
Notes on a (very) Elementary Set
Theory—Part III

1 Induction with respect to a general relation
We are in informal mathematics until otherwise stated.1

Suppose that we have a set X that we will keep for a while as our
“relative universe”.2 This means, in particular, that object variables of
formulas and terms vary over (i.e., take values from) X , and also that
whenever we write (∀x)A or (∃x)A we really mean (∀x ∈ X)A or (∃x ∈
X)A respectively.

Moreover, let us fix attention on a binary relation ≺ that is defined on
X . That is, ≺ (like =,⊆,⊂,∈, < and many others) accepts just two inputs
t and s (arbitrary terms) and leads to the formula t ≺ s. This formula,
depending on the values of t and s may evaluate to true or false (t or f).
We may read it as “t precedes s” or “t is before s” or “t is lower than s”.

There is no special significance in the shape of ≺. This symbol can
stand for any relation whatsoever, but it will have one important property.
This “important property” will entail that the relation “behaves like” <,⊂
in that it will turn out that x ≺ x will be always false. This is why there
is no extra line below the symbol (unlike ⊆,≤ and �).

Definition 1.1. We say that ≺ satisfies the inductiveness condition, in
short IC, iff the following is true for any formula A:

(∀x)
(

(∀z ≺ x)A[z] ⇒ A[x]
)

⇒ (∀x)A[x] (1)

�

(1) above looks exactly like the CVI schema, the only difference being
the use of “≺” in (1) rather than the specific “<” over the specific set N.

Just as with CVI, we can prove formulas A[x] where x varies over X
by a CVI-like induction. Let us call it GCVI for “generalised CVI”. The
protocol is:

1But we still apply proper logic to get results proved. In particular, we are responsible
for what we assume at every step. Our “assumptions” must be realistic and not wishful
thinking.

2Recall that the absolute universe, V, is not a set.



1. INDUCTION WITH RESPECT TO A GENERAL RELATION

GCVI 1. (I.H.) Assume (∀z ≺ x)A[z], or, in words, assume that A[z] is
true for all z ≺ x.

GCVI 2. (Goto) Prove A[x].

GCVI 3. (Conclusion) (∀x)A[x] has been proved.

� Remember what we must understand as long as we work in the “universe”
X : The conclusion part is shorthand for “(∀x ∈ X)A[x] has been proved”. �

OK, but how can we easily tell whether some relation ≺ on some set
X satisfies IC, and that therefore we can use GCVI with respect to it? Let
us work towards answering this.

Definition 1.2. We say that ≺ satisfies the minimality condition, in short
MC, iff the following is true for any formula A:

(∃x)A[x] ⇒ (∃x)
(

A[x] ∧ ¬(∃z ≺ x)A[z]
)

(2)

�

First we note that (1) in 1.1 and (2) in 1.2 are logically equivalent.
Indeed,

(∀x)
(

(∀z ≺ x)A[z] ⇒ A[x]
)

⇒ (∀x)A[x]

≡
¬(∀x)A[x] ⇒ ¬(∀x)

(

(∀z ≺ x)A[z] ⇒ A[x]
)

≡
(∃x)¬A[x] ⇒ (∃x)

(

(∀z ≺ x)A[z] ∧ ¬A[x]
)

≡
(∃x)¬A[x] ⇒ (∃x)

(

¬A[x] ∧ ¬(∃z ≺ x)¬A[z]
)

This calculation shows that I get (1) (top line) if I have (2) [(2) is a schema,
and I can use ¬A everywhere in (2) instead of A—but doing so gives me
the bottom line]. Replacing all A’s in the calculation by ¬A we get the
converse: If I have (1) I can get (2).

OK, now we are almost there (theorem 1.4 below). But let us digress
first with an application of the equivalence of IC and MC in the case where
X = N and ≺ is <.
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1. INDUCTION WITH RESPECT TO A GENERAL RELATION

Example 1.3. We know from our Peano arithmetic notes and from class
that < on N satisfies IC (“admits induction” as GS put it). Indeed we
have proved the CVI schema in this case formally, strictly from the Peano
axioms.

But then < satisfies MC as well by the equivalence between IC and
MC.

The ancient Greeks used proofs by MC on N, nowadays called proofs
by the “least principle” (see remark on this nomenclature on p.11). Such
proofs are equivalent to induction proofs and they prove statements like
“(∀x)A[x]”.

They go like this (informally):

(i) By way of contradiction, assume ¬(∀x)A[x], that is, assume (∃x)¬A[x].

(ii) By MC of < on N there is an n ∈ N such that ¬A[n] is true, but for
no m < n is ¬A[m] true. I.e., n is least for which ¬A[n].

(iii) Now take advantage of what A[x] actually is, and of whatever theo-
rems you know, to get a contradiction.

Let us apply the recipe (i)–(iii) to an ancient (and famous) theorem:√
2 is “irrational”, i.e., there are no positive integers m and n such that√
2 = m/n. Another way of putting it is (∀m > 0)(∀n > 0)(

√
2 6= m/n).

Well, assume the contrary, that such m, n exist. Of these choose the
pair with smallest n. Thus we have assumed

√
2 =

m

n
(1)

with n being the smallest that works. Now square (1) to get

2n2 = m2 (2)

Note that m cannot be odd, m = 2k +1, for then m2 = 4k2 +4k +1 which
is also odd—so it cannot be even as well, as (2) indicates.

So m = 2k. Eliminate m in (2): We get

n2 = 2k2 (3)

and working exactly as before we conclude that n is even, say, n = 2r.
By (1) we get

√
2 =

m

n
=

k

r

and we have expressed
√

2 with a denominator r < n contradicting that n
was the smallest that worked. Done! �
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Theorem 1.4. ≺ on X has MC (and therefore also IC) iff there is no
infinite left-chain

. . . a′′′ ≺ a′′ ≺ a′ ≺ a (1)

of elements of X.

Proof. (Informal)

(I) I assume that ≺ on X has MC—i.e., I have (2) in 1.2. I prove that
I cannot have infinite chains like (1).
Well, by way of contradiction assume that I do have a chain like (1).
Let S be the set of all the members in the chain.

� Wait a minute! How do I know that S is a set? What if it is too
big?
Well, it can’t be, since all members of S are in X , and thus we can
use the axiom of subsets to see that S is therefore a set.
Why is it important that the collection S be a set? Because below I
am going to use the formula “x ∈ S”. This will be well-formed, i.e.,
syntactically correct, only if the constant3 S and variable x have the
correct types (atom or set). �
Then, by (2)

(∃x)x ∈ S ⇒ (∃x)
(

x ∈ S ∧ ¬(∃z ≺ x)z ∈ S
)

from which, since (∃x)x ∈ S says “S 6= ∅” and is therefore true, I
get

(∃x)
(

x ∈ S ∧ ¬(∃z ≺ x)z ∈ S
)

This says that some member of S has no ≺-predecessor which is false
by construction of S. This contradiction proves that I cannot have
infinite chains if I have (2).

(II) Conversely, I assume that I cannot have infinite chains like (1), and
I prove that ≺ then must have MC.
To prove (2) of 1.2 assume the left hand side, i.e., let (∃x)A[x]. Thus,
for some w, A[w] is true.4

3S names a specific set.
4Formally that would be done by assuming A[w], where w is “fresh”. Informally we

say “let w be a value that makes A true”, a legitimate “let” since we are told that such
values exist!
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I will show that there is a y such that A[y] is true, and moreover, that
for no z ≺ y is A[z] true—in symbols, I’ll show (∃y)(A[y] ∧ ¬(∃z ≺
y)A[z]), as I must, towards (2).
Well, consider the following process:

L1. If there is no z ≺ w such that A[z] then we are lucky! Take
y := w. Done!

L2. Otherwise, there is a w′ ≺ w such that A[w′].
If there is no z ≺ w′ such that A[z] then we are lucky in our
2nd try. Take y := w′. Done!

L3. Otherwise, there is a w′′ ≺ w′ such that A[w′′].
If there is no z ≺ w′′ such that A[z] then we are lucky in our
3rd try. Take y := w′′. Done!

L4. Otherwise, there is a w′′′ ≺ w′′ such that A[w′′′].
If there is no z ≺ w′′′ such that A[z] then we are lucky in our
4th try. Take y := w′′′. Done!

L5. And so on.

Now the above process builds a chain . . . w′′′ ≺ w′′ ≺ w′ ≺ w in X .
By assumption, this chain must terminate, and hence so must the
process L1, L2, L3, . . .. But wherever this process terminates it
does so because we found a y that works. �

Definition 1.5. Given a formula A[x]. We say that an element a of X
such that A[a] is true, but for no b ≺ a is A[b] true, is a minimal element
for A[x].

In the special case where A[x] is the formula x ∈ T where ∅ 6= T ⊆ X ,
we simply say that “a is a minimal element of T”. �

Thus, the process L1, L2, L3, . . . above constructs a minimal element
y for A[x].

Definition 1.6. We say that a ≺ on X is well-founded iff there is no
infinite descending chain . . . a′′ ≺ a′ ≺ a of elements a, a′, a′′, . . . in X . �

Our results have shown that a ≺ is well-founded iff it has MC iff it
has IC (“admits induction”).

� If ≺ is well-founded then it is irreflexive, that is, (∀x)¬x ≺ x. Indeed, if
not, we have a ≺ a for some a ∈ X , and that leads to an infinite chain
. . . a ≺ a ≺ a ≺ a. �
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� � (Do you remember what “��” means? If not check Part I before con-
tinuing!)

By the axiom of foundation, ∈—a relation on “everything” (i.e., on
V)—is well-founded in the sense of 1.6. Thus, for any A we have ∈-MC:

(∃x)A[x] ⇒ (∃x)
(

A[x] ∧ ¬(∃z ∈ x)A[z]
)

(1)

and can therefore also prove “properties” (i.e., formulas A[x]) of arbitrary
sets “x” by GCVI with respect to ∈ using

(∀x)
(

(∀z ∈ x)A[z] ⇒ A[x]
)

⇒ (∀x)A[x]

A special case of (1) is when we take A[x] to be the formula x ∈ y. Then
(1) becomes

(∃x)x ∈ y ⇒ (∃x)
(

x ∈ y ∧ ¬(∃z ∈ x)z ∈ y
)

or, since it does not matter what set y I have in mind, I can generalise

(∀y)
(

(∃x)x ∈ y ⇒ (∃x)
(

x ∈ y ∧ ¬(∃z ∈ x)z ∈ y
)

)

(2)

which is—you will recall that I so suggested in Part II—the formal version
of the axiom of foundation (see � �-remark that follows axiom 2.1).

Let us see why in some detail. Now, in Part II I claimed that (2) is
equivalent to the absence of infinite descending chains such as

. . . a3 ∈ a2 ∈ a1 ∈ a0 (3)

However, here, so far, I have only argued one direction: That if (3) is
impossible, then I must have (2)—just because this is a special case of (1),
which I have by MC ≡ IC ≡ foundation. But, what about the converse: if I
have the special case (2), does the general case, (1), follow—or, equivalently,
can I prove the impossibility of (3) by assuming (2)?

Yes, I can.
Assume that we know that (2) holds. I will prove the impossibility of (3).

By contradiction, suppose that I do have (3) for some a0, a1, a2, . . .

Collect all the a0, a1, a2, a3, . . . of the infinite chain.
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Main claim. This collection is a set. We will denote it by S.
To prove the claim, note that the collection S is not any bigger than

the set of natural numbers N, therefore it is a set too.
Indeed, to see why S is not bigger, imagine that all the members of N

and all the members of S were invited to a dance of pairs. I am sure they
would accept, because there is a way to form pairs and use all the members
of each set without having anyone from either set dancing alone: Just pair
0 with a0 and, in general, pair n with an.

This concludes the (informal) proof of the Main claim.
I can now contradict the boxed assumption that I took earlier on,

concluding that (3) is impossible.
Well, now that I know that S is a set, specialising5 (2) I get

(∃x)x ∈ S ⇒ (∃x)
(

x ∈ S ∧ ¬(∃z ∈ x)z ∈ S
)

(4)

By construction of S, the lhs of ⇒ in (4) is true (just as we argued in
theorem 1.4). Then so is the rhs.

But the rhs is also false, giving us a contradiction: Indeed, the rhs
says that for some “special” x in S there is no z, also in S, such that z ∈ x.
But this is incorrect! This x has to have the form an for an appropriate
n ≥ 0. But then, there is a z ∈ S that is also in x; namely, z = an+1 will
do.

Several observations are now in order:

(A) The proof of the claim used a valid principle of comparing sizes of
two collections in order to conclude that one of them is a set. This
principle has a formalisation that is called the axiom of replacement.
I chose not to introduce all the axioms of set theory in order to keep
matters “semi-formal” and easy.6 The axiom of replacement says that
if each member of a set T is replaced by a (possibly different) set or
atom, then the resulting collection is also a set. Note how S above is
obtained from the set N by replacing n by an for n ≥ 0.
One of the reasons I did not introduce this “easy sounding” axiom
formally is that its use in a formal setting—e.g., to formalise the proof

5The variable y in (2) is a set variable. It was crucial to know that S is a set in order
to do the substitution [y := S].

6The omitted axioms are those for replacement, infinity and choice. Moreover I
have allowed us to intuitively accept that atoms have no elements, but strictly speaking
one ought to formalise this via an axiom that for all variables x of type atom says
(∀x)(∀y)y /∈ x.
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of the main claim above—often requires yet another axiom, the “axiom
of infinity”, which, essentially, says that we can build (or implement)
a perfect copy of N within set theory. You see, in a totally formal
setting we are not allowed to pretend that we know anything about
N. The axioms of set theory do not speak of N, but it turns out that
they have enough power to allow us to build a replica of N. But to do
so is a very long story that we are not going to get into.

(B) In the proof of MC ≡ foundation for an arbitrary≺ on a set X (see 1.4)
we did not need the axiom of replacement in order to argue that the
collection of members of the chain (1) (p.4) is a set. What we used
was our assumption that ≺ is a relation on X , which allowed us to
use the axiom of subsets. Here however the specific (concrete) ≺ is
∈, a relation on the collection V that is not a set and we needed the
overkill.

(C) Now that I have mentioned (B) above, I must draw your attention to
the earlier sentence “However, here, so far, I have only argued that if
(3) is impossible, then I must have (2)—just because this is a special
case of (1), which I have by MC ≡ IC ≡ foundation.” This assertion
contains a small white lie: The equivalence MC ≡ IC ≡ foundation
was proved in 1.4 under the strict assumption that ≺ acts on a set X .
Do I still have the equivalence if ≺ acts on a non-set collection, as is
the situation with ∈?
Yes. First off, the equivalence MC ≡ IC is independent of where ≺
acts; indeed it is a logical equivalence. As for the MC ≡ foundation
part of the equivalence, note that direction (II) in the proof of 1.4 is,
again, independent of where ≺ acts. It is direction (I) that we proved
relying on the assumption that the collection on which ≺ acts—i.e.,
X—is a set. This assumption is not crucial and can be avoided at the
expense of a more sophisticated proof and the introduction of more
axioms: Indeed, we can still prove that the S constructed in the proof
of 1.4 is a set, exactly as we did for the present S above, by using the
axiom of replacement informally. This is because the S in the proof
of 1.4 is obtained from N by the replacements 0 7→ a, 1 7→ a′, 2 7→ a′′,
3 7→ a′′′, and so on in the obvious pattern.

� �

� Since ∈—a special case of our abstract ≺—has MC, IC and foundation,
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but is not transitive, we must be careful to recognise that “≺, in general,
is not transitive”. �

It turns out that it is relatively easy to verify that ≺ is well-founded in
many cases of interest (next section). This also verifies that we can prove
theorems about the members of the “universe” X by ≺-induction (GCVI).

2 Concrete cases of “≺”. Some GCVI proofs
Example 2.1. Our first example uses as X the set of all propositional
(Boolean) formulas and ≺ is the proper subformula relation.

First off, recall that formulas are defined inductively on the alphabet

{p, q, r, p′, q′, r′, . . . ; false; true; (; );¬;∨}

by

1. Any one of the variables p, p′, q, . . . and constants false, true is a
formula.

2. If A is a formula, then so is (¬A)

3. If A and B are formulas, then so is (A ∨ B)

We say that B is a subformula of a formula A iff B is a substring of A, and,
moreover it is a formula.

For example, p, q, (¬p), ((¬p) ∨ q) are all subformulas of ((¬p) ∨ q).
None of ¬, ¬p, p) ∨ q are subformulas, since none is a formula—even

though they are substrings of ((¬p) ∨ q).
A proper subformula of A is a subformula that is not the exact same

string as A. The first three examples of the subformulas above are proper,
but the fourth is not.

With the definitions out of the way we observe that ≺ in this context
is well-founded, so it has IC. This allows us to prove properties of formulas
(that is, members of X) by GCVI with respect to ≺.

Wait! Why is ≺ well-founded? Because starting with A we cannot
have an infinite chain . . . A′′ ≺ A′ ≺ A since every application of ≺ as we
walk from right to left removes at least one symbol from A. But A has
finitely many symbols!

Let us now be of some use. We will prove:
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Every Boolean formula has an equal number of left and right brackets.

Proof. We are asked to prove the “property”, as stated above, for every
formula A ∈ X . We use GCVI (see 1.1 and the discussion following).

(1) (I.H.) Assume the claim for all B ≺ A.
(2) (Goto) Prove the claim for A. We have cases:

Case 1. A is p, q, . . . or false, or true. This is the basis, or “boundary” case
these atomic formulas have no proper subformulas and thus the
proof is not helped by the I.H.
In each of those cases the claim is true (0 left and 0 right brackets).

Case 2. A is (¬B). By I.H., since B ≺ A, B has as many left as it has
right brackets. This is true of A as well, since it has one extra left
and one extra right bracket than B has.

Case 3. A is (B ∨C). Since B ≺ A and C ≺ A, the I.H. applies to both B
and C. Let B have m left and m right brackets and let n be the
corresponding number for C. Then A has 1 + m + n left, and as
many right brackets. �

� The sentence, in the basis case above, “these atomic formulas have no
proper subformulas” can be rephrased: “These atomic formulas are the
minimal elements of X” since, for example, p ∈ X but for no z ≺ p is it
the case that also z ∈ X .

Contrast this with N and the standard order relation <. Minimal
elements of any S—where ∅ 6= S ⊆ N—are unique.

But there is another difference between the pairs ≺, X and <, N:
(1) < satisfies trichotomy (3rd Peano axiom for <).
(2) ≺ does not satisfy trichotomy in general—meaning that there are

specific concrete instances of the abstract ≺ that do not satisfy trichotomy.
The specific concrete version in the previous example is one such. For
example, compare two distinct Boolean variables p and q. First off, they
are different strings, so p = q (equality of strings, informally!) is false.

Pause. Why “informally”?

But so are p ≺ q and q ≺ p.
Thus, we cannot say that

(∀x)(∀y)(x ≺ y ∨ x = y ∨ y ≺ x) (3)

is true for this ≺ (proper subformula relation). Therefore we cannot say
this in general either.
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There is a connection between uniqueness of minimal elements and
trichotomy for our well-founded ≺:

First, whenever trichotomy holds for some concrete choice of ≺—as
it does when we take ≺ to be < on N—then a minimal element is also
minimum or least.

Indeed, if a ∈ S ⊆ X is minimal, then we have ¬(∃z ≺ a)z ∈ S
by definition. This is short for ¬(∃z)(z ≺ a ∧ z ∈ S), which is logically
equivalent to (∀z)(¬z ∈ S ∨¬z ≺ a). Now, having assumed trichotomy (3)
allows us to conclude

¬z ≺ a ≡ z = a ∨ a ≺ z (4)

Indeed, the ⇒ is a tautological consequence of a specialisation of (3). For
⇐ we use well-foundedness: Assume z = a ∨ a ≺ z. Now argue by con-
tradiction, and assume also z ≺ a. This along with our assumption gives
(written conjunctionally) z ≺ a = z or z ≺ a ≺ z. Each of these two cases
contradicts well-foundedness.

Thus the element a satisfies (∀z)(z ∈ S ⇒ a ≺ z ∨ a = z). In words,
every member of S is above a or is equal to a. For short, a is ≺-least in S.
Now least members are unique:

Indeed, suppose that a and b are both least (with respect to the rela-
tion ≺) in the nonempty subset S of X . By way of contradiction let a 6= b.
Then a ≺ b (taking a as least) and b ≺ a (taking b as least). This yields
a ≺ b ≺ a contradicting the well-foundedness of ≺.

By the way, you see now why MC for < on N is called the least
principle: Minimal elements in this context are also least.

Secondly, uniqueness of minimal elements implies trichotomy. This is
easy: Suppose ≺ on X has MC and that moreover every ∅ 6= S ⊆ X has
no more than one7 minimal element.

I want to show that any two x and y in X are “comparable”, that is,
one of x = y, x ≺ y or y ≺ x holds. Well, if none of x = y, x ≺ y and y ≺ x
is true, let us form the set S = {x, y}. This set has two distinct minimal
elements, contrary to our assumption. �

Example 2.2. We continue with the X and ≺ of example 2.1. This time
we prove:

7MC guarantees at least one.
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Every nonempty proper prefix of a formula A has more left brackets
than right brackets.

By “prefix” we mean a substring that starts with the first symbol of
A. It is proper if it is not the same string as A.

Proof. By GCVI.
(1) (I.H.) Assume the claim for all B ≺ A.
(2) (Goto) Prove the claim for A. We have cases:

Case 1. A is p, q, . . . or false, or true. None of the minimal elements of X
has any nonempty proper prefix. So there is nothing to prove.

Case 2. A is (¬B). Here are all the possible nonempty proper prefixes
(enclosed in quotes):

(a) “(” This has the property.
(b) “(¬” Ditto.

(c) “(¬R”, where R is a proper nonempty prefix of B. Since
B ≺ A, the I.H. tells us that R has more lefts than rights.
Adding the leftmost “(” to that does no harm.

(d) “(¬B” B has equal number of lefts and rights (by exam-
ple 2.1). But “(¬B” has an extra “(” as its first symbol.

Case 3. A is (B ∨ C). Here are all the possible nonempty proper prefixes
(enclosed in quotes):

(a) “(” This has the property.

(b) “(R”, where R is a nonempty proper prefix of B. Since B ≺
A, the I.H. tells us that R has more lefts than rights. Adding
the leftmost “(” to that does not harm the balance.

(c) “(B” B has equal number of lefts and rights (by exam-
ple 2.1). But “(B” has an extra “(” as its first symbol.

(d) “(B∨” Exactly as in the previous case.

(e) “(B ∨ T”, where T is a nonempty proper prefix of C. Since
C ≺ A, the I.H. tells us that T has more lefts than rights.
Adding the leftmost “(” to that, and remembering that B has
as many lefts as rights, does not harm the balance.

(f) “(B ∨C” B and C each have as many lefts as rights by 2.1.
The leftmost “(” saves the day. �

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 12



3. BINARY TREES

3 Binary Trees
The next example of application of GCVI is significant enough to deserve
its own section. We will look into the definition of what we call extended
binary trees and prove some of their properties by GCVI with respect to
the appropriate ≺ that we will define shortly. But first let us define these
trees. We have an infinite supply of labelled squares and labelled circles—�

and ©—that we will call square and round nodes respectively. We also
have an infinite supply of line segments that we call edges. We usually do
not display the labels of nodes unless we want to talk about a particular
node by referring to it via its label.

Definition 3.1 (Extended Binary Trees). An Extended Binary Tree,
its root and its support are defined simultaneously by induction. We will
simply say “tree” in what follows.

The support will be the set of nodes used to build the tree. We write
sup(T ) to indicate the support of tree T . The root is a special node of the
tree. We write root(T ) to indicate the root of T .

A tree is one of:

(1) A single square node, �. In this case root(�) = � and sup(�) = {�}.

(2) A structure formed as follows: We start with two trees T1 and T2 such
that sup(T1) ∩ sup(T2) = ∅. We get a round node, say r (its label),
that is not a member of sup(T1) ∪ sup(T2) and two unused edges. We
connect root(T1) to the left of r using one edge, and connect root(T2)
to the right of r using the other edge.
Order matters!
The ordered triple so formed, (T1, r, T2) is a tree. Let us call it T .
By definition, root(T ) = r and sup(T ) = sup(T1) ∪ sup(T2) ∪ {r}.
We say that T1 is the left subtree of T (or of r) and T2 is the right
subtree of T (or of r). �

Example 3.2. We present four examples of trees
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3. BINARY TREES

Note that the 2nd and 3rd examples above are different because order
matters. In terms of computer science practice, you may think of trees as
data structures that hold information. The data is stored in round notes.
The edges are “links” (pointers) that point from top to bottom. The square
nodes indicate “null addresses” thus the edges pointing to them are “null
links”. Therefore, square nodes never hold data. �

In general we draw an arbitrary tree as a big “∆” when we do not care to
display the tree in detail. In such drawings we always imply that the root
is at the top tip of the letter. We may use this “compressed” drawing for
an entire tree or for parts of it.

For example, as in the pictures of the four trees below, where some
subtrees are denoted by big ∆’s. The first tree displayed is the “general
tree” of case (2) in definition 3.1.

Note that in much of the literature square nodes are called external
or leaves (leaf); round nodes are called internal.

We have used the terms left subtree and right subtree of a tree T .
Take the left subtree, T1, of T . If it is not just a � it has a left and a right
subtree. And so on.
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What will we call the left subtree of the right subtree of the left subtree
of T ? Let us just call it “a subtree of T”.

In general,

Definition 3.3 (Subtrees). We define a relation ≺ on the set X of all
trees as follows:

We write S ≺ T—pronounced “S is a subtree of T”—to mean that
there is a finite sequence T1, T2, . . . , Tn (where for convenience we have
renamed S into T1 and T into Tn) with the property that for all i such that
1 ≤ i < n, Ti is the left or right subtree of Ti+1. �

� Whenever S ≺ T , we have sup(S) ⊂ sup(T ) since at the very least
root(T ) /∈ sup(S). Thus every chain of trees

. . . T ′′′ ≺ T ′′ ≺ T ′ ≺ T

terminates because walking towards the left, sooner or later we run out of
nodes.

That is ≺ on X is well-founded and therefore has MC and IC. In
particular, we can prove properties of trees by GCVI. �

Example 3.4. Prove that a tree T of n + 1 nodes has n edges.

Pause. Why n + 1? Because by definition, every tree, even the
smallest one (case (1) in definition 3.1) has at least one node.

Proof.
(1) (I.H.) Assume that this is true for all S ≺ T .
(2) (Goto) Prove for T . We have cases:

1. T = � (“boundary case”) Clearly we have one node and 0 edges
by 3.1.

2. T is the ordered triple (T1, r, T2) (refer if you want to the first, “the
general”, tree displayed in the previous figure—but this is not neces-
sary).
Since T1 ≺ T and T2 ≺ T , the I.H. applies to both of T1 and T2.
Say the first has e1 edges and e1 + 1 nodes, while the second has e2

edges and e2 + 1 nodes.
Now T has e1 +e2 +2 edges and 1+(e1 +1+e2 +1) nodes, where the
first “1 + ” accounts for the root r. A comparison of these numbers
shows that we are done. �
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The following corollary is a useful tool in the analysis of searching and
sorting algorithms.

Corollary 3.5. The number of square nodes in a tree is exactly one more
than the round nodes.

Proof. Let T be a tree, and let it have R round and S square nodes. By
the above example it has R + S − 1 edges.

However, the number of edges is also 2R (you see why?). Thus,

R + S − 1 = 2R

The above is equivalent to S − 1 = R. �

There are “tall” trees, and then there are “short” trees:

Definition 3.6 (Height of a tree). One defines the height of a tree T
by induction on the definition of trees (3.1).8 We write h(T ) for the height
of T .

If T = �, then h(T ) = 0.
If T is the ordered triple (T1, r, T2), then h(T ) = 1+max

(

h(T1), h(T2)
)

.

�

Example 3.7. The heights of the trees displayed in example 3.2 are, from
left to right, 0, 2, 2, 4. �

� You surely did not miss to observe that the height of a tree equals the
number of edges in a longest path from root to a square node.

Thus, if the tree implements a so-called “sort-tree” (that you must
have seen in COSC 2011), then its height represents the worst case number
of “probes” (i.e., comparisons with round-note data) when you search for
an item that is not stored in the tree (unsuccessful search). �

Example 3.8. Prove that if a tree T has n + 1 nodes and height h, then

n + 1 ≤ 2h+1 − 1 (1)

We use GCVI.
(I) (I.H.) Assume that this is true for all S ≺ T .

8It is “very fine print” to explain why such inductive definitions do manage to define
what we think they define. So we will sweep the reasons under the rug and take the
existence and uniqueness of such inductively defined objects—here the tree heights—for
granted.
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(II) (Goto) Prove for T . We have cases:

1. T = �. Here h(T ) = 0, and n + 1 = 1. Thus (1) holds (21 − 1 = 1).

2. T is the ordered triple (T1, r, T2).
Since Ti ≺ T for i = 1, 2, I.H. applies. Let Ti have ni + 1 nodes and
height hi. By I.H.

n1 + 1 ≤ 2h1+1 − 1 (2)

and
n2 + 1 ≤ 2h2+1 − 1 (3)

T has n + 1 = n1 + n2 + 3 nodes. Adding (2) and (3) we have

n1 + n2 + 2 ≤ 2h1+1 + 2h2+1 − 2 ≤ 2 · 2h1+1 − 2 = 2h1+2 − 2 (4)

where, without loss of generality, we assumed that h1 ≥ h2, that is,
h1 = max(h1, h2).
(4) can be rewritten as

n1 + n2 + 3 ≤ 2h1+2 − 1

and we are done, for lhs = n + 1 and rhs = 2h(T ) − 1. �

� This result says that the worst number of probes for unsuccessful search in
a sort-tree cannot be less than log2(n + 2) − 1. �
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