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We state for the record:

0.0.1 Proposition. R is closed under composition.

Proof. Because P is, and the operation conserves totalness. We did this in class
on Jan. 16 (see Notes #2). �

0.0.2 Example. Is the function λ~xn.xi, where 1 ≤ i ≤ n, in P? Yes, and here
is a program, M , for it:

1 : w1 ← 0
...
i : z← wi {Comment. Macro}
...
n : wn ← 0
n+ 1 : stop

λ~xn.xi = M ~wn
z . To ensure that M indeed has the wi as variables we reference

them in instructions at least once, in any manner whatsoever.

The function λ~xn.xi is denoted by Uni and is called “generalised identity”
since it is the identity for input xi while the extra arguments offer nothing
towards obtaining the output. �

0.0.1 Primitive Recursive Functions

The successor, zero, and the generalised identity functions respectively—which
we will often name S,Z and Uni respectively—are in P; thus, not only are they
“intuitively computable”, but they are so in a precise mathematical sense:
each is computable by a URM.

We have also shown that “computability” of functions is preserved by the
operations of composition, primitive recursion, and unbounded search.
In this subsection we will explore the properties of the important set of functions
known as primitive recursive. Most people introduce them via derivations
just as one introduces the theorems of logic via proofs, as in the definition below.

0.0.3 Definition. (PR-derivations; PR-functions) The set

I =

{
S,Z,

(
Uni

)
n≥i>0

}
is the set of Initial PR functions.

A PR-derivation is a finite (ordered!) sequence of number-theoretic func-
tions∗

f1, f2, f3, . . . , fi, . . . , fn (1)

∗That is, left field is Nn for some n > 0, and right field is N.
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such that, for each i, one of the following holds

1. fi ∈ I.

2. fi = prim(fj , fk) and j < i and k < i —that is, fj , fk appear to the left
of fi.

3. fi = λ~y.g
(
r1(~y), r2(~y), . . . , rm(~y)

)
, and all of the λ~y.rq(~y) and λ~xm.g(~xm)

appear to the left of fi in the sequence.

Any fi in a derivation is called a derived function.†

The set of primitive recursive functions, PR, is all those that are derived.
That is,

PRDef
= {f : f is derived} �

The above definition defines essentially what Dedekind called “recursive”
functions. Subsequently they were renamed primitive recursive allowing the
unqualified term recursive to be synonymous with (total) computable and apply
to the functions of R.

0.0.4 Lemma. The concatenation of two derivations is a derivation.

Proof. Let
f1, f2, f3, . . . , fi, . . . , fn (1)

and
g1, g2, g3, . . . , gj , . . . , gm (2)

be two derivations. Then so is

f1, f2, f3, . . . , fi, . . . , fn, g1, g2, g3, . . . , gj , . . . , gm

because of the fact that each of the fi and gj satisfies the three cases of Defini-
tion 0.0.3 in the standalone derivations (1) and (2). But this property of the fi
and gj is preserved after concatenation. �

0.0.5 Corollary. The concatenation of any finite number of derivations is a
derivation.

0.0.6 Lemma. If
f1, f2, f3, . . . , fk, fk+1, . . . , fn

is a derivation, then so is f1, f2, f3, . . . , fk.

Proof. In f1, f2, f3, . . . , fk every fm, for 1 ≤ m ≤ k, satisfies 1.–3. of Defini-
tion 0.0.3 since all conditions are in terms of what fm is, or what lies to the
left of fm. Chopping the “tail” fk+1, . . . , fn in no way affects what lies to the
left of fm, for 1 ≤ m ≤ k. �
†Strictly speaking, primitive recursively derived, but we will not considered other sets of

derived functions, so we omit the qualification.
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0.0.7 Corollary. f ∈ PR iff f appears at the end of some derivation.

Proof.

(a) The If. Say g1, . . . , gn, f is a derivation. Since f occurs in it, f ∈ PR by
0.0.3.

(b) The Only If. Say f ∈ PR. Then, by 0.0.3,

g1, . . . , gm, f , gm+2, . . . , gr (1)

for some derivation like the (1) above.

By 0.0.6, g1, . . . , gm, f is also a derivation. �

0.0.8 Theorem. PR is closed under composition and primitive recursion.

Proof.

• Closure under primitive recursion. So let λ~y.h(~y) and λx~yz.g(x, ~y, z)
be in PR. Thus we have derivations

h1, h2, h3, . . . , hn, h (1)

and
g1, g2, g3, . . . , gm, g (2)

Then the following is a derivation by 0.0.4.

h1, h2, h3, . . . , hn, h , g1, g2, g3, . . . , gm, g

Therefore so is

h1, h2, h3, . . . , hn, h , g1, g2, g3, . . . , gm, g , prim(h, g)

by applying step 2 of Definition 0.0.3.

This implies prim(h, g) ∈ PR by 0.0.3.

• Closure under composition. So let λ~y.h(~xn) and λ~y.gi(~y), for 1 ≤ i ≤ n,
be in PR. By 0.0.3 we have derivations

. . . , h (3)

and
. . . , gi , for 1 ≤ i ≤ n (4)

By 0.0.4,

. . . , h , . . . , g1 , . . . , . . . , gn

is a derivation, and by 0.0.3, case 3, so is

. . . , h , . . . , g1 , . . . , . . . , gn , λ~y.h(g1(~y), . . . , gn(~y))
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�

0.0.9� Remark. How do you prove that some f ∈ PR?

Answer. By building a derivation

g1, . . . , gm, f

After a while it becomes easier because you might know an h and g in PR
such that f = prim(h, g), or you might know some g, h1, . . . , hm in PR, such
that f = λ~y.g

(
h1(~y), . . . , hm(~y)

)
. If so, just apply 0.0.8.

How do you prove that ALL f ∈ PR have a property Q —that is, for all f ,
Q(f) is true?

Answer. By doing induction on the derivation length of f . � �

Here are two examples of the above questions and their answers.

0.0.10 Example. (1) To demonstrate the first Answer above (0.0.9), show
(prove) that λxy.x+ y ∈ PR. Well, observe that

0 + y = y

(x+ 1) + y = (x+ y) + 1

Does the above look like a primitive recursion? Well, almost. However,
the first equation should have a function call “H(y)” on the rhs but in-
stead has just y —the input! Also the second equation should have a
rhs like “G(x, y, x + y)”. We can do that! Take H = λy.U1

1 (y) and

G = λxyz.S
(
U3
3 (x, y, z)

)
. Be sure to agree that

• H and G recast the two equations above in the correct form:

0 + y = U1
1 (y)

(x+ 1) + y = SU3
3

(
x, y, (x+ y)

)
• The functions U1

1 (initial) and SU3
3 (composition) are in PR (NOTE

the “SU3
3 ” with no brackets around U3

3 ; this is normal practise!) By
0.0.8 so is λxy.x+ y.

In terms of derivations, we have produced the derivation:

U1
1 , S, U

3
3 , SU

3
3 , prim

(
U1
1 , SU

3
3

)︸ ︷︷ ︸
λxy.x+y
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(2) To demonstrate the second Answer above (0.0.9), show (prove) that every
f ∈ PR is total. Induction on derivation length, n, where f occurs.

Basis. n = 1. Then f is the only function in the derivation. Thus it must
be one of S, Z, or Umi . But all these are total.

I.H. (Induction Hypothesis) Assume that the claim is true for all f that
occur in derivations of lengths n ≤ l. That is, we assume that all such f
are total.

I.S. (Induction Step) Prove that the claim is true for all f that occur in
derivations of lengths n = l + 1.

g1, . . . , gi, f , gi+2, . . . , gl+1 (1)

• Case where f is not the last function in the derivation (1). Then
dropping the tail gi+2, . . . , gl+1 we have f appear in a derivation of
length ≤ l and thus it is total by the I.H.

The interesting case is when f is the last function of a derivation of
length l + 1 as in (2) below:

g1, . . . , gl, f (2)

We have three subcases:

– f ∈ I. But we argued this under Basis.

– f = prim(h, g), where h and g are among the g1, . . . , gl. By the
I.H. h and g are total. But then so is f by a Lemma in the Notes
#3.

– f = λ~y.h
(
q1(~y), . . . , qt(~y)

)
, where the functions h and q1, . . . , qt

are among the g1, . . . , gl. By the I.H. h and q1, . . . , qt are total.
But then so is f by a Lemma in the Notes #2, when we proved
that R is closed under composition.

�

0.0.11 Example. If λxyw.f(x, y, w) and λz.g(z) are in PR, how about λxzw.f(x,
g(z), w)? It is in PR since

λxzw.f(x, g(z), w) = λxzw.f(U3
1 (x, z, w), g(U3

2 (x, z, w)), U3
3 (x, z, w))

and the Uni are primitive recursive. The reader will see at once that to the
right of “=” we have correctly formed compositions as expected by the “rigid”
definition of composition given in class.

Similarly, for the same functions above,
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(1) λyw.f(2, y, w) is in PR. Indeed, this function can be obtained by composi-
tion, since

λyw.f(2, y, w) = λyw.f
(
SSZ

(
U2
1 (y, w)

)
, y, w

)
where I wrote “SSZ(. . .)” as short for S(S(Z(. . .))) for visual clarity. Clearly,
using SSZ

(
U2
2 (y, w)

)
above works as well.

(2) λxyw.f(y, x, w) is in PR. Indeed, this function can be obtained by compo-
sition, since

λxyw.f(y, x, w) = λxyw.f
(
U3
2 (x, y, w), U3

1 (x, y, w), U3
3 (x, y, w)

)
� In this connection, note that while λxy.g(x, y) = λyx.g(y, x), yet λxy.g(x, y) 6=

λxy.g(y, x) in general. For example, λxy.x
.− y asks that we subtract the

second input (y) from the first (x), but λxy.y .− x asks that we subtract the
first input (x) from the second (y). �

(3) λxy.f(x, y, x) is in PR. Indeed, this function can be obtained by composi-
tion, since

λxy.f(x, y, x) = λxy.f
(
U2
1 (x, y), U2

2 (x, y), U2
1 (x, y)

)
(4) λxyzwu.f(x, y, w) is in PR. Indeed, this function can be obtained by com-

position, since

λxyzwu.f(x, y, w) =

λxyzwu.f(U5
1 (x, y, z, w, u), U5

2 (x, y, z, w, u), U5
4 (x, y, z, w, u))

�

The above examples are summarised, named, and generalised in the following
straightforward exercise:

0.0.12 Exercise. (The [Grz53] Substitution Operations) PR is closed un-
der the following operations:

(i) Substitution of a function invocation for a variable:

From λ~xy~z.f(~x, y, ~z) and λ~w.g(~w) obtain λ~x~w~z.f(~x, g(~w), ~z).

(ii) Substitution of a constant for a variable:

From λ~xy~z.f(~x, y, ~z) obtain λ~x~z.f(~x, k, ~z).

(iii) Interchange of two variables:

From λ~xy~zw~u.f(~x, y, ~z, w, ~u) obtain λ~xy~zw~u.f(~x,w, ~z, y, ~u).
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(iv) Identification of two variables:

From λ~xy~zw~u.f(~x, y, ~z, w, ~u) obtain λ~xy~z~u.f(~x, y, ~z, y, ~u).

(v) Introduction of “don’t care” variables:

From λ~x.f(~x) obtain λ~x~z.f(~x). �

By 0.0.12 composition can simulate the Grzegorczyk operations if the initial
functions I are present. Of course, (i) alone can in turn simulate composition.
With these comments out of the way, we see that the “rigidity” of the definition
of composition is gone.

0.0.13 Example. The definition of primitive recursion is also rigid. However
this is an illusion.

Take p(0) = 0 and p(x+ 1) = x —this one defining p = λx.x .− 1 —does not
fit the schema.

The schema requires the defined function to have one more variable than the
basis, so no one-variable function can be directly defined!

We can get around this.

Define first p̃ = λxy.x .− 1 as follows: p̃(0, y) = 0 and p̃(x + 1, y) = x. Now
this can be dressed up according to the syntax of the schema,

p̃(0, y) = Z(y)
p̃(x+ 1, y)= U3

1 (x, y, p̃(x, y))

that is, p̃ = prim(Z,U3
1 ). Then we can get p by (Grzegorczyk) substitution:

p = λx.p̃(x, 0). Incidentally, this shows that both p and p̃ are in PR:

• p̃ = prim(Z,U3
1 ) is in PR since Z and U3

1 are, then invoking 0.0.8.

• p = λx.p̃(x, 0) is in PR since p̃ is, then invoking 0.0.12.
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Another rigidity in the definition of primitive recursion is that, apparently,
one can use only the first variable as the iterating variable.

Not so. This is an illusion.

Consider, for example, sub = λxy.x .− y. Clearly, sub(x, 0) = x and
sub(x, y + 1) = p(sub(x, y)) is correct semantically, but the format is wrong:
We are not supposed to iterate along the second variable! Well, define instead

s̃ub = λxy.y .− x:

s̃ub(0, y) = U1
1 (y)

s̃ub(x+ 1, y)= p
(
U3
3 (x, y, s̃ub(x, y))

)
Then, using variable swapping [Grzegorczyk operation (iii)], we can get sub:

sub = λxy.s̃ub(y, x). Clearly, both s̃ub and sub are in PR. �

0.0.14 Exercise. Prove that λxy.x × y is primitive recursive. Of course, we
will usually write multiplication x× y in “implied notation”, xy. �
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0.0.15 Example. The very important “switch” (or “if-then-else”) function sw =
λxyz.if x = 0 then y else z is primitive recursive. It is directly obtained by
primitive recursion on initial functions: sw(0, y, z) = y and sw(x+ 1, y, z) = z.

�

EECS 2001Z. George Tourlakis. Winter 2019



10

0.0.16 Proposition. PR ⊆ R.

Proof. Start with proving PR ⊆ P (Problem Set #1) and then use Exam-
ple 0.0.10. Or, prove directly by induction on derivation length that PR ⊆ R

�

� Indeed, the above inclusion is proper, as we will see later. �
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0.0.17� Example. Consider the function ex given by

ex(x, 0) = 1
ex(x, y + 1)= ex(x, y)x

Thus, if x = 0, then ex(x, 0) = 1, but ex(x, y) = 0 for all y > 0. On the other
hand, if x > 0, then ex(x, y) = xy for all y.

Note that xy is “mathematically” undefined when x = y = 0.‡ Thus, by
Example 0.0.10 the exponential cannot be a primitive recursive function!

This is rather silly, since the computational process for the exponential is
so straightforward; thus it is a shame to declare the function non-PR. After
all, we know exactly where and how it is undefined and we can remove this
undefinability by redefining “xy” to mean ex(x, y) for all inputs.

Clearly ex ∈ PR. In computability we do this kind of redefinition a lot
in order to remove easily recognisable points of “non definition” of calculable
functions. We will see further examples, such as the remainder, quotient, and
logarithm functions.

Caution! We cannot always remove points of non definition of a calculable
function and still obtain a computable function. That is, there are functions
f ∈ P that have no recursive extensions. This we will show later. � �

‡In first-year university calculus we learn that “00” is an “indeterminate form”.
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0.0.18 Definition. A relation R(~x) is (primitive) recursive iff its characteristic
function,

χR = λ~x.

{
0 if R(~x)

1 if ¬R(~x)

is (primitive) recursive. The set of all primitive recursive (respectively, recursive)
relations is denoted by PR∗ (respectively, R∗). �

� Computability theory practitioners often call relations predicates.

It is clear that one can go from relation to characteristic function and back in
a unique way, since R(~x) ≡ χR(~x) = 0. Thus, we may think of relations as “0-1
valued” functions. The concept of relation simplifies the further development of
the theory of primitive recursive functions. �

The following is useful:

0.0.19 Proposition. R(~x) ∈ PR∗ iff some f ∈ PR exists such that, for all ~x,
R(~x) ≡ f(~x) = 0.

Proof. For the if-part, I want χR ∈ PR. This is so since χR = λ~x.1 .− (1 .− f(~x))
(using Grzegorczyk substitution and λxy.x .− y ∈ PR; cf. 0.0.13). For the only
if-part, f = χR will do. �

0.0.20 Corollary. R(~x) ∈ R∗ iff some f ∈ R exists such that, for all ~x, R(~x) ≡
f(~x) = 0.

Proof. By the above proof, 0.0.16, and 0.0.1. �

0.0.21 Corollary. PR∗ ⊆ R∗.

Proof. By the above corollary and 0.0.16. �

EECS 2001Z. George Tourlakis. Winter 2019



13

0.0.22 Theorem. PR∗ is closed under the Boolean operations.

Proof. It suffices to look at the cases of ¬ and ∨, since R → Q ≡ ¬R ∨ Q,
R ∧Q ≡ ¬(¬R ∨ ¬Q) and R ≡ Q is short for (R→ Q) ∧ (Q→ P ).

(¬) Say, R(~x) ∈ PR∗. Thus (0.0.18), χR ∈ PR. But then χ¬R ∈ PR,
since χ¬R = λ~x.1 .− χR(~x), by Grzegorczyk substitution and λxy.x .− y ∈ PR.

(∨) Let R(~x) ∈ PR∗ and Q(~y) ∈ PR∗. Then λ~x~y.χR∨Q(~x, ~y) is given by

χR∨Q(~x, ~y) = if R(~x) then 0 else χQ(~y)

and therefore is in PR. �

0.0.23 Remark. Alternatively, for the ∨ case above, note that χR∨Q(~x, ~y) =
χR(~x)× χQ(~y) and invoke 0.0.14. �

0.0.24 Corollary. R∗ is closed under the Boolean operations.

Proof. As above, mindful of 0.0.16, and 0.0.1. �

0.0.25� Example. The relations x ≤ y, x < y, x = y are in PR∗.

An addendum to λ notation: Absence of λ is allowed ONLY for relations!
Then it means (the absence) that ALL variables are active input!

Note that x ≤ y ≡ x .− y = 0 and invoke 0.0.19. Finally invoke Boolean
closure and note that x < y ≡ ¬y ≤ x while x = y is equivalent to x ≤ y ∧ y ≤ x.

� �
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