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 11



2. OPERATIONS ON RELATIONS

Moreover we define domain and range:

dom(R)
Def.
= {x|(∃y)xRy}

ran(R)
Def.
= {y|(∃x)xRy}

If A = dom(R), then we say that “R is total”. Otherwise it is nontotal. We
use the (standard!) wishy-washy terminology “partial” to indicate that R

may be nontotal (but we either don’t know for sure, or don’t care).
If B = ran(R) then we call R onto. �

Example 2.5. Let R = {〈1, 1〉, 〈1, 2〉}, S = {〈0, 1〉, 〈1, 1〉, 〈2, 1〉, 〈3, 1〉, . . .}
and T = {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, . . .}. Let the common left field be N

and the common right field be also N.
Then R is nontotal and also not onto. S is total, but not onto. T is

both total and onto.
However, we may, if we want, ignore the information on the left field

side and call all three partial relations. �

3 Operations on Relations
Since relations are sets, we can operate on them with any of ∪,

⋃
,∩,

⋂
,−,×.

However, the most interesting is a new operation, peculiar to (binary)
relations:

Definition 3.1 (Composition). Let us have R : A → B and S : B → C,
or, written conjunctionally,

A
R
→B

S
→C

Then we can define a relation R◦S : A → C, pronounced “the composition
of R and S” by

R ◦ S
Def.
= {〈x, y〉|(∃z)(xRz ∧ zSy)} (1)

�

� By (3) on p.9 and eliminating “{. . .}” in (1) above we may rewrite the
definition as

xR ◦ Sy
Def.
≡ (∃z)(xRz ∧ zSy) (2)

Thus, at the intuitive level, what the composition builds is a relation that
has an input-output rule that is a result of the cascaded action of R and

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 12



3. OPERATIONS ON RELATIONS

S in that order: An input x to R ◦ S causes an output y iff x causes an
appropriate output via R, let us call it z, such that when S next acts on z

generates (among possibly other outputs) y. �

Example 3.2. Let R = {〈1, 2〉} and S = {〈2, 1〉}. Then R ◦ S = {〈1, 1〉}
and S ◦ R = {〈2, 2〉}.

Thus, we must not expect to prove (∀R)(∀S)(R ◦ S = S ◦ R) as it is
false in the special case above. As we say “R◦S = S ◦R is false in general”.

Let also T = {〈1, 3〉}. Then T ◦ S = ∅, while S ◦ T = {〈2, 3〉}. �

Theorem 3.3 (Associativity of ◦). For any relations R, S, T ,

R ◦ (S ◦ T ) = (R ◦ S) ◦ T

is provable in set theory.

Proof. You will recall our discussion regarding proofs that must start with
“let z ∈ S” where S is a set of ordered pairs (see 1.6, p.5). We explained
why informally one might as well start with “let 〈x, y〉 ∈ S” instead—and
that this is correct.

Moreover, since a set of pairs is a relation by definition, we can use a
proof-start such as “let aSb”. This is the normal way such proofs begin.
Of course, if one wishes to use an equational proof, then the first line will
be “aSb”.

With this preamble out of the way, here is the chugga-chugga that
does it:

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 13



3. OPERATIONS ON RELATIONS

xR ◦ (S ◦ T )y

≡
〈

def. of “◦”
〉

(∃z)
(
xRz ∧ z(S ◦ T )y

)

≡
〈

def. of “◦” and sWLUS
〉

(∃z)
(
xRz ∧ (∃w)(zSw ∧ wTy)

)

≡
〈

“∃ − ∧-rule” [no free w in xRz] and sWLUS
〉

(∃z)(∃w)
(
xRz ∧ zSw ∧ wTy

)

≡
〈

“∃ − ∃ commute”
〉

(∃w)(∃z)
(
xRz ∧ zSw ∧ wTy

)

≡
〈

“∃ − ∧-rule” [no free z in wTy] and sWLUS
〉

(∃w)
(
(∃z)(xRz ∧ zSw) ∧ wTy

)

≡
〈

def. of “◦” and sWLUS
〉

(∃w)
(
xR ◦ Sw ∧ wTy

)

≡
〈

def. of “◦”
〉

x(R ◦ S) ◦ Ty

Note. In the above proof I used sWLUS throughout regardless of whether
some steps required only WLUS. We can do this because any time WLUS
is applicable then so is sWLUS. �

� What good is associativity for? It allows us to omit brackets in a chain
of compositions as long as we keep the order of the participating relations
fixed. How brackets were originally inserted is irrelevant by associativity.

In particular, in a chain like R◦R◦R◦R all that matters is how many
R’s we have. Thus, we write the chain with the shorthand R4.

Imagine now that R : A → B where A = {1, 2, 3, . . .}—the set of
all positive integers—and B = {. . . ,−3,−2,−1}—the set of all negative
integers. Thus, R◦R = ∅. It follows that R◦R◦R = ∅—because ∅◦R = ∅;
do you believe this?

I am making a point here: If I compose R over and over with itself
and it is R : A → B with A 6= B, then I may get situations where the

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 14



3. OPERATIONS ON RELATIONS

results R2, R3, etc are rather trivial.
To ensure interesting results, we study relational powers in a restricted

context, that is, for relations R : A → A for some A. That is, we want the
left and right field to be equal. �

Definition 3.4. If we have R : A → A, then we say that R is a relation on A.

�

For the balance of Part IV, we deal with relations on some set A

Definition 3.5 (Identity Relation on A). The identity relation on A,
in symbols 1A : A → A, is given by

1A = {〈x, x〉|x ∈ A}

The identity relation is also called the diagonal relation—symbol ∆A—
or unit relation. When A is understood we may simply write 1 and ∆
respectively, omitting the subscript A. �

Remark 3.6. Definition 3.5 and a simple argument show that

(∀x)(∀y)(x1Ay ≡ x = y) (1)

where the (∀x) and (∀y) are shorthand for (∀x ∈ A) and (∀y ∈ A). In-
deed, one need only establish (1) without the quantifiers (because we can
generalise in set theory).

Arguing informally, let a ∈ A and a = b. So, by 3.5, a1Aa, and
replacing the second a by b, I get a1Ab.

For the other direction, let a1Ab. This means

〈a, b〉 ∈ {z|(∃x)(z = 〈x, x〉 ∧ x ∈ A)}

Thus, (∃x)(〈a, b〉 = 〈x, x〉 ∧ x ∈ A) is true by ∈-elimination.8

Let c be a value of x that works,9 i.e.,

〈a, b〉 = 〈c, c〉 ∧ c ∈ A

It follows that a = c = b. Thus we got what we were after. �

8When one argues informally one tends to say “is true” rather than “is a theorem”,
or “is provable”.

9Formally, c would be a fresh variable and we would embark here on a proof by
auxiliary variable.

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 15



3. OPERATIONS ON RELATIONS

We can now prove

Theorem 3.7. 1A ◦ R = R ◦ 1A = R.

Proof. We prove only 1A ◦ R = R, since the proof of R ◦ 1A = R is very
similar. The a, b below are in A, of course, and (∃z) is short for (∃z ∈ A).

a1A ◦ Rb

≡
〈

def. of ◦
〉

(∃z)(a1Az ∧ zRb)

≡
〈

by 3.6 and sWLUS
〉

(∃z)(a = z ∧ zRb)

≡
〈

1pt rule
〉

aRb

�

We can now get back to the issue of relational powers:

Definition 3.8 (Relational Powers). Let R : A → A.10 We define by
induction on n ≥ 0:

R0 Def.
= 1A

Rn+1 Def.
= R ◦ Rn

�

Remark 3.9. We expect the above definition to yield R1 = R, i.e., R1

means that we have “one factor” and no ◦-operation performed just as in
a1 for a real number a.

We do get that much:

R1 = R0+1 2nd equation
= R ◦ R0 1st equation

= R ◦ 1A

3.7
= R

Moreover, a trivial induction on n ≥ 1 proves that

10This apparently incomplete and ungrammatical sentence is not: It says “let R be a
relation on A”.

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 16



3. OPERATIONS ON RELATIONS

Rn =

n copies of R

︷ ︸︸ ︷

R ◦ · · · ◦ R

for R1 = R provides the basis, and the second equation in 3.8 adds a copy
of “R” to n existing ones (which are there by the I.H.) �

We can now prove

Proposition 3.10. Let R : A → A. Then Rn ◦ Rm = Rn+m is a theorem

of set theory.

Proof. What the above really says (of which we have used a shorthand,
legitimate by the fact that we can generalise in set theory)

(∀n)(∀m)Rn ◦ Rm = Rn+m

I use induction on n ≥ 0:
Basis. I want R0 ◦ Rm = Rm. Well, R0 = 1A and I am done by 3.7.
I.H. Assume Rn ◦ Rm = Rn+m.
Goto. Prove Rn+1 ◦ Rm = Rn+m+1.

Rn+1 ◦ Rm

=
〈

def. 3.8
〉

(R ◦ Rn) ◦ Rm

=
〈

associativity
〉

R ◦ (Rn ◦ Rm)

=
〈

I.H.
〉

R ◦Rn+m

=
〈

def. 3.8
〉

Rn+m+1

�

Corollary 3.11. The powers of a relation R on A commute with respect

to composition.

Proof. Rn ◦ Rm = Rn+m = Rm+n = Rm ◦ Rn. �

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 17


