Lassonde Faculty of Engineering EECS EECS2001Z. Problem Set No2 Posted: Feb. 24, 2019

Due: Mar. 19, 2019, by 2:30pm; in the course assignment box.

 \diamond It is worth remembering (quoted from the course outline):

The answers must be typed (but you may dow symbols by hand, if it is easier for you).

The homework must be each individual's <u>own work</u>. While consultations with the <u>instructor</u>, tutor, and <u>among students</u>, are part of the <u>learning</u> <u>process</u> and are encouraged, nevertheless, *at the end of all this consultation* each student will have to produce an <u>individual report</u> rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.

1. (5 MARKS) Write a simultaneous recursion that uses absolutely no arithmetic to compute $\lambda x.rem(x, 5)$.

Hint. Use as reference the similar *completely solved* example (text/notes/class) for rem(x, 2). Your recursion will be defining *exactly* five functions, one of which will be *rem*. Identify which one is *rem* and carefully explain how you obtained the five recurrence equations.

2. (5 MARKS) Imitate the diagonalisation that we used in showing the Halting Problem unsolvable, and show that $\lambda xyz.\phi_x(y) = z$ is unsolvable too.

Hint. If the problem were solvable then so would be $\lambda x.\phi_x(x) = z$ by Grz. Ops. Diagonalise to get a contradiction to the claim that $\lambda x.\phi_x(x) = z$ is solvable.

Page 1

G. Tourlakis

 $\langle \mathbf{S} \rangle$

3. (5 MARKS) Prove that $A = \{x : \phi_x = \lambda x.42\}$ is not recursive; i.e., $x \in A$ is unsolvable/undecidable.

Hint. Use the technique in posted Note #7 to show (via S-m-n) that $K \leq A$.

4. (5 MARKS) Prove that the problem $x \in Q$ where $Q = \{x : 111 \in ran(\phi_x)\}$ is semi-computable.

Hint. Use closure properties of \mathcal{P}_* and the semi-recursiveness of $\lambda xyz.\phi_x(y) = z$ from the Notes #7.

5. (5 MARKS) Prove that $B = \{x : 42 \notin \operatorname{ran}(\phi_x)\}$ is not semi-computable, that is, we cannot verify that " ϕ_x will not ever print 42"

Hint. We have techniques (and examples!) in Notes #7 to almost directly conclude the above from them! For example, we have (essentially) proved that $\overline{B} = \{x : 42 \in \operatorname{ran}(\phi_x)\}$ is unsolvable AND semi-decidable (we did the latter in problem #4 above). (Nudge-nudge: What is a set S if both it and its complement are semi-recursive?)

Alternatively, easily modify the reduction techniques of Notes #7 to show $\overline{K} \leq B$.

6. (5 MARKS) Prove that $C = \{x : \phi_x \text{ is a } total 0/1 \text{-valued function} \}$ is NOT semi-computable.

Hint. Go by contradiction: Suppose it is. Then it is also r.e (or c.e.) Now use an easy modification of the proof that $\{x : \phi_x \in \mathcal{R}\}$ is not r.e. to prove that our C is not r.e.

- 7. (5 MARKS) Hm. How about removing the restriction "total" above? Prove that $D = \{x : \phi_x \text{ is a } 0/1\text{-valued function}\}$ is NOT semi-computable. *Hint.* Read carefully Notes #7.
- 8. (5 MARKS) A "Word Problem!" Prove that the problem "Is an arbitrary URM of one input **x** eventually halting when inputed the value 42?" is undecidable.

Hint. Translate the word problem using ϕ_x notation. Then read carefully Notes #7; the answer is there somewhere.