Lassonde School of Engineering EECS MATH1090. Problem Set No. 4

Posted: Nov. 18, 2017

Due: Dec. 4, 2017, by 3:00pm; in the course assignment box.

 $\textcircled{\begin{tabular}{ll} \hline \end{tabular}}$ It is worth remembering (from the course outline):

The homework must be each individual's <u>own work</u>. While consultations with the <u>instructor</u>, <u>tutor</u>, and <u>among students</u>, are part of the <u>learning</u> <u>process</u> and are encouraged, nevertheless, *at the end of all this consultation* each student will have to produce an <u>individual report</u> rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.

In what follows, "give a proof of $\vdash A$ " means to give an equational or Hilbert-style proof of A, unless some other proof style is required (e.g., Resolution).

Annotation is always required!

Do the following problems (5 MARKS/Each).

 $\textcircled{\sc black}$ In a number of problems that follow I use the notation of bounded quantifiers,

• $(\forall \mathbf{x})_A B$ —which is short for $(\forall \mathbf{x})(A \to B)$

and

• $(\exists \mathbf{x})_A B$ —which is short for $(\exists \mathbf{x})(A \land B)$.

In each case I recommend that you expand the shorthand into standard notation **before** you proceed with your proofs, that is, e.g., $(\forall \mathbf{x})_A B$ is replaced by $(\forall \mathbf{x})(A \to B)$, etc.

Page 1

G. Tourlakis

 $\langle \boldsymbol{S} \rangle$

Ż

1. Show that

$$\vdash (\forall \mathbf{x})_A (B \to C) \to (\forall \mathbf{x})_A B \to (\forall \mathbf{x})_A C$$

2. Show that

$$\vdash (\exists \mathbf{x})_{A \wedge B} C \equiv (\exists \mathbf{x})_A (B \wedge C)$$

3. Show that

$$\vdash (\exists \mathbf{x}) A \to ((\exists \mathbf{x})_A (B \lor C) \equiv B \lor (\exists \mathbf{x})_A C), \text{ where } \mathbf{x} \text{ is not free in } B$$

4. Show definitively whether omitting " $(\exists \mathbf{x})A \rightarrow$ " above makes or not a difference to provability, that is, **prove** or **disprove**

$$\vdash (\exists \mathbf{x})_A (B \lor C) \equiv B \lor (\exists \mathbf{x})_A C$$
, where \mathbf{x} is not free in B

- **5.** Prove using soundness: $\nvdash (\forall \mathbf{y})(\exists \mathbf{x})A \rightarrow (\exists \mathbf{x})(\forall \mathbf{y})A$
- **6.** Prove using soundness: $\nvdash (\exists \mathbf{x}) A \land (\exists \mathbf{x}) B \rightarrow (\exists \mathbf{x}) (A \land B)$.
- 7. Let me ignore the content of Exercise 5 and try to prove

$$\vdash (\forall \mathbf{x})(\exists \mathbf{y})A \to (\exists \mathbf{y})(\forall \mathbf{x})A$$

Here it goes: By the DThm I prove as follows:

(1)	$(\forall \mathbf{x})(\exists \mathbf{y})A$	$\langle hyp \rangle$
(2)	$(\exists \mathbf{y})A$	$\langle (1) + spec \rangle$
(3)	$A[\mathbf{y} := \mathbf{z}]$	(aux. hyp for (2): \mathbf{z} fresh)
(4)	$(\forall \mathbf{x}) A[\mathbf{y} := \mathbf{z}]$	$\langle (3) + gen; OK: \mathbf{x} \text{ not free in "}\Gamma" (line (1)) \rangle$
(5)	$(\exists \mathbf{y})(\forall \mathbf{x})A$	$\langle (4) + \text{Dual spec}^{"} \rangle$

Hmm ... If you believe what *you* did in Exercise 5 above, then my "proof" above *must* be wrong, right?

Where *exactly* (which step) did I mis-step, and <u>Why</u> is the step wrong, *exactly*?

- 8. Use the \exists elimination technique —and ping-pong if/where needed— to show
 - $\vdash (\exists \mathbf{x}) B \to (\exists \mathbf{x}) (A \lor B).$

and

- $\vdash (\exists \mathbf{x})(A \land B) \equiv (\exists \mathbf{x})(A \lor B \equiv A \equiv B).$
- **9.** Let ψ be a binary predicate. Is $(\forall x)(\forall y)\psi(x,y) \rightarrow (\forall y)\psi(y,y)$ an instance of **Ax2**? **Why**?
- **10.** Regardless of how you answered Problem 9, $prove \vdash (\forall x)(\forall y)\psi(x,y) \rightarrow (\forall y)\psi(y,y)$.
- **11.** Prove " \exists -Monotonicity": If $\vdash A \rightarrow B$ then also $\vdash (\exists \mathbf{x})A \rightarrow (\exists \mathbf{x})B$.
- **12.** Prove If $\vdash A \equiv B$ then also $\vdash (\exists \mathbf{x})A \equiv (\exists \mathbf{x})B$.

Caution! The long way (*does not get full marks*!) is to use ping-pong and Problem 11.