Lassonde Faculty of Engineering EEC
 EECS2001Z. Problem Set No
 Posted: Mar. 18, 2019

Due: Apr. 3, 2019, by 4:30pm; in the course assignment box.

The answers must be typed (but you may dow symbols by hand, if it is easier for you).

The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.

1. (5 MARKS) Design a FA over $\{0,1\}$ that accepts exactly all the strings of odd length.
E.g., $\varepsilon, 00,0110,0000$ are all rejectable while $0,000,01101$ are all acceptable.
Clearly justify why your automaton works as stated (NOT by example; give a "general argument" or a "proof" if you prefer (although a proof is not required in this problem)).
2. (5 MARKS) Design a regular expression α over $\{0,1\}$ that defines the language over $\{0,1\}$ of all the strings of even length.
E.g., $\varepsilon, 00,0110,0000$ are all in $L(\alpha)$ while $0,000,01101$ are not.

Clearly justify why your regular expression works as stated (NOT by example; give a "general argument" or a "proof" if you prefer (although a proof is not required in this problem)).

Page 1

G. Tourlakis
3. (5 MARKS) Build an NFA that accepts precisely all the strings over $\{0,1\}$ of length ≥ 3 that contain at least one 1 among their last 3 symbols. You must argue that your design is correct. Again, NOT by example.
4. (4 MARKS) Consider the FA below.

	0	1
$\rightarrow q_{1}$	q_{2}	q_{1}
q_{2}	q_{3}	q_{1}
$* q_{3}$	q_{3}	q_{2}

Compute:

- Regular expressions for all $R_{i j}^{0}$
- Regular expressions for all $R_{i j}^{1}$

5. (5 MARKS) Convert to NFA (all over $\{0,1\}$) without comment:

- $(0+1) 01$
- $00(0+1)^{*}$

6. (4 MARKS) Convert each of the immediately previous two NFA (problem \#5) to a FA.
7. (5 MARKS) Prove that the following is not a regular language: Over $\{0,1,2\}$: The set $\left\{0^{n} 1^{m} 2^{n}: m \geq 0 \wedge n \geq 0\right\}$

Page 2

G. Tourlakis

