
Notes on a (very) Elementary Set
Theory—Part I

1 Preamble
This section reminds the reader of a couple of important logical tools, and
introduces some expositional notation.

Let us recall generalisation, first of all. It is the rule:

If Γ ` A, and x is not free in any formula in Γ, then Γ ` (∀x)A (gen)

Now, when Γ is the set of axioms of a “real-life theory”,1 like set theory
(about which I write this note) or number theory (Peano arithmetic), at
first sight, the restriction on x in (gen) is a bit worrisome.

We worry as follows: Both set theory and Peano arithmetic have an
infinite set of axioms. How can we ensure the restriction in practice? It is
one thing to say—in all those other cases that we saw in class where Γ was
finite—that we can always choose in the place of x a variable that has not
appeared free in Γ. After all we have a supply of infinitely many variables.
But when Γ is infinite itself, for all I know we may have used as free all
the variables of our supply in the formulas of Γ, and as a result no “fresh”
variable exists to use in (gen). Does this mean that in set theory and Peano
arithmetic we must disallow generalisation?

Enough worrying! No. The simple trick is to present all the special
axioms, and axiom schemata, in each theory in “closed form”, i.e., without
free variables.

This is always doable! The trick is to eliminate every free variable
x in an axiom or axiom schema by placing a (∀x) in front of the axiom
(schema). Intuitively, the axiom (schema) still “says” exactly the same
thing as it did before we added the (∀x).

Definition 1.1. A formula A is called closed or a sentence iff it has no
free variables. �

Thus, (gen) yields the very usable and important special case:

If Γ ` A, and all formulas in Γ are closed, then Γ ` (∀x)A (gen′)

1I mean one you study because it is interesting and applicable, not because it exercises
your understanding of MATH1090.
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Next let us recall WLUS:

If ` A ≡ B, then ` C[p \ A] ≡ C[p \ B] (WLUS)

Its usability is restricted when we argue in a theory with non-empty Γ
because of the restriction that the hypothesis, A ≡ B, be an absolute
theorem.

But do not despair! Super-WLUS (“sWLUS”) to the rescue. This is

If Γ ` A ≡ B, and Γ contains only sentences, then Γ ` C[p \A] ≡ C[p \B]
(sWLUS)

Actually, I’ll be asking you to use WLUS to prove rule sWLUS in a forth-
coming problem set.

Recall the technique of Proof By Cases: If I know that Γ ` A1∨. . .∨An

and also that Γ ` Ai ⇒ B for i = 1, . . . , n, then I can conclude (by trivial
tautological implication) that

Γ ` B

In practice, once a proof of Γ ` A1 ∨ . . .∨An has been obtained, I do each
of Γ ` Ai ⇒ B using the deduction theorem, that is, I add the assumption
Ai to Γ and then prove just B.

There is special jargon and organisation for this process.

(i) I prove A1 ∨ . . . ∨ An

(ii) For i = 1, . . . , n, I say:
Case Ai (this is synonymous to “assume Ai”): Now I do chugga-
chugga (one way or another) and I prove B

(iii) Done.

� If Γ = {A1∨ . . .∨An}, then the described technique proves A1∨ . . .∨An ⇒
B. �

Here is another (fairly standard) piece of notation: Say A is a formula.
We often indicate our interest in a variable x that may occur in A free by
writing either A[x] or A(x).

Just because we are interested in x is not any reason to assume that
really x occurs free in A. This is like writing in elementary math f(x) = 3
to define the constant function “3”. Even though we wrote “(x)”, the
function output does not depend on x—x does not occur free in “f”.
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This type of notation entails the following: Just as f(x)[x := 9] has
the shorthand f(9), A[x][x := t] and A(x)[x := t] have the shorthand A[t]
and A(t)—of course before we employ this kind of shorthand we must be
sure that the substitution is defined.

Let me conclude this section by explaining an expositional device:
First off, one learns in “Instructor 101” that in MATH, one must always
present the truth, but not necessarily the whole truth. The reason is obvious:
Sometimes the whole truth is bogged down in technical details to the extent
that one risks losing the forest for the trees. Thus, I’ll offer the “whole
truth” in passages that can be skipped on first reading (or even for good).
They are identified by � � at their two ends.

2 Three axioms
Set theory was invented by Georg Cantor in an informal setting. This is
what (somewhat unkindly) people nowadays call “Näıve Set Theory”.

Because of contradictions that were built-in into the informal ap-
proach, mathematicians eventually cleaned up the theory by basing it on
a few axiom schemata. Depending on the main contributors’ names in a
particular axiomatic approach (yes, there are more than one different ap-
proaches!) on uses a different acronym for set theory’s “Γ”, the collection
of its special (nonlogical) axioms. For example, the most widely used ax-
iomatization is due to Zermelo and Fraenkel. Its Γ goes under the acronym
“ZF” from the contributors’ initials.

Neither in the informal theory, nor in the axiomatic theory one defines
the notion “set”.

In the former one just shrugs the issue off and says that “set” means
“collection”.2 In the latter one does not bother at all: One gets to learn
what sets are by learning how they behave—i.e., learning theorems about
sets. Compare with the similar situation with real numbers: Did anyone
ever tell you what

√
2 really is? No. Of course, you learned that (

√
2)2 = 2

and that
√

2 obeys the “usual rules of arithmetic and order” and that was
more or less all you needed to know.

The one and only fundamental symbol you need in order to do set
theory is one predicate of arity 2, namely, ∈. S ∈ T is meant to say “S is
a member (or element) of T”, or “S belongs to T”. Using ∈ as a starting

2So, what is a “collection”? I guess, it is a “set”.
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point one can logically define every other special symbol that people use in
set theory.

In this course we will use only a few of those axioms to keep matters
simple and relevant to what we want to do. We will call this collection of
axioms—our Γ—“ST” (for Set Theory).

In the text’s Ch.11 only one axiom is really introduced, Extensional-
ity.3 This is

(∀S)(∀T )(∀x)
(
(x ∈ S ≡ x ∈ T ) ⇒ S = T

)
(Ext)

where S, T are set variables (i.e., of type “set”) while x is an arbitrary
variable (typeless: “set” or “atom” type). Recall that the ⇐ direction is
not part of the axiom, so it is not included above. In class we proved that
direction logically (with no nonlogical axioms). Indeed, all we had to note
is that

(∀S)(∀T )(∀x)
(
(x ∈ S ≡ x ∈ T ) ⇐ S = T

)
(1)

is an instance of Ax6 where the syntactic variable “A” in the axiom is
here the specific formula “x ∈ z”, and we do the substitutions [z := S]
and [z := T ]. By the distributivity of ∀ over ∧, (Ext) and (1) give the
Extensionality Theorem:

(∀S)(∀T )(∀x)
(
(x ∈ S ≡ x ∈ T ) ≡ S = T

)
(2)

Note how our first axiom is indeed closed (a sentence—this connects to the
discussion in section 1).

Example 2.1. By extensionality, {1, 2} = {2, 1, 1, 2} since every x in the
lhs is in the rhs and vice versa. In particular, extensionality implies that
order of appearance and multiplicity of appearance of set elements is irrel-
evant. �

� � Disclaimer. It is beyond our scope—and beyond our goals—to present
set theory in a strict axiomatic setting. We will adopt a few, but nowhere
near all, axioms and will draw useful consequences from them, logically.
Our planned omissions will force us to do a “quasi-formal” set theory, that
is, one where we will assume parts of mathematics outside set theory. The
formal part will be served by giving (set theory) axioms, definitions, and
logical proofs of a number of theorems.

3Everything else the authors call an “axiom” is really a definition.
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The informal part will consist of those instances where we will bring in
examples (say from the integers, reals, etc.), but most significantly where
we will pretend that we can have set theory and other theories (about
numbers and other mathematical objects) interact and coexist.

Specific example from the text: There is an axiom about the number
of elements in a set. The way it is given, the authors tacitly pretend

(1) that we know enough about the natural numbers to know what
“
∑

x∈S
1” means, that is, how sums like “

∑

1≤x≤n
f(x)” are formally de-

fined; what their properties are; etc. That is too much to pretend about
because—up to the point where the axiom was given—not a single axiom
about the natural numbers was presented.

(2) that we can mix set theory and other theories. While (2) is, in
principle, possible it is never done formally; it is very messy.

So what will we do? Well, we will first of all not be totally formal!
Secondly, we will mix, in our quasi-informal/quasi-formal manner, results
from theories that we pretend to know. This is in the spirit of (1)–(2) above.
However, for the sake of avoiding to prove falsehoods or present circular
proofs, we will avoid examples such as (1), where we have to pretend that
we know much more than we really have the right to pretend that we know.
In short, we will use a minimal amount of “mathematics” outside set theory
(In particular, we will use a different definition regarding size of sets.)

Fact: One can base all mathematics on set theory. That is, one can
base all mathematics on the axioms of set theory without introducing any
additional axioms for other mathematical theories. In particular, one can
even “build” the natural numbers and their properties within set theory,
then the integers, then the rationals, then the reals, etc. But we will not
take this approach as it is far too advanced for our purposes and scope. � �

Next we need some definitions so we can work with the symbol “{x|A}”
that is known as a set term.

Intuitively, this symbol denotes the collection of all those values of
x that make A true. In other words, if S is a set variable and we state
“S = {x|A}”, what we mean by that is

(For all possible values x) x is in S iff it passes the “entrance test” A.

This motivates:

Definition 2.2. If S is a set variable, then the “text” S = {x|A} (also
written as S = {x : A}) is an abbreviation for
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(∀x)(x ∈ S ≡ A)

�

Thus, the tautology (∀x)(x ∈ S ≡ A) ≡ (∀x)(x ∈ S ≡ A) leads to the
absolute theorem (indeed tautology)

S = {x|A} ≡ (∀x)(x ∈ S ≡ A)

� Now, “S = {x|A}” where S is a set variable says “{x|A} is a set named
S”.

But what else could a collection like {x|A}—the collection of all x
that make A true—be? Well, it might be a collection that is “too big” or
“too complex” to be a set.

For example, we have seen that for some choices of A we are in trou-
ble: Russell has shown (see my additional Hilbert proofs examples on the
MATH2090/Fall 03 URL) that we can prove

¬(∃y)(∀x)(x ∈ y ≡ ¬x ∈ x) (1)

in pure logic. Thus, “let S = {x|x /∈ x}” is wishful thinking: If this were
possible (non contradictory) we would be able to obtain—by ∃ introduction—
the negation of (1) above; and that is impossible.

Compare: If y is a real number variable, we know what y =
√
−1

means. It means y2 = −1. We also know that this is impossible. Thus,
the questions of what an abbreviation means and whether it is valid (or
provable) are two different issues.

Just as (for y a real variable and t a term) “let y = t” says “assume
t is a real y”, in the same way, if S is a set variable, “let S = {x|A}” says
“assume {x|A} is a set S”.

Reference to y (respectively, S) is eliminated if we state instead (∃y)(y =
t) (respectively, (∃S)(S = {x|A})). For example, “(∃S)(S = {x|A})” or

(∃S)(∀x)(x ∈ S ≡ A)

say “{x|A} is a set”. �
We next translate the text

x ∈ {x|A} (2)

if {x|A} represents a set.
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Theorem 2.3 (∈-elimination). If {x|A} is a set, then (2) above is prov-
ably (in ST) equivalent to A.

Proof. We give two different proofs.
(1) Informal proof (like the ones a mathematician or a computer sci-

entist might construct):
Let S = {x|A} where S has type set. This is a legitimate assumption

since {x|A} is a set.
Thus by 2.2 (∀x)(x ∈ S ≡ A) and hence, by specialisation,

x ∈ S ≡ A

Replacing S by {x|A} we are done.
(2) Formal proof.

(1) (∃y)(y = {x|A}) (assume)
(2) S = {x|A} (by (1): assume; S fresh)
(3) (∀x)(x ∈ S ≡ A) ((2) and 2.2)
(4) x ∈ S ≡ A ((3) and spec.)
(5) x ∈ {x|A} ≡ A ((2,4), Ax6 and taut. impl.)

�

� Note that the formal proof faithfully tracks the informal one. For example,
step (2) is the part “Let S = {x|A}” in the informal one. You are encour-
aged to design informal proofs before you plunge into chugga-chugga. This
is like programming in pseudo-code prior to actual “coding”. It just makes
things clearer.

By the way, since the “assumption” (1) was presumably obtained using
properties (axioms) of sets, that is why this is a set theory theorem rather
than an absolute theorem. �

Corollary 2.4. If z is fresh and if {x|A[x]} is a set, then so is {z|A[z]}
and moreover {x|A[x]} = {z|A[z]}.
Proof. I give an informal proof only: Let S = {x|A[x]} where S is of type
set. Thus (by 2.2),

(∀x)(x ∈ S ≡ A[x]) (1)

Using dummy renaming in (1) we get

(∀z)(z ∈ S ≡ A[z]) (2)
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By 2.2 and (2) we have proved S = {z|A[z]}. In particular, {z|A[z]} is a
set. Transitivity of “=” yields the last claim of the corollary. �

� In particular we get three important results:
(i) x is a “dummy” in {x|A[x]} under the corollary’s assumptions.

Indeed, {z|A[z]} has no occurrence of x at all, and {x|A[x]} = {z|A[z]}.
(ii) With all the assumptions as in the corollary, z ∈ {x|A[x]} is

provably equivalent (in theory ST) to A[z], since it is the same as z ∈
{z|A[z]} (and we invoke 2.3).

(iii) Indeed, (ii) above can be strengthened by dropping the require-
ment that z is “fresh”. Let t be any term (such as variable, constant,
function application) for which A[x := t] is defined. Then I can prove

ST ` t ∈ {x|A} ≡ A[x := t] (3)

provided we know that {x|A} is a set. I can write (3) also as

ST ` t ∈ {x|A[x]} ≡ A[t] (3′)

The proof of (3), whether formal or informal, is exactly as in 2.3: Pro-
ceeding informally, let S be a set-type variable not appearing in the term
t, and write S = {x|A}—legitimate since {x|A} is a set. By 2.2, I have
(∀x)(x ∈ S ≡ A). Specialisation yields

(x ∈ S ≡ A)[x := t]

that is,

t ∈ S ≡ A[x := t]

Replacing S by its equal (using Ax6) I finally have proved (3). Note that
S not appearing in t is not a serious restriction, since I have a supply
of infinitely many variables to choose from. It ensures that when I plug
“{x|A}” into S in “t ∈ S” this does not also get plugged into t. �

Recall the definition from class:

Definition 2.5. The “text” {t[~x] : A[~x]} stands for
{

z : (∃~x)
(
t[~x] =

z∧A[~x]
)}

where “~x” is short for x1, x2, . . . , xn and is here the list of active

or linking or dummy variables, and z is fresh. �

Notes on a (very) Elementary Set Theory c©George Tourlakis, 2003 Page 8



2. THREE AXIOMS

In the text, GS indicate the linking variables like this

{~x : type
︸ ︷︷ ︸

links

|A : t}

Following standard notation, we indicate them instead by a comment, or
by using [~x] next to A (the “property”) and to t (the generic term we are
collecting).

Example 2.6. Consider S = {x + y|0 < x < y} where x, y are of type N

(natural number).
(1) Suppose x only is active. Eliminate it to get S = {y + 1, y +

2, . . . , 2y − 1}.
� We always eliminate the active variables. The non-active variables are

called parameters. They are constants that we have not disclosed their
values. �

(2) Suppose y only is active. Eliminate it to get S = {2x + 1, 2x +
2, . . .}.

(3) Suppose both x and y are active. Eliminate them to get S =
{3, 4, 5, . . .}. �

The following is very important.

Theorem 2.7. If {x : A} and {x : B} are sets, then

ST ` {x : A} = {x : B} ≡ (∀x)(A ≡ B) (∗)

Proof.

{x : A} = {x : B}
≡

〈

Ext. theorem & assumption
〉

(∀x)(x ∈ {x : A} ≡ x ∈ {x : B})
≡

〈

sWLUS (twice) & ∈-elim
〉

(∀x)(A ≡ B)

�
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We introduce some interesting collections:

Definition 2.8. {x|false} is denoted by ∅ and is pronounced “the empty
(or void, or null) set”.

{x : true} is denoted by V and is pronounced “the (absolute) uni-
verse”. �

The nomenclature is obviously motivated: Nothing passes the en-
trance test in ∅, whereas everything passes the entrance test in V.

It turns out that ∅ is a set. While this can be proved from additional
assumptions we will take the easy way out:

Axiom 2.9. {x|false} is a set. �

Since “∅” denotes a fixed set it is a constant, of course, of type set.

� � On the other hand, we will eventually see that V is too big and too complex
to be a set. Like {x|x /∈ x}, it is a non-set collection. Set theorists call
such collections proper classes. � �

Proposition 2.10. ST ` S = ∅ ≡ (∀x)x /∈ S.

Proof.

S = ∅
≡

〈

Ext. theorem
〉

(∀x)(x ∈ S ≡ x ∈ {x : false})
≡

〈

sWLUS & ∈-elim
〉

(∀x)(x ∈ S ≡ false)

≡
〈

WLUS
〉

(∀x)x /∈ S

�

We have at once

Corollary 2.11. ST ` S 6= ∅ ≡ (∃x)x ∈ S.

Definition 2.12. For any set variables S and T we write S ⊆ T—pronounced
“S is a subset of T” (also: “T is a superset of S”)—as a shorthand for
(∀x)(x ∈ S ⇒ x ∈ T ).
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We write S ⊂ T—pronounced “S is a proper subset of T” (also: “T is
a proper superset of S”)—as a shorthand for S ⊆ T ∧ S 6= T . �

Joining (∀x)(x ∈ S ⇒ x ∈ T ) and (∀x)(x ∈ S ⇐ x ∈ T ) via the ∀ −∧
distributivity theorem we have at once (via the Extensionality theorem)

Proposition 2.13. ST ` S ⊆ T ∧ T ⊆ S ≡ S = T .

� Clearly, the ⇒ is contributed by the Extensionality axiom, while ⇐ is
contributed by Ax6. The proposition is a useful tool to prove two sets
equal. One proves the ⊆ and ⊇ directions separately. �

We also have a counterpart to 2.7

Proposition 2.14. If {x : A} and {x : B} are sets, then

ST ` {x : A} ⊆ {x : B} ≡ (∀x)(A ⇒ B) (∗)

Proof.

{x : A} ⊆ {x : B}
≡

〈

definition 2.12
〉

(∀x)(x ∈ {x : A} ⇒ x ∈ {x : B})
≡

〈

sWLUS (twice) & ∈-elim
〉

(∀x)(A ⇒ B)

�

Example 2.15. For any set S,
(1) ∅ ⊆ S
(2) S ⊆ S.
Well, for (1) I need (see 2.12, 2.9 and ∈-elimination) to prove (∀x)(false ⇒

A) which is in Ax1.
For (2) I need to prove (∀x)(x ∈ S ⇒ x ∈ S). This is also in Ax1.

Pause. Which of the two, (1) and (2) is an absolute theorem? Why? �

Here are two easy theorems:

Theorem 2.16. ST ` ∅ 6= S ⊆ T ⇒ T 6= ∅.
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Proof. Informal proof. Obviously, by the deduction theorem, we prove
instead ST, ∅ 6= S, S ⊆ T ` T 6= ∅. By the 1st assumption, let z ∈ S. By
the 2nd assumption and definition of “⊆” I get z ∈ T . Hence T 6= ∅.

Formal proof. This faithfully tracks the above.

(1) (∃x)x ∈ S
(

assume
)

(2) z ∈ S
(

by (1): assume; z is fresh
)

(3) (∀x)(x ∈ S ⇒ x ∈ T )
(

assume
)

(4) z ∈ S ⇒ z ∈ T
(

(3) & spec.
)

(5) z ∈ T
(

(2,4) & MP
)

(6) (∃x)x ∈ T
(

(5) & A[x := t] ` (∃x)A rule
)

�

Theorem 2.17.
S ⊂ T ⇒ T 6= ∅

Proof. The informal proof is very easy: Since S ⊂ T , there is something
in T—call it z—that is not in S (otherwise, T ⊆ S which along with the
“S ⊆ T” part of the hypothesis yields S = T . This contradicts half the
hypothesis). But z ∈ T means T 6= ∅.

The formal proof below does not track the above. Invoke the deduction
theorem, and assume hypothesis (line (1) below).

(1) (∀x)(x ∈ S ⇒ x ∈ T ) ∧ ¬(∀x)(x ∈ S ≡ x ∈ T )
(

assume
)

(2) (∀x)(x ∈ S ⇒ x ∈ T )
(

(1) and Post’s theorem
)

(3) ¬(∀x)(x ∈ S ≡ x ∈ T )
(

(1) and Post’s theorem
)

(4) (∃x)(x ∈ S ≡ ¬x ∈ T )
(

(3), Post and WLUS
)

(5) z ∈ S ≡ ¬z ∈ T
(

by (4): assume; z fresh
)

(6) z ∈ S ⇒ z ∈ T
(

(2) and specialisation
)

(7) z ∈ T
(

(5,6) and Post
)

(8) z ∈ T ⇒ (∃x)x ∈ T
(

∃-introduction theorem
)
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(9) (∃x)x ∈ T
(

(7,8) and MP
)

But the last line says “T 6= ∅”. �

We have already seen that the collection {x|x /∈ x} is not a set. Thus,
unlike what the philosopher Frege suggested, it is not the case that all
collections {x|A} are sets. Our second axiom said that if A ≡ false then
{x|A} is a set.

Are there general conditions on A that guarantee the set-term {x|A}
to be a set?

Yes, and what these conditions do is to ensure—intuitively speaking—
that the resulting collection is not too big or too complex. The easiest way
is to tweak A with an additional condition, as in the axiom below:

Axiom 2.18 (Axiom of subsets). For any set variable T and any for-
mula A of set theory, {x|A ∧ x ∈ T} is a set. �

� As we already know how to translate from English to symbolic language,
the axiom says, without words:

(∀T )(∃y)(∀x)(x ∈ y ≡ A ∧ x ∈ T ) (1)

�
Note that the arbitrary condition A was modified into A ∧ x ∈ T .
First off, why “axiom of subsets”?4 Well, if I let S = {x|A ∧ x ∈ T}

where S is a set variable (a legitimate action according to the axiom) I can
then prove S ⊆ T . Indeed,

S ⊆ T

≡
〈

def. of ⊆
〉

(∀x)(x ∈ {x|A ∧ x ∈ T} ⇒ x ∈ T )

≡
〈

sWLUS & ∈-elim.
〉

(∀x)(A ∧ x ∈ T ⇒ x ∈ T )

But the bottom line is in Ax1.
Thus, the axiom says that “parts of sets (here T is the given set, S is

a part) are small and simple enough to be sets themselves”.

4It is also called “separation axiom”.
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� Clearly the axiom can be expressed in closed form so that the requirement
that no axiom in ST has any free variables is met.5 One applies the usual
trick: For any formula A of free variables x1, . . . , xn, for any fresh set
variable T , the following is an axiom of ST:

(∀T )(∀x1) · · · (∀xn)(∃y)(∀z)(z ∈ y ≡ A ∧ z ∈ T )

�

5How about the axiom for ∅?
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