Lassonde School of Engineering DECS

MATH1090. Problem Set No. 3
Posted: Oct. 21, 2016

Due: Nov. 16, 2016, by 3:00pm; in the course assignment box.

The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.
In what follows, "give a proof of $\vdash A$ " means to give an equational or Hilbert-style proof of A, unless some other proof style is required (eeg., Resolution).

Annotation is always required!
Do the following problems (5 MARKS/Each).

1. In class we proved $\vdash A \equiv A$ using the "trick" of applying Leibniz with "mouth" a variable p that does not occur in A.

Re-prove this theorem, but this time NOT using this trick. Be sure your proof is NOT" circular" -ie., must not use any theorem from class that relies already on $\vdash A \equiv A$.
2. Use resolution - but not Post's theorem - to prove $\vdash(A \rightarrow B) \rightarrow(B \rightarrow$ $C) \rightarrow(A \rightarrow C)$.

Page 1
3. Prove

$$
\vdash(\neg B \rightarrow \neg A) \rightarrow(\neg B \rightarrow A) \rightarrow B
$$

A proof by Resolution is the only acceptable method.
(2) You are NOT allowed to use Post's theorem in this question!
4. Use Ping-Pong and Resolution (but not Post's theorem!) to prove

$$
\vdash(A \rightarrow B \wedge C) \equiv(A \rightarrow B) \wedge(A \rightarrow C)
$$

A proof by Resolution is the only acceptable method.
5. Given two formulae A and B. Suppose that the statement " $\vdash A$ iff $\vdash B$ " is true.

Can we conclude $\vdash A \equiv B$?

Exactly WHY yes, or Exactly WHY no?

6. Let ϕ be a ternary (three-place) predicate symbol.

Prove

$$
\begin{equation*}
\vdash(\forall x) \phi(x, y, z) \equiv(\forall x) \phi(x, y, z) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\vdash(\forall x)(\phi(x, y, z) \rightarrow \phi(x, y, z)) \tag{2}
\end{equation*}
$$

7. Let ψ be a binary predicate. Is $(\forall x)(\forall y) \psi(x, y) \rightarrow(\forall y) \psi(y, y)$ an instance of Ax2? Why?
8. Establish that $\vdash(\forall x)(\forall y) \psi(x, y) \rightarrow(\forall y) \psi(y, y)$.
9. By induction on terms, (meta)Prove that if x does not occur in term s, and t is another term, then the result of $s[x:=t]$ is just s.
10. Let ϕ^{\prime}, ψ be any unary predicates, x, z distinct variables, and c a constant. Prove that

$$
(\forall x)\left(\phi^{\prime}(x) \rightarrow \psi(x)\right),(\forall z) \phi^{\prime}(z) \vdash \psi(c)
$$

Page 2

G. Tourlakis
11. Prove $\vdash(\forall x)(\forall y)(A \vee B \vee C) \equiv(\forall x)(A \vee(\forall y)(B \vee C))$, on the condition that y is not free in A.
G. Tourlakis

