
Chapter 1

Intro. to Logic for
Computer Science

What led to formal logic?

Cantor’s näıve (same as informal and non axiomatic†) Set Theory did, as
it was plagued by paradoxes the most famous of which (and least “technical”)
being pointed out by Bertrand Russell and thus nicknamed “Russell’s paradox”.‡

Thus the world of mathematics witnessed both a rapid development of formal
logic (i.e., logic that is based on form or syntax [of mathematical statements and
proofs]) and at the same time led to major mathematical works that attempted
to demonstrate that set theory, and indeed all mathematics can be based on
formal logic, rather than on informal and sloppy arguments that lead to trouble.

Such pioneering works were Russell and Whitehead’s Principia Mathematica
[WR12] and Bourbaki’s long sequence of volumes titled Éléments de Mathématique,
which begins with the volume [Bou66].

1.1. Russell’s “paradox”

Cantor’s informal (= non axiomatic, and sloppily argued semantically) Set The-
ory is the theory of collections (i.e., sets) of objects.

This theory studies operations on sets, properties of sets, and aims to use set
theory as the foundation of all mathematics. Naturally, mathematicians “do”
set theory of mathematical object collections. We have learnt some elementary
aspects of set theory at high school and in MATH 1190 and/or EECS 1019.

1. Notation. Sets given by listing. For example, {1, 2} is a set that contains
precisely the objects 1 and 2, while {1, {5, 6}} is a set that contains pre-

†Euclid’s Geometry was axiomatic, but was based on informal reasoning. Formal logic
was nowhere in existence in his time.

‡From the Greek word “paradoxo”, meaning against one’s belief; a contradiction.
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cisely the objects 1 and {5, 6}. The braces { and } are used to show the
collection/set by outright listing.

2. Notation. Sets given by “defining property”. But what if we cannot
(or will not) explicitly list all the members of a set? Then we may define
what objects x get in the set/collection by having them to pass an entrance
requirement, P (x). An object x gets in the set iff (if and only if ) P (x) is
true of said object.

We denote the collection defined by the entrance condition P (x) by

{x : P (x)} (1)

reading it “the set of all x such that (this is “:”) P (x) is true [or holds]”

3. “x ∈ A” is the assertion that “object x is in the set A”. Of course, this
assertion may be true or false or “it depends”, just like the assertions of
algebra 2 = 2, 3 = 2 and x = y are so (respectively).

4. x /∈ A is the negation of the assertion x ∈ A.

5. Properties

• Sets are named by letters of the Latin alphabet. Naming is pervasive
in mathematics as in, e.g., “let x = 5” in algebra.

So we can write “let A = {1, 2}” and let “c = {1, {5, 6}}” to give
the names A and c to the two example sets above, ostensibly because
we are going to discuss these sets, and refer to them often, and it is
cumbersome to keep writing things like {1, {5, 6}}. Names are not
permanent ;† they are local to a discussion (argument).

• Equality of sets (repetition and permutation do not matter!)

Two sets A and B are equal iff they have the same members. Thus
order and multiplicity do not matter! E.g., {1} = {1, 1, 1}, {1, 2, 1} =
{2, 1, 1, 1, 1, 2}.

• The fundamental equivalence pertaining to definition of sets by “defin-
ing property”: So, if we name the set in (1) above, S, that is, if we
say “let S = {x : P (x)}”, then “x ∈ S iff P (x) is true”

� By the way, we almost never say “is true” unless we want to shout
out this fact. We would say instead: “x ∈ S iff P (x)”. �

Let us pursue, as Russell did, the point made in the last bullet above. Take
P (x) to be specifically the assertion x /∈ x. He then gave a name to

{x : x /∈ x}
†OK, there are exceptions: ∅ is the permanent name for the empty set —the set with

no elements at all— and for that set only; N is the permanent name of the set of all natural
numbers.
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say, R. But then, by the last bullet above,

x ∈ R iff x /∈ x (2)

If we now believe,† as Cantor, the father of set theory asserted, that every P (x)
defines a set, then R is a set.

� What is wrong with that? �

Well, if R is a set then this object has the proper type to be plugged into
the variable of type set, namely, x, throughout the equivalence (2) above. But
this yields the contradiction

R ∈ R iff R /∈ R (3)

This contradiction is called the Russell’s Paradox.
This and similar paradoxes motivated mathematicians to develop formal

symbolic logic and look to axiomatic set theory‡ as a means to avoid paradoxes
like the above.

What is “formal” logic? It is logic based strictly on form (syntax) and rigid
purely syntactic rules on how proofs are to be formed (written). This is what
we learn to practise in MATH 1090.

†Informal mathematics often relies on “I know so” or “I believe” or “it is obviously true”.
‡There are many flavours or axiomatisations of set theory, the most frequently used being

the “ZF” set theory, due to Zermelo and Fraenkel.
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