Lassonde Faculty of Engineering EECS
 EECS2001Z. Problem Set No1 -Hints
 Posted: Feb. 7, 2019

General HINT. Please do not provide derivations or the $\operatorname{prim}(h, g)$ notation in your solutions unless I asked for them. Also do not always go back to Adam and Eve. We have shown quite a few primitive recursive functions and relation to be primitive recursive. E.g., (without λ) $x+y$, $x \times y$, if-then-else, $x^{y}, x=y, x<y, x \leq y, x \mid y, \operatorname{Pr}(x), \pi(x), p_{n}$, etc. Use them -along with the closure properties we know, e.g., prim, comp, Grz-Ops, $(\mu y)_{<z}$, def. by cases for functions; Boolean ops and $(\exists y)_{<z}$ and $(\forall y)_{<z}$ for relations - to build new functions and relations that are primitive recursive.

1. (5 MARKS) Write a correct URM which simulates the assignment statement $\mathbf{x} \leftarrow \mathbf{z}$ without changing the original value of \mathbf{z}.
You must provide a brief coherent argument of correctness.
Hint. The part in red means that after \mathbf{x} received the value of \mathbf{z}, i.e., when we are done with \mathbf{x}, we take steps to restore the original value of \mathbf{z} (that now resides in \mathbf{x}).
2. (5 MARKS) Prove that the function

$$
x \text { 2s }\left\{2^{2^{2}}\right.
$$

is in $\mathcal{P} \mathcal{R}$.
Hint. One primitive recursion will do it. Note that in

$$
x 2 \mathrm{~s}\left\{2^{2^{2^{2}}}\right.
$$

brackets are inserted right-to-left (top-down) as is common with unary functions. That is, for example, $2^{2^{2}}$ means $2^{\left(2^{2}\right)}$, NOT $\left(2^{2}\right)^{2}$. While these
two give the same result, this is not the case when the ladder of 2 s becomes longer.
For example, $2^{2^{2^{2}}}=2^{\left(2^{\left(2^{2}\right)}\right)}=65536$ while (the incorrect) $\left(\left(2^{2}\right)^{2}\right)^{2}=256$.
3. p. 234 of the text, Section 2.12: Do
(a) Problem 3 (5 MARKS)

Hint. "A total function $\lambda \vec{x}_{n} \cdot f\left(\vec{x}_{n}\right)$ is 1-1", as you know from EECS 1019, means that

$$
f\left(\vec{x}_{n}\right)=f\left(\vec{y}_{n}\right) \rightarrow x_{i}=y_{i}, \text { for } i=1, \ldots, n
$$

To show $\lambda x y .2^{x+y+2}+2^{y+1}$ is $1-1$, think what precisely is the binary representation of the number $2^{x+y+2}+2^{y+1}$. You do not need to solve for K and L as the book does.
(b) Problem 4 (5 MARKS)

Hint. To show $\lambda x y .(x+y)^{2}+x$ is 1-1, start with "let $(x+y)^{2}+x=$ $\left(x^{\prime}+y^{\prime}\right)^{2}+x^{\prime \prime \prime}$ and show

$$
x=x^{\prime} \wedge y=y^{\prime}
$$

But how? Well, try to show that the "let" implies $x+y=x^{\prime}+y^{\prime}$. You must not solve for K and L at any time during your proof.
(c) Problem 6 (5 MARKS)

Hint. A relation Q is a table (finite or infinite) of vectors \vec{x}_{n}. If $n=1$ we have a relation consisting of numbers. We write the relation most often as $Q\left(\vec{x}_{n}\right)$, but also as $\vec{x}_{n} \in Q$, or just Q.
Thus \mathbb{N} is a relation (of numbers, not vectors) just like the $\operatorname{Pr}(x)$ we discussed this week. We may write $\mathbb{N}(x)$ or $x \in \mathbb{N}$ for this relation. Now, in our very first class we reviewed set theory and one of the things we recalled was that

$$
x \in\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\} \equiv x=a_{1} \vee x=a_{2} \vee x=a_{3} \vee \ldots x=a_{n}
$$

(d) Problem 7 (5 MARKS)

Hint. Use the definition of $\mathbb{N}(x) \in \mathcal{P} \mathcal{R}_{*}$ or $\mathbb{N} \in \mathcal{P} \mathcal{R}_{*}$. It requires that $c_{\mathbb{N}} \in \mathcal{P} \mathcal{R}$.
So, what $I S \lambda x \cdot c_{\mathbb{N}}(x)$, and can you prove it in $\mathcal{P} \mathcal{R}$?

