Lassonde Faculty of Engineering EECS EECS2001Z. Problem Set No1 —Hints Posted: Feb. 7, 2019

General HINT. Please do not provide derivations or the prim(h, g) notation in your solutions unless I asked for them. Also do not always go back to Adam and Eve. We have shown quite a few primitive recursive functions and relation to be primitive recursive. E.g., (without λ) x + y, $x \times y$, if-then-else, x^y , x = y, x < y, $x \leq y$, x|y, Pr(x), $\pi(x)$, p_n , etc. Use them —along with the closure properties we know, e.g., prim, comp, Grz-Ops, $(\mu y)_{<z}$, def. by cases for functions; Boolean ops and $(\exists y)_{<z}$ and $(\forall y)_{<z}$ for relations— to build new functions and relations that are primitive recursive.

1. (5 MARKS) Write a correct URM which simulates the assignment statement $\mathbf{x} \leftarrow \mathbf{z}$ without changing the original value of \mathbf{z} .

You must provide a brief coherent argument of correctness.

Hint. The part in red means that after \mathbf{x} received the value of \mathbf{z} , i.e., when we are done with \mathbf{x} , we take steps to restore the original value of \mathbf{z} (that now resides in \mathbf{x}).

2. (5 MARKS) Prove that the function

$$x \ 2s \ \left\{ 2^{2^{-2}} \right\}^2$$

is in \mathcal{PR} .

Hint. One primitive recursion will do it. Note that in

$$x \text{ 2s } \left\{ 2^{2^{-2}} \right\}$$

brackets are inserted right-to-left (top-down) as is common with unary functions. That is, for example, 2^{2^2} means $2^{(2^2)}$, NOT $(2^2)^2$. While these

G. Tourlakis

Page 1

two give the same result, this is not the case when the ladder of 2s becomes longer.

For example, $2^{2^{2^2}} = 2^{(2^{(2^2)})} = 65536$ while (the incorrect) $((2^2)^2)^2 = 256$.

- **3.** p.234 of the text, Section 2.12: Do
 - (a) Problem 3 (5 MARKS)

Hint. "A total function $\lambda \vec{x}_n \cdot f(\vec{x}_n)$ is 1-1", as you know from EECS 1019, *means* that

$$f(\vec{x}_n) = f(\vec{y}_n) \rightarrow x_i = y_i$$
, for $i = 1, \dots, n$

To show $\lambda xy \cdot 2^{x+y+2} + 2^{y+1}$ is 1-1, think what precisely is the binary representation of the number $2^{x+y+2} + 2^{y+1}$. You do not need to solve for K and L as the book does.

(b) Problem 4 (5 MARKS)

Hint. To show $\lambda xy.(x+y)^2 + x$ is 1-1, start with "let $(x+y)^2 + x = (x'+y')^2 + x'$ " and show

$$x = x' \land y = y'$$

But how? Well, try to show that the "let" implies x + y = x' + y'. You must *not* solve for K and L at any time during your proof.

(c) Problem 6 (5 MARKS)

Hint. A relation Q is a table (finite or infinite) of vectors \vec{x}_n . If n = 1 we have a relation consisting of numbers. We write the relation most often as $Q(\vec{x}_n)$, but also as $\vec{x}_n \in Q$, or just Q.

Thus \mathbb{N} is a relation (of numbers, not vectors) just like the Pr(x) we discussed this week. We may write $\mathbb{N}(x)$ or $x \in \mathbb{N}$ for this relation.

Now, in our very first class we reviewed set theory and one of the things we recalled was that

$$x \in \{a_1, a_2, a_3, \dots, a_n\} \equiv x = a_1 \lor x = a_2 \lor x = a_3 \lor \dots x = a_n$$

(d) Problem 7 (5 MARKS)

Hint. Use the definition of $\mathbb{N}(x) \in \mathcal{PR}_*$ or $\mathbb{N} \in \mathcal{PR}_*$. It requires that $c_{\mathbb{N}} \in \mathcal{PR}$.

So, what IS $\lambda x.c_{\mathbb{N}}(x)$, and can you prove it in \mathcal{PR} ?

G. Tourlakis