
Chapter I

A Weak Post’s Theorem and the
Deduction Theorem Retold

This note is about the Soundness and Completeness (“Post’s
Theorem”) in Boolean logic.

1. Soundness of Boolean Logic

Soundness is the Property expressed by the statement
of the metatheory below:

If Γ ` A, then Γ |=taut A (1)

1.1 Definition. The statement “Boolean logic is Sound”
means that Boolean logic satisfies (1). �
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To prove soundness is an easy induction on the length
of Γ-proofs:

We prove that proofs preserve truth.
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1.2 Lemma. Eqn and Leib preserve truth, that is,

A,A ≡ B |=taut B (2)

and
A ≡ B |=taut C[p := A] ≡ C[p := B] (3)

Proof. We proved (2) in Assignment #1. We prove (2)
now:

So, let a state s make A ≡ B true (t).

We will show that

C[p := A] ≡ C[p := B] is t in state s (4)

If p is not in C then (4) is C ≡ C, a tautology, so is
true under s in particular.

I Let then the distinct p,q, r, r′, r′′, . . . all occur in C.

Now in the lhs of (4) p gets the value s(A), while
q, r, r′, r′′, . . . get their values DIRECTLY from s.

Now, in the RHS of (4) p gets the value s(B), while
q, r, r′, r′′, . . . STILL get their values DIRECTLY from s.

I But s(A) = s(B).

So both the lhs and rhs of (4) end up with the same
truth value after the indicated substitutions.

In short, the equivalence is true. �
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We can now prove:

1.3 Metatheorem. Boolean logic is Sound, that is, (1)
on p.1 holds.

Proof. By induction on the length of proof, n, needed to
obtain Γ ` A we prove

Γ |=taut A (†)

So pick a state s that satisfies Γ. (‡)

1. Basis. n = 1. Then we have just A in the proof.

If A ∈ Λ, then it is a tautology, so in particular is
true under s. We have (†).
If A ∈ Γ, then s satisfies A. Again we have (†).
I.H. Assume for all proofs of length ≤ n.

I.S. Prove the theorem in the case (†) needed a proof
of length n + 1:

length =n︷︸︸︷. . . , A︸ ︷︷ ︸
length =n+1

Now if A is in Λ∪Γ we are back to the Basis. Done.
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If not

• Case where A is the result of EQN on X and
X ≡ Y that are in the “. . .-area”.

By the I.H. s satisfies X and X ≡ Y hence, by
the Lemma, satisfies A.

• Case where A is the result of LEIB on X ≡ Y
that are is the “. . .-area”.

By the I.H. s satisfies X ≡ Y hence, by the
Lemma, satisfies A. �

1.4 Corollary. If ` A then |=taut A. A is a tautology.

Proof. Γ = ∅ here. BUT, EVERY state s satisfies THIS
Γ, vacuously:

Indeed, to prove that some state v does NOT you
NEED an X ∈ ∅ such that v(X) = f ; IMPOSSIBLE.

Hence every state satisfies A. Thus a |=taut A. �

1.5� Example. Soundness allows us to disprove formu-
las: To show they are NOT theorems.

• ` p is false. If this were true, then p would be a
tautology!

• ` ⊥ is false! Because ⊥ is not a tautology!

• p ` p ∧ q is false. Because if it were true I’d have to
have p |=taut p ∧ q.

Not so: Take a state s such that s(p) = t and s(q) =
f . � �
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2. Completeness of Boolean logic
(“Post’s Theorem”)

We prove here

(1) A weak form of Post’s theorem: If Γ is finite and
Γ |=taut A, then Γ ` A

and derive as a corollary the Deduction Theorem:

(2) If Γ, A ` B, then Γ ` A→ B.
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2.1. Some tools

We will employ the TWO results from class/text below:

2.1 Theorem. ` ¬(C ∨D)∨E ≡ (¬C ∨E)∧ (¬D∨E).

2.2 Theorem. ¬C ∨ E,¬D ∨ E ` ¬(C ∨D) ∨ E.

2.3 Main Lemma. Suppose that A contains none of the
symbols >,⊥,→,∧,≡. If |=taut A, then ` A.

Proof. The proof is long but easy!

Under the assumption, A is an ∨-chain, that is, it has
the form

A1 ∨ A2 ∨ A3 ∨ . . . ∨ Ai ∨ . . . ∨ An (1)

where none of the Ai has the form B ∨ C.

In (1) we assume without loss of generality that n > 1,
due to the axiom X ∨X ≡ X —that is, in the contrary
case we can use A ∨ A instead, which is a tautology as
well.

Moreover, (1), that is A, is written in least parenthesised
notation.
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Let us call an Ai reducible iff it has the form ¬(C ∨D)
or ¬(¬C).

� “Reducible”, since Ai is not alone in the ∨-chain, will be
synonymous to simplifiable. �

Otherwise Ai is irreducible. Not simplifiable.

Thus, the only possible irreducible Ai have the form
p or ¬p (where p is a variable).

We say that p “occurs positively in . . .∨p∨ . . .”, while
it “occurs negatively in . . . ∨ ¬p ∨ . . .”.

In, for example, p ∨ ¬p it occurs both positively and
negatively.

By definition we will say that A is irreducible iff all
its Ai are.

� We define the reducibility degree, of EACH Ai —in sym-
bols, rd(Ai)— to be the total number, counting repetitions
of the ¬ and ∨ connectives in it, not counting a pos-
sible leading ¬. �
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The reducibility degree of the entire A is the sum of the
reducibility degrees of all its Ai.

For example, rd(p) = 0, rd(¬p) = 0, rd(¬(¬p ∨ q)) =
2, rd(¬(¬p ∨ ¬q)) = 3, rd(¬p ∨ q) = 0.

By induction on rd(A) we now prove the main lemma,
that ` A on the stated hypothesis that |=taut A.

For the Basis, let A be an irreducible tautology —so,
rd(A) = 0.

It must be that A is a string of the form

“· · · ∨ p ∨ · · · ¬p ∨ · · · ”

for some p, otherwise,

if no p appears both “positively” and “negatively”,

then we can find a truth-assignment that makes A false
(f) —a contradiction to its tautologyhood.

To see that we can do this, just assign f to p’s that
occur positively only, and t to those that occur neg-
atively only.
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Now

A

⇔
〈

commuting the terms of an ∨-chain
〉

p ∨ ¬p ∨B (what is “B”?)

⇔
〈

Leib + axiom + Red. > META; Denom: r ∨B; fresh r
〉

> ∨B bingo!

Thus ` A, which settles the Basis-case: rd(A) = 0.

� We now argue the case where rd(A) = m+1, on the I.H.
that for any formula Q with rd(Q) ≤ m, we have that
|=taut Q implies ` Q. �

By commutativity (symmetry) of “∨”, let us assume
without restricting generality that rd(A1) > 0.

We have two cases:

(1) A1 is the string ¬¬C, hence A has the form
¬¬C ∨D.

Clearly |=taut C ∨D as well.

Moreover, rd(C ∨D) < rd(¬¬C ∨D), hence (by I.H.)

` C ∨D (†)
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But,

¬¬C ∨D

⇔
〈

Leib + ` ¬¬X ≡ X; Denom: r ∨D; fresh r
〉

C ∨D (†) above is “bingo”!

Hence, ` ¬¬C ∨D, that is, ` A in this case.

Lecture #12, Oct. 23

One more case to go:

(2) A1 is the string ¬(C∨D), hence A has the form
¬(C ∨D) ∨ E.

We want: ` ¬(C ∨D) ∨ E (i)

By 2.1 and from |=taut ¬(C ∨D)∨E —this says |=taut

A— we immediately get that

|=taut ¬C ∨ E (ii)

and
|=taut ¬D ∨ E (iii)

from the ≡ and ∧ truth tables.

Since the rd of each of (ii) and (iii) is < rd(A), the
I.H. yields ` ¬C ∨ E AND ` ¬D ∨ E.
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Apply the RULE 2.2 to the above two theorems to get
(i).
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We are done, except for one small detail:

If we had changed the “original” A into A ∨ A (cf.
the “without loss of generality” remark just below (1)
on p.7), then all we proved above is ` A ∨ A.

The contraction rule from (e-)Class, Notes, and Text
then yield ` A. �

But ALL this only proves “|=taut A implies ` A”

when A does not contain ∧,→,≡,⊥,>.

WHAT IF IT DOES?
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We are now removing the restriction on A regarding
its connectives and constants:

2.4 Metatheorem. (Post’s Theorem) If |=taut A, then
` A.

Proof. First, we note the following theorems stating equiv-
alences, where p is fresh for A.

The proof of the last one is in the notes and text but
it was too long (but easy) to cover in class.

` > ≡ ¬p ∨ p

` ⊥ ≡ ¬(¬p ∨ p)

` C → D ≡ ¬C ∨D

` C ∧D ≡ ¬(¬C ∨ ¬D)

` (C ≡ D) ≡ ((C → D) ∧ (D → C))

(2)

Using (2) above, we eliminate, in order, all the ≡, then
all the ∧, then all the→ and finally all the ⊥ and all the
>.
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Let us assume that our process eliminates one unwanted
symbol at a time.

� This leads to the Equational Proof below.

Starting from A we will generate a sequence of formu-
lae

F1, F2, F3, . . . , Fn

where Fn contains no >,⊥,∧,→,≡. �

I am using here F1 as an alias for A. We will also give
to Fn an alias A′.

A

⇔
〈

Leib from (2)
〉

F2

⇔
〈

Leib from (2)
〉

F3

⇔
〈

Leib from (2)
〉

F4
...

⇔
〈

Leib from (2)
〉

A′
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Thus, ` A′ ≡ A (∗)

By soundness, we also have |=taut A
′ ≡ A (∗∗)

So, say |=taut A. By (∗∗) we have |=taut A
′ as well, and

by the Main Lemma 2.3 we obtain ` A′.

By (∗) and Eqn we get ` A. �

� Post’s theorem is the “Completeness Theorem”† of Boolean
Logic.

It shows that the syntactic manipulation apparatus —
proofs— DOES certify the “whole truth” (tautologyhood)
in the Boolean case. �

†Which is really a Metatheorem, right?
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2.5 Corollary. If A1, . . . , An |=taut B, then A1, . . . , An `
B.

Proof. It is an easy semantic exercise to see (see the spe-
cial case in Problem Set #1, Fall 2020) that

|=taut A1 → . . .→ An → B

By 2.4,
` A1 → . . .→ An → B

hence (hypothesis strengthening)

A1, A2 . . . , An ` A1 → A2 → . . .→ An → B (1)

Applying modus ponens n times to (1) we get

A1, . . . , An ` B �

� The above corollary is very convenient.
It says that every (correct) schema A1, . . . , An |=taut B

leads to a derived rule of inference, A1, . . . , An ` B. �

In particular, combining with the transitivity of `
metatheorem, we get

2.6 Corollary. If Γ ` Ai, for i = 1, . . . , n, and if A1, . . . , An |=taut

B, then Γ ` B.
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� Thus —unless otherwise requested!— we can, from now
on, rigorously mix syntactic with semantic justifications
of our proof steps.

For example, we have at once A ∧ B ` A, because
(trivially) A∧B |=taut A (compare with our earlier, much
longer, proof given in class). �
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3. Deduction Theorem,
Proof by Contradiction

3.1 Metatheorem. (The Deduction Theorem) If Γ, A `
B, then Γ ` A → B, where “Γ, A” means “all the as-
sumptions in Γ, plus the assumption A” (in set notation
this would be Γ ∪ {A}).

Proof. Let G1, . . . , Gn ⊆ Γ be a finite set of formulae
used in a Γ, A-proof of B.

Thus we also have G1, . . . , Gn, A ` B.

By soundness, G1, . . . , Gn, A |=taut B.
But then,

G1, . . . , Gn |=taut A→ B

By 2.5, G1, . . . , Gn ` A → B and hence Γ ` A → B by
hypothesis strengthening. �
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� The mathematician, or indeed the mathematics practi-
tioner, uses the Deduction theorem all the time, with-
out stopping to think about it. Metatheorem 3.1 above
makes an honest person of such a mathematician or prac-
titioner.

The everyday “style” of applying the Metatheorem
goes like this:

Say we have all sorts of assumptions and we want, un-
der these assumptions, to “prove” that “if A, then B”
(verbose form of “A→ B”).

We start by adding A to our assumptions, often with
the words, “Assume A”. We then proceed and prove just
B (not A→ B), and at that point we rest our case.

Thus, we may view an application of the Deduction
theorem as a simplification of the proof-task. It allows
us to “split” an implication A → B that we want to
prove, moving its premise to join our other assumptions.
We now have to prove a simpler formula, B, with the
help of stronger assumptions (that is, all we knew so far,
plus A). That often makes our task so much easier! �
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An Example. Prove

` (A→ B)→ A ∨ C → B ∨ C

By DThm, suffices to prove

A→ B ` A ∨ C → B ∨ C

instead.

Again By DThm, suffices to prove

A→ B,A ∨ C ` B ∨ C

instead.

Let’s do it:

1. A→ B 〈hyp〉
2. A ∨ C 〈hyp〉
3. A→ B ≡ ¬A ∨B 〈¬∨ thm〉
4. ¬A ∨B 〈1 + 3 + Eqn〉
5. B ∨ C 〈2 + 4 + Cut〉

�
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3.2 Definition. A set of formulas Γ is inconsistent or
contradictory iff Γ proves every A in WFF. �

� Why “contradictory”? For if Γ proves everything, then
it also proves p ∧ ¬p. �

3.3 Lemma. Γ is inconsistent iff Γ ` ⊥

Proof. only if-part. If Γ is as in 3.2, then, in particular,
it proves ⊥ since the latter is a well formed formula.

if-part. Say, conversely, that we have

Γ ` ⊥ (9)

Let now A be any formula in WFF whatsoever. We have

⊥ |=taut A (10)

Pause. Do you believe (10)?

By Corollary 3.4, Γ ` A follows from (9) and (10). �

3.4 Metatheorem. (Proof by contradiction) Γ ` A
iff Γ ∪ {¬A} is inconsistent.

Proof. if-part. So let (by 3.3)

Γ,¬A ` ⊥

Hence

Γ ` ¬A→ ⊥ (1)

by the Deduction theorem. However ¬A → ⊥ |=taut A,
hence, by Corollary 2.6 and (1) above, Γ ` A.

only if-part. So let

Γ ` A
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By hypothesis strengthening,

Γ,¬A ` A (2)

Moreover, trivially,

Γ,¬A ` ¬A (3)

Since A,¬A |=taut ⊥, (2) and (3) yield Γ,¬A ` ⊥ via
Corollary 2.6, and we are done by 3.3. �

� 3.4 legitimises the tool of “proof by contradiction” that
goes all the way back to the ancient Greek mathemati-
cians: To prove A assume instead the “opposite”, ¬A.
Proceed then to obtain a contradiction. This being ac-
complished, it is as good as having proved A. �
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