Lassonde School of Engineering EEC

MATH1090. Problem Set No. 4
Posted: Nov. 18, 2017
Due: Dec. 4, 2017, by 3:00 pm; in the course assignment box.
(2)

It is worth remembering (from the course outline):
The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.
In what follows, "give a proof of $\vdash A$ " means to give an equational or Hilbert-style proof of A, unless some other proof style is required (e.g., Resolution).

Annotation is always required!
Do the following problems (5 MARKS/Each).

In a number of problems that follow I use the notation of bounded quantifiers,

- $(\forall \mathbf{x})_{A} B$-which is short for $(\forall \mathbf{x})(A \rightarrow B)$
and
- $(\exists \mathbf{x})_{A} B$-which is short for $(\exists \mathbf{x})(A \wedge B)$.

In each case I recommend that you expand the shorthand into standard notation before you proceed with your proofs, that is, e.g., $(\forall \mathbf{x})_{A} B$ is replaced by $(\forall \mathbf{x})(A \rightarrow B)$, etc.

1. Show that

$$
\vdash(\forall \mathbf{x})_{A}(B \rightarrow C) \rightarrow(\forall \mathbf{x})_{A} B \rightarrow(\forall \mathbf{x})_{A} C
$$

2. Show that

$$
\vdash(\exists \mathbf{x})_{A \wedge B} C \equiv(\exists \mathbf{x})_{A}(B \wedge C)
$$

3. Show that

$$
\vdash(\exists \mathbf{x}) A \rightarrow\left((\exists \mathbf{x})_{A}(B \vee C) \equiv B \vee(\exists \mathbf{x})_{A} C\right) \text {, where } \mathbf{x} \text { is not free in } B
$$

4. Show definitively whether omitting " $(\exists \mathbf{x}) A \rightarrow$ " above makes or not a difference to provability, that is, prove or disprove

$$
\vdash(\exists \mathbf{x})_{A}(B \vee C) \equiv B \vee(\exists \mathbf{x})_{A} C \text {, where } \mathbf{x} \text { is not free in } B
$$

5. Prove using soundness: $\nvdash(\forall \mathbf{y})(\exists \mathbf{x}) A \rightarrow(\exists \mathbf{x})(\forall \mathbf{y}) A$
6. Prove using soundness: $\nvdash(\exists \mathbf{x}) A \wedge(\exists \mathbf{x}) B \rightarrow(\exists \mathbf{x})(A \wedge B)$.
7. Let me ignore the content of Exercise 5 and try to prove

$$
\vdash(\forall \mathbf{x})(\exists \mathbf{y}) A \rightarrow(\exists \mathbf{y})(\forall \mathbf{x}) A
$$

Here it goes: By the DThm I prove as follows:
(1) $\quad(\forall \mathbf{x})(\exists \mathbf{y}) A \quad\langle\mathrm{hyp}\rangle$
(2) $\quad(\exists \mathbf{y}) A \quad\langle(1)+$ spec \rangle
(3) $A[\mathbf{y}:=\mathbf{z}] \quad\langle$ aux. hyp for (2): \mathbf{z} fresh〉
(4) $\quad(\forall \mathbf{x}) A[\mathbf{y}:=\mathbf{z}] \quad\langle(3)+$ gen; OK: \mathbf{x} not free in " Γ " (line (1)) \rangle
(5) $\quad(\exists \mathbf{y})(\forall \mathbf{x}) A \quad\langle(4)+$ Dual spec" \rangle
$\mathrm{Hmm} .$. If you believe what you did in Exercise 5 above, then my "proof" above must be wrong, right?

Where exactly (which step) did I mis-step, and Why is the step wrong, exactly?

Page 2
 G. Tourlakis

8. Use the \exists elimination technique -and ping-pong if/where needed- to show

- $\vdash(\exists \mathbf{x}) B \rightarrow(\exists \mathbf{x})(A \vee B)$.
and
- $\vdash(\exists \mathbf{x})(A \wedge B) \equiv(\exists \mathbf{x})(A \vee B \equiv A \equiv B)$.

9. Let ψ be a binary predicate. Is $(\forall x)(\forall y) \psi(x, y) \rightarrow(\forall y) \psi(y, y)$ an instance of Ax2? Why?
10. Regardless of how you answered Problem 9, prove $\vdash(\forall x)(\forall y) \psi(x, y) \rightarrow$ $(\forall y) \psi(y, y)$.
11. Prove " \exists-Monotonicity": If $\vdash A \rightarrow B$ then also $\vdash(\exists \mathbf{x}) A \rightarrow(\exists \mathbf{x}) B$.
12. Prove If $\vdash A \equiv B$ then also $\vdash(\exists \mathbf{x}) A \equiv(\exists \mathbf{x}) B$.

Caution! The long way (does not get full marks!) is to use ping-pong and Problem 11.

Page 3

