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Chapter 1

Preliminaries

• This course is about the inherent limitations of computing: The
things we cannot do by writing a program!

So it is not a “How To” course —i.e., “How can I program a
solution to this or that problem?”— but it is rather a “Why
can’t I do this by writing a program”?

We develop a “theory of programs” which enables us to demon-
strate that there is NO WAY to solve certain Problems by Pro-
gramming and we learn to investigate and understand why this
happens.

But what IS “Programming”?

What will it look like in, say, 10 years, 50 years? Read on!

The above asks, but in modern jargon, the old question “what
IS a mechanical procedure?” that the Pioneers of Computability
(1930s) asked and answered.
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4 1. Preliminaries

• At the intuitive level, any practicing mathematician or computer
scientist—indeed any student of these two fields of study—will
have no difficulty in recognizing a computation or an algo-
rithm (“program”) when they see one.

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



5

• But how about:

• Examples:

– “is there∗ an algorithm which can determine whether or not
any given computer program (the latter written in, say, the
C-language) is correct?”†

NO!

and

– “is there an algorithm that will determine whether or not any
given Boolean formula is a tautology, doing so via computations
that take no more steps than some (fixed) polynomial function
of the input length?”

Maybe YES maybe NO! At this point we simply do
not know!

∗This “is there” is not time-dependent just like Mathematics is not; it means “will there ever be?”
†A “correct” program produces, for every input, precisely the output that is expected by an a priori specification.
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6 1. Preliminaries

• But what do we mean by

“there is no algorithm that solves a given problem”—with
or without restrictions on the algorithm’s efficiency?

This appears to be a much harder statement to validate
than “there IS an algorithm that solves such and such a problem”

▶ for the latter, all we have to do is to produce such an algorithm
and a proof that it works as claimed.

By contrast, the former statement implies, mathematically speak-
ing, a provably failed search over the entire (infinite!)
set of all algorithms , while we were looking for one that solves
our problem.
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• One evidently needs a mathematically precise definition of
the concept of algorithm that is neither experiential‡ nor technology-
dependent§ in order to assert that we encountered such a failed
“search”.

This directly calls for amathematical theory whose objects of study
include algorithms (and, correspondingly, computations) in order
to construct such sets of (all) algorithms within the theory
and to be able to reason about the membership problem
of such sets.

‡E.g., a FORTRAN, or C, or JAVA program.
§Such program might fail for trivial technological reasons. For example memory size.
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8 1. Preliminaries

• The “theory of computation” vs. the metatheory of computing.

Within the theory of computing one computes to solve some
Problem.

In the (meta)theory of computing one tackles the fundamental
questions of the limitations of computing,

These limitations may rule out outright the existence of algorith-
mic solutions for some problems, while for others they rule out
efficient solutions.
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• Our approach is anchored on the concrete practical knowledge
about general computer programming attained by the reader in a
first year programming course.

• Our chapter on computability is the most “general” metatheory
of computing.

� The above line does not brag. By “general” I mean that we don’t
do “metatheory of JAVA” or “metatheory of FORTRAN” �
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10 1. Preliminaries

Our metatheory is based on a fictitious programming language so
that

1. We will not worry about technology-dependent issues such as
memory limitations —our “mechanical processes” have none!

2. We will have control over the choice of instructions. Chosen
to be trivial in terms of understanding and using them. This
is essential for achieving the attribute “mechanical” for our
procedures.¶

So we want to develop a “metatheory of programs” or “metatheory
of programming” and that is not about FORTRAN or C or JAVA.

¶Imagine if someone had to prove a theorem in order to understand and execute an instruction!
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� What are the approximate features of our fictitious programs?

They will

1. be able to receive input and (in principle‖) generate output.

2. have variables that are not limited as to the size of data they
can hold.

� It would trivialise “unsolvability results” if a computation failed
just because the result was too large! �

3. only be able to perform instructions that

– do trivial arithmetic —(essentially only +1 and −1)
OR

– ones that cause the computation to “jump” to this or that
instruction, a decision made by the program based on the
value of some variable (if-statement)

4. That’s IT!

1, 3 and 4 address the concept of instruction.

‖It is known AND all right that some computations do NOT terminate!
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12 1. Preliminaries

So our programming language will be along the lines 1-4 above.

Its programs obviously describe “mechanical procedures” as fol-
lows from what we said about instructions.

Two questions are important before we start implementing all
these ideas:

(1) Are results that we prove about our fictitious language valid
for FORTRAN? C, etc.?

Answer: Yes. It is a theorem (proved, essentially, in the
1930s) that the simple fictitious programming language can do
anything a commercially available (now) language can do, and
do so without restriction to data size.

We also have the converse, trivially, since all such commer-
cial languages can do +1,−1 and if-statements.

(2) What about future languages? What can we say about the fu-
ture? We postpone this question until the chapter on Church’s
thesis.
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In CS/MATH curricula there are two main contenders for a “fic-
titious programming language”. The older one is the Turing Ma-
chine, the newer one is the URM.

For our part we will develop this metatheory via the program-
ming formalism known as Shepherdson-Sturgis Unbounded Regis-
ter “Machines” (URM)—which is a straightforward abstraction of
modern high level programming languages.

▶ Contrast with TMs. (“TM” is the acronym for Turing Machine
invented by Allan Turing)

These TMs imitate Assembly programming and they are very cum-
bersome.

Moreover, the principle of going from the “concrete” to the “ab-
stract” speaks against using a mathematical model that looks al-
most exactly like Assembly language (actually even more cumber-
some than that∗∗):

According to the prerequisite structure of EECS2001 we are only
guaranteed that students did JAVA (and Discrete MATH) before
this course.

∗∗In Assembly language you can manipulate Integers. In TM language you cannot; you manipulate, essentially,
one digit at a time of the number stored in a variable.
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14 1. Preliminaries

We will also explore a restriction of the URM programming lan-
guage, that of the loop programs of A. Meyer and D. Ritchie.

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



15

We will learn that while these loop programs can only compute a
very small subset of “all the computable functions”, nevertheless
they are significantly more than adequate for programming solu-
tions of any “practical”, computationally solvable, problem.

For example, even restricting the nesting of loop instructions to
as low as two, we can compute—in principle—enormously large
functions, which with input x can produce outputs such as

2·
··
2x

}
10350000 2’s

(1)

The qualification above, “in principle”, is to remind us that while
our fictitious mathematical model CAN compute (1) for ANY x-
value, a “real” computer running, say, C cannot fit in its memory
the answer of (1) even for x = 0.

The number is astronomical.
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16 1. Preliminaries

• The chapter on Computability—after spending due care in devel-
oping the technique of reductions—concludes by demonstrating the
intimate connection between the unsolvability phenomenon of com-
puting on one hand, and the unprovability phenomenon of proving
within first-order logic (cf. [Göd31]) on the other, when the latter
is called upon to reason about “rich” theories such as (Peano’s)
arithmetic.
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• Restricted Models. FA and NFA and their Languages.
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Chapter 2

Sep. 12, 2022

2.1. A Theory of Computability

Computability is the part of logic and theoretical computer science
that gives

a mathematically precise formulation

to the concepts algorithm,mechanical procedure, and calculable/computable
function.

▶ Such a mathematical formulation provides tools to prove that
infinitely many Problems cannot have solutions via mechanical proce-
dures.
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20 2.

The advent of computability was strongly motivated, in the 1930s,
by

Hilbert’s undertaking —or “Hilbert’s program” as one often calls it—
to found mathematics on a (metamathematically provably) consistent
(i.e., free from contradiction) axiomatic basis . . .

▶ . . . in particular by his belief that the Entscheidungsproblem,

or decision problem, for axiomatic theories,

that is, the problem “is this formula a theorem of that theory?”
was solvable by a mechanical procedure that was yet to be discovered.

What IS a “mechanical procedure”? led to the advent of
computability.
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2.1. A Theory of Computability 21

Now, since antiquity, mathematicians have invented “mechanical
procedures”, e.g., Euclid’s algorithm for the “greatest common divi-
sor”,∗ and had no problem recognizing such procedures when they en-
countered them.

But how do you mathematically prove the nonexistence of such a
mechanical procedure for a particular problem?

You need a mathematical formulation of what is a “mechanical
procedure” in order to do that!

∗That is, the largest positive integer that is a common divisor of two given integers.
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22 2.

2.2. A Programming Framework for Computable Functions

So, what is a computable function, mathematically speaking?

There are two main ways to approach this question.

1. One is to define a programming formalism—that is, a pro-
gramming language—and say: “a function is computable
precisely if it can be ‘programmed’ in this programming lan-
guage”.

Examples of such programming languages are

• the Turing Machines (or TMs) of Turing

• and the unbounded register machines (or URMs) of Shepherd-
son and Sturgis◀ Our choice!

Key in these “programming languages” is

(a) Do not make them dependent on technology!

(b) Be sure that individual instructions are so simple as to require
no intelligence to execute.
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2.2. A Programming Framework for Computable Functions 23

Note that the term machine in each case is a misnomer, as both
the TM and the URM formulations are really programming lan-
guages,

A TM being very much like the assembly language of “real” com-
puters,

A URM reminding us more of (subsets of) Algol (or Pascal).
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24 2.

2. The other main way is to define a set of computable functions di-
rectly—without using a programming language as the agent of
definition:

How? By a devise that resembles a mathematical proof, called
a derivation.

▶ In this approach we say a “ function is computable precisely
if it has a derivation —is derivable”.

▶ Analogy: A theorem is a formula that has a proof (proof and
derivation are amazingly similar concepts!)
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2.2. A Programming Framework for Computable Functions 25

� Either way, a computable function is generated by a finite devise
(whether a program or derivation). �

In the by-derivation approach we start by accepting some set of
initial functions I that are immediately recognizable as “intuitively
computable”, and choose a set O of function-building operations that
preserve the “computable” property.

Compare: In the by-proof approach to discovering mathematical
truth we start by accepting some set of “initial truths”—the ax-
ioms I that are immediately recognizable as “true”, and choose a set
O of formula-building operations that preserve truth.
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26 2.

2.3. The URM

We now embark on defining the high level programming language
URM.

The alphabet of the language is

=,←,+, .−, :, X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, if , else,goto, stop (1)

Just like any other high level programming language, URM manip-
ulates the contents of variables.

[SS63] called the variables “registers”.
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2.3. The URM 27

1) These variables are restricted to be of natural number type.

2) Since this programming language is for theoretical analysis only—
rather than practical implementation—every variable is allowed to
hold any natural number whatsoever, without limitations to its size,
hence the “UR” in the language name (“unbounded register”).

3) The syntax of the variables is simple: A variable (name) is a string
that starts with X and continues with one or more 1:

URM variable set: X1, X11, X111, X1111, . . . (2)

� Nothing else names a variable of a URM except the names in (2)
above. �

4) Nevertheless, as is customary for the sake of convenience, we will
utilize the bold face lower case letters x,y, z,u,v,w, with or with-
out subscripts or primes as metavariables in most of our discussions
of the URM and in examples of specific programs where yet more
convenient metanotations for variables may be employed such as
X,A,B′′, X13.
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28 2.

2.3.1 Definition. (URM Programs) A URM program is a finite
(ordered) sequence of instructions (or commands) of the following five
types:

L : x← a

L : x← x+ 1

L : x← x .− 1 (3)

L : stop

L : if x = 0 goto M else goto R

where L,M,R, a, written in decimal notation, are in N, and
x is some variable.

We call instructions of the last type if-statements.

� An if-statement is syntactically illegal (meaningless) if any of M or R
exceed the label of the program’s stop instruction. Also, zero is NOT
a valid label. �

▶ Each instruction in a URM program must be numbered by its
position number, L, in the program, where “:” separates the position
number from the instruction.

In particular, then, labels are positive integers.
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2.3. The URM 29

▶ We call these numbers labels. Thus, the label of the first instruc-
tion MUST ALWAYS BE “1”.

▶ The instruction stop must occur only once in a program, as
the last instruction. □
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30 2.

The semantics of each command is given below.

2.3.2 Definition. (URM Instruction and Computation Semantics)

A URM computation is a sequence of actions caused by the
execution of the instructions of the URM as detailed below.

Every computation begins with the instruction labeled “1” as the
current instruction.

The semantic action of instructions of each type is defined if and
only if they are current, and is as follows:

(i) L : x← a. Action: The value of x becomes the (natural) number
a. Instruction L+ 1 will be the next current instruction.

(ii) L : x← x+1. Action: This causes the value of x to increase by 1.
The instruction labeled L+1 will be the next current instruction.

(iii) L : x ← x .− 1. Action: This causes the value of x to decrease
by 1, if it was originally non zero. Otherwise it remains 0. The
instruction labeled L+ 1 will be the next current instruction.

(iv) L : stop. Action: No variable (referenced in the program) changes
value. The next current instruction is still the one labeled L.

(v) L : if x = 0 gotoM else gotoR. Action: No variable (referenced
in the program) changes value. The next current instruction is
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2.3. The URM 31

numbered M if x = 0; otherwise it is numbered R.

□

What is missing? Read/Write statements! We will come to that!
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32 2.

We say that a computation terminates, or halts, iff it ever makes
current (as we say “reaches”) the instruction stop.

Note that the semantics of “L : stop” appear to require the compu-
tation to continue for ever. . .

. . . but it does so in a trivial manner where no variable changes
value, and the current instruction remains the same: Practically,
the computation is over.

When discussing URM programs (or as we just say, “URMs”) one
usually gives them names like

M,N,P,Q,R, F,H,G

.
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2.3. The URM 33

NOTATION: We write x⃗n for the sequence of variables x1,x2, . . . ,xn.
We write a⃗n for the sequence of values a1, a2, . . . , an.

▶ It is normal to omit the n (length) from x⃗n and a⃗n if it is under-
stood or we don’t care, in which case we just write x⃗ and a⃗.

2.3.3 Definition. (URM As an Input/Output Agent) A compu-
tation by the URM M computes a function that we denote by

M x⃗n
y

in this precise sense:

The notation means that we chose and designated as input vari-
ables ofM the following: x1, . . . ,xn. Also indicates that we chose and
designated one variable y as the output variable.

� Aside. You have learnt in discrete MATH (a prerequisite of EECS2001)
that An for any set A means

n copies of A︷ ︸︸ ︷
A× · · · × A

for n > 0, while A0 = ∅ by definition.
Analogously, if A is the natural numbers set, N, Nn is the set of

length-n vectors with components† in N aka the set of length-n arrays
with contents from N. �

†If a⃗ is a vector over the natural numbers, i.e., a⃗ ∈ N for some n > 0, then an ai is a component of said vector.
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34 2.

We now conclude the definition of the function M x⃗n
y : For every choice

we make for input values a⃗n from Nn,

(1) We —imagine we call an “I/O agent” to do it for us— initialize
the computation of URM M , by doing two things:

(a) We initialize the input variables x1, . . . ,xn with the input val-
ues

a1, . . . , an

We also initialize all other variables of M to be 0.

This is an implicit read action.

(b) We next make the instruction labeled “1” current, and start
the computation.

� So, the initialisation is NOT part of the computation! �

(2) If the computation terminates, that is, if at some point the in-
struction stop becomes current, then the value of y at that point
(and hence at any future point, by (iv) above), is the value of the
function M x⃗n

y for input a⃗n.

This is an implicit write action. □
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2.3. The URM 35

2.3.4 Definition. (Computable Functions) A function f : Nn →
N of n variables x1, . . . , xn is called partial computable iff for some
URM, M , we have f =Mx1,...,xn

y .

The set of all partial computable functions is denoted by P.

The set of all the total functions in P—that is, those that are de-
fined on all inputs from N—is the set of computable functions and is
denoted by R. The term recursive is used in the literature synony-
mously with the term computable. □

� “Recursive” is just the invented terminology (Kleene) and it has noth-
ing to do with procedures that call themselves. �

� Saying COMPUTABLE or RECURSIVE without qualification implies
the qualifier TOTAL.

It is OK to add TOTAL on occasion for EMPHASIS!!

“PARTIAL” means “might be total or nontotal”; we do not care, or
we do not know. �
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36 2.

Sep. 14, 2022

� BTW, you recall from MATH1019 that the symbol

f :

left field
↓
Nn →

right field
↓
N

simply states that f takes input values from N in each of its input
variables and outputs —if it outputs anything for the given input!— a
number from N. Note also the terminology in red type in the figure
above! �

Probably your 1019 text called Nn and N above “domain” and
“range” (or, worse, “codomain”!). FORGET THAT nomenclature!
What is the domain of f really? (in symbols dom(f))

dom(f)
Def
= {a⃗n : (∃y)f (⃗an) = y}

that is, the set of all inputs that actually cause an output .

The range is the set of all possible outputs:

ran(f)
Def
= {y : (∃a⃗n)f (⃗an) = y}

A function f : Nn → N is total iff dom(f) = Nn.
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2.3. The URM 37

Nontotal iff dom(f) ⫋ Nn.

If a⃗n ∈ dom(f) we write simply f (⃗an) ↓. Either way, we say “f is
defined at a⃗n”.

The opposite situation is denoted by f (⃗an) ↑ and we say that “f is
undefined at a⃗n”. We can also say “f is divergent at a⃗n”.

• Example of a total function: the “x + y” function on the natural
numbers.

• Example of a nontotal function: the “⌊x/y⌋” function on the nat-
ural numbers. All input pairs of the form “a, 0” fail to produce an
output: ⌊a/0⌋ is undefined. All the other inputs work.
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2.3.5 Example. Let M be the program

1 : x← x+ 1
2 : stop

Then Mx
x is the function f given, for all x ∈ N, by f(x) = x + 1, the

successor function. □

� Given a URM M you might ask: “what is the function that M com-
putes?”

This is an ambiguous fuzzy question. M computes as many functions
as you can have choices of input and output variables. The focused
question would sound like “What familiar function is M x⃗

y ?” �

2.3.6 Remark. (λ Notation) To avoid saying verbose things such as
“Mx

x is the function f given, for all x ∈ N, by f(x) = x + 1”, we will
often use Church’s λ-notation and write instead “Mx

x = λx.x+ 1”.

In general, the notation “λ · · · .” marks the beginning of a sequence
of input variables “· · · ” by the symbol “λ”, and the end of the sequence
by the symbol “.” What comes after the period “.” is the “rule” that
indicates how the output relates to the input.

The template for λ-notation thus is

λ“input”.“output-rule”
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Relating to the above example, we note that f = λx.x+ 1 = λy.y + 1
is correct and we are saying that the two functions viewed as tables are
the same.

Note that x, y, are “apparent” variables (“dummy” or bound) and
are not free (for substitution).

Why do all this and not just do as in calculus (and in some sloppy
discrete MATH courses) and say things like “let the function f(x) be
x+1”? Well, both expressions “f(x)” and x+1 are function invocations
or function calls.‡ A function (or function procedure declaration, in
programming) or function definition has a header where the name of
the function, the names of its input variables and the data type of the
output are given. The header is followed by the body of the function
that gives the algorithm that computes the output (returned value)
according to the input values received.

A function invocation or call calls the defined function with appro-
priate inputs and returns some object —in our case a natural number.
One is a number (call) the other a finite algorithm that defines a po-
tentially infinite table of input-output pairs.
λ notation captures mathematically and abstractly the concept of

a function definition (also called function declaration in Algol, Pascal
and C).

□

‡x+ 1 is a call to λz.z + 1.
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2.3.7 Example. Let M be the program

1 : x← x .− 1
2 : stop

Then Mx
x is the function λx.x .− 1, the predecessor function.

The operation .− is called “proper subtraction” —some people pro-
nounce it “monus”— and is in general defined by

x .− y =

{
x− y if x ≥ y

0 otherwise

It ensures that subtraction (as modified) does not take us out of the
set of the so-called number-theoretic functions, which are those with
inputs from N and outputs in N. □
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Pause. Why are we restricting computability theory to number-
theoretic functions? Surely, in practice we can compute with negative
numbers, rational numbers, and with nonnumerical entities, such as
graphs, trees, etc. Theory ought to reflect, and explain, our practices, no?◀

It does. Negative numbers and rational numbers can be coded by
natural number pairs.

Computability of number-theoretic functions can handle such pair-
ing (and unpairing or decoding).

Moreover, finite objects such as graphs, trees, and the like that we
manipulate via computers can be also coded (and decoded) by natural
numbers.

After all, the internal representation of all data in computers is, at
the lowest level, via natural numbers represented in binary notation.

Computers cannot handle infinite objects such as (irrational) real
numbers.

But there is an extensive “higher type” computability theory (which
originated with the work of [Kle43]) that can handle such numbers as
inputs and also compute with them. However, this theory is way beyond
our scope.
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2.3.8 Example. Let M be the program

1 : x← 0
2 : stop

Then Mx
x is the function λx.0, the zero function. □

� In Definition 2.3.4 we spoke of partial computable and total com-
putable functions.

We retain the qualifiers partial and total for all number-
theoretic functions, even for those that may not be com-
putable.

Total vs. nontotal (no hyphen) has been defined with respect to a
chosen and fixed left field for all functions in computability.

The set union of all total and nontotal number-theoretic functions is
the set of all partial (number-theoretic) functions. Thus partial is not
synonymous with nontotal. �
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2.3.9 Example. The unconditional goto instruction, namely, “L :
goto L′”, can be simulated by L : if x = 0 goto L′ else goto L′.

□

2.3.10 Example. Let M be the program

1 : x← 0
2 : goto 1
3 : stop

Then Mx
x is the empty function ∅, sometimes written as λx. ↑.

Thus the empty function is partial computable but nontotal.

We have just established ∅ ∈ P −R.

Hence R ⫋ P .

□
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2.3.11 Example. Let M be the program segment

k − 1 : x← 0
k : if z = 0 goto k + 4 else goto k + 1
k + 1 : z← z .− 1
k + 2 : x← x+ 1
k + 3 : goto k
k + 4 : . . .

What it does:

By the time the computation reaches instruction k+4, the program
segment has set the value of z to 0, and has made the value of x equal
to the value that z had when instruction k − 1 was current.

In short, the above sequence of instructions simulates what we would
have written, say, in FORTRAN as

L : x← z
L+ 1 : z← 0
L+ 2 : . . .

where the FORTRAN semantics of L : x ← z are standard in pro-
gramming:

They require that, upon execution of the instruction, the value of z
is copied into x but the value of z remains unchanged. □

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



2.3. The URM 45

2.3.12 Exercise. Write a program segment that simulates precisely
the FORTRAN L : x ← z; that is, copy the value of z into x
without causing z to change as a side-effect. □

We say that the “normal” assignment x← z is non destructive.
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Because of Exercise 2.3.12 above, without loss of generality, one may
assume that any input variable, x, of a URM M is read-only.

This means that its value is retained throughout any com-
putation of the program.

� Why “without loss of generality”? Because if x is not such, we can
make it be! �

Indeed, let’s add a new variable as an input variable, x′ instead of
x.

Then, in detail, do this to make x′ a read-only input variable:

• Add at the very beginning of M the instruction 1 : x ← x′ of
Exercise 2.3.12.

• Adjust all the following labels consistently, including, of course, the
ones referenced by if-statements—a tedious but straightforward
task.

• Call M ′ the so-obtained URM.

Clearly, M ′ x′,y1,...,yn
z =Mx,y1,...,yn

z , and M ′ does not change x′.
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2.3.13 Example. (Composing Computable Functions)
Suppose that λxy⃗.f(x, y⃗) and λz⃗.g(z⃗) are partial computable, and

say
f = F x,y⃗

u

while
g = Gz⃗

x

We assume without loss of generality that x is the only variable
common to F and G. Thus, if we concatenate the programs G and F
in that order, and

1. remove the last instruction of G (k : stop, for some k) —call the
program segment that results from this G′, and

2. renumber the instructions of F as k, k+1, . . . (and, as a result, the
references that if-statements of F make) in order to give

(
G′F

)
the correct program structure,

then, λy⃗z⃗.f(g(z⃗), y⃗) = (G′F )y⃗,⃗zu .

Note that all non-input variables of F will still hold 0 as soon as the
execution of (G′F ) makes the first instruction of F current for the first
time. Also note that we could have called the modified “F” “F ′” but
we know what we mean when we write “(G′F )y⃗,⃗zu ”.

This is because none of these can be changed by G′ under our as-
sumption, thus ensuring that F works as designed. □
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Thus, we have, by repeating the above idea a finite number of times:

2.3.14 Proposition. If λy⃗n.f(y⃗n) and λz⃗.gi(z⃗), for i = 1, . . . , n, are
partial computable, then so is λz⃗.f(g1(z⃗), . . . , gn(z⃗)).

� Note that

f(g1(⃗a), . . . , gn(⃗a)) ↑

if any gi(⃗a) ↑

Else f(g1(⃗a), . . . , gn(⃗a)) ↓ provided f is defined on all gi(⃗an). �

For the record, we will define composition to mean the somewhat
rigidly defined operation used in 2.3.14, that is:

2.3.15 Definition. Given any partial functions (computable or not)
λy⃗n.f(y⃗n) and λz⃗.gi(z⃗), for i = 1, . . . , n, we say that λz⃗.f(g1(z⃗), . . . , gn(z⃗))
is the result of their composition. □

� We characterized the Definition 2.3.15 as “rigid”.

Indeed, note that it requires all the arguments of f to be substituted
by some gi(z⃗)—unlike Example 2.3.13, where we substituted a function
invocation (cf. terminology in 2.3.6) only in one variable of f there,
and did nothing with the variables y⃗.
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Also, for each call gi(. . .) the argument list, “. . .”, must be the same;
in 2.3.15 it was z⃗.

As we will show in examples later, this rigidity is only apparent. �
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We can rephrase 2.3.14, saying simply that

2.3.16 Theorem. P is closed under composition.

2.3.17 Corollary. R is closed under composition.

Proof. Let f , gi be in R.
Then they are in P , hence so is h = λy⃗.f

(
g1(y⃗), . . . , gm(y⃗)

)
by

2.3.16.

By assumption, the f , gi are total. So, for any y⃗, we have gi(y⃗) ↓
—a number. Hence also f

(
g1(y⃗), . . . , gm(y⃗)

)
↓.

That is, h is total, hence, being in P , it is also in R. □
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Sep. 19, 2022

Composing a number of times that depends on the value of an in-
put variable—or as we may say, a variable number of times—is called
iteration. The general case of iteration is called primitive recursion.

2.3.18 Definition. (Primitive Recursion) A number-theoretic func-
tion f is defined by primitive recursion from given functions λy⃗.h(y⃗)
and λxy⃗z.g(x, y⃗, z) provided, for all x, y⃗, its values are given by the
two equations below:

f(0, y⃗) = h(y⃗)
f(x+ 1, y⃗)= g(x, y⃗, f(x, y⃗))

h is the basis function, while g is the iterator.

We can take for granted a fundamental (but difficult) result (see
EECS 1028, W20, course notes), that a unique f that satisfies the
above schema exists.

Moreover, if both h and g are total, then so is f as it can
easily be shown by induction on x (Later: 2.3.26).

It will be useful to use the notation f = prim(h, g) to indicate in
shorthand that f is defined as above from h and g (note the order).

□
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Note that

f(1, y⃗) = g(0, y⃗,

f(0,y⃗)︷︸︸︷
h(y⃗)),

f(2, y⃗) = g(1, y⃗,

f(1,y⃗)︷ ︸︸ ︷
g(0, y⃗, h(y⃗))),

f(3, y⃗) = g(2, y⃗,

f(2,y⃗)︷ ︸︸ ︷
g(1, y⃗, g(0, y⃗, h(y⃗)))), etc.

Thus the “x-value”, 0, 1, 2, 3, etc., equals the number of times we
compose g with itself (i.e., the number of times we iterate g).
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With a little programming experience, it is easy to see that to com-
pute f(x, y⃗) of 2.3.18 we can employ the pseudo code below:

1 : z ←h(y⃗)
2 : for i = 0 to x− 1
3 : z ←g(i, y⃗, z)

At the end of the loop, z holds f(x, y⃗) —last value of i used in line 3
is x− 1.

Here is how to implement the above as a URM:

2.3.19 Example. (Iterating Computable Functions)
Suppose that λxy⃗z.g(x, y⃗, z) and λy⃗.h(z⃗) are partial computable,

and, say, g = Gi,y⃗,z
z while h = H y⃗

z .
By earlier remarks we may assume:
(i) The only variables that H and G have in common are z, y⃗.
(ii) The variables y⃗ are read-only in both H and G.
(iii) i is read-only in G and does not appear in H.
(iv) x does not occur in any of H or G.
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We can now see that the following URM program, let us call it F ,
computes the f of Definition 2.3.18 for which we wrote the easy pseudo
code on page 53 (we reproduce it here for convenience):

1 : z ←h(y⃗)
2 : for i = 0 to x− 1
3 : z ←g(i, y⃗, z)

In the URM below, H ′ is program H with the stop instruction re-

moved, G′ is program G that has the stop instruction removed, and
instructions renumbered (and if-statements adjusted) as needed:

H ′ y⃗
z

r : i← 0
r + 1 : if x = 0 goto k +m+ 2 else goto r + 2
r + 2 : x← x .− 1

r+3: G′ i,y⃗,z
z

k : i← i+ 1
k + 1 : w1 ← 0
...
k +m : wm ← 0
k +m+ 1 : goto r + 1
k +m+ 2 : stop /*x = 0 and i = orig. x; last i-value in G′ is x− 1*/

The instructions wi ← 0 set explicitly to zero all the variables of G′

other than i, z, y⃗ to ensure correct behavior of G′. Note that the wi are
implicitly initialized to zero only the first time G′ is executed. Clearly,
the URM F simulates the pseudo program above, thus f = F x,y⃗

z . □
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We just proved:

2.3.20 Proposition. If f, g, h relate as in Definition 2.3.18 and h and
g are in P, then so is f . We say that P is closed under primitive
recursion.

2.3.21 Corollary. If f, g, h relate as in Definition 2.3.18 and h and
g are in R, then so is f . We say that R is closed under primitive
recursion.

Proof. As R ⊆ P , we have f ∈ P .

But we noted earlier (however proof is later, in 2.3.26) that if h and
g is total, then so is f .

So, f ∈ R. □
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What does the following pseudo program do, if g = Gx,y⃗
z for some

URM G and read only x, y⃗?

1 : x← 0

2 : while g(x, y⃗) ̸= 0 do

3 : x← x+ 1

(1)

OK. Fix an input y⃗.

We are out here (exited the while-loop) precisely because

• Testing for g(x, y⃗) ̸= 0 never got stuck as a result of calling g with
some x = m that makes g(m, y⃗) ↑.

• The loop kicked us out exactly when g(k, y⃗) = 0 was detected, for
some k, for the first time, in the while-test.

In short, the k satisfies

k = smallest such that g(k, y⃗) = 0 ∧ (∀z)(z < k → g(z, y⃗) ↓)

Now, this k depends on y⃗ so we may define it as a function f ,
for any INPUT a⃗ assigned into y⃗, by:

k = f (⃗a)
Def
= min

{
x : g(x, a⃗) = 0 ∧ (∀y)

(
y < x→ g(y, a⃗) ↓

)}
□

Kleene has suggested the symbol “(µy)” to denote the “find the min-
imum y” operation above, thus the above is rephrased as

f (⃗a) = (µy)g(y, a⃗)
Def
=

{
min

{
y : g(y, a⃗) = 0 ∧ (∀w)w<yg(w, a⃗) ↓

}
↑ if the min above does not exist

(2)
where (∀y)y<xR(y, . . .) is short for (∀y)(y < x → R(y, . . .)). We
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call the operation (µy)g(y, a⃗) —equivalently, the program segment
“while g(x, a⃗) ̸= 0 do”— unbounded search.

� Why “unbounded” search? Because we do not know a priori
how many times we have to go around the loop. This depends
on the behaviour of g. �

We saw how the minimum can fail to exist in one of two ways:

• Either g(x, a⃗) ↓ for all x but we never get g(x, a⃗) = 0; that is,
we stay in the loop going round and round forever

or

• g(b, a⃗) ↑ for a value b of x before we reach any c such that
g(c, a⃗) = 0, thus we are stuck forever processing the call g(b, a⃗)
in the while instruction.
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Can we implement the pseudo-program (1) as a URM F? YES!

2.3.22 Example. (Unbounded Search on a URM) So suppose again
that λxy⃗.g(x, y⃗) is partial computable, and, say, g = Gx,y⃗

z .

By earlier remarks we may assume that y⃗ and x are read-only in G
and that z is not one of them.

Consider the following program F y⃗
x , where G

′ is the programG with
the stop instruction removed, where instructions have been renum-
bered (and if-statements adjusted) as needed so that its first instruc-
tion has label 2.

1 : x← 0
2: G′

x,y⃗

z

k : if z = 0 goto k + l + 3 else goto k + 1
k + 1 : w1 ← 0 {Comment. Setting all non-input variables to 0; cf. 2.3.19.}
...
k + l : wl ← 0 {Comment. Setting all non-input variables to 0; cf. 2.3.19.}
k + l + 1 : x← x+ 1
k + l + 2 : goto 2
k + l + 3 : stop {Comment. Read answer off x. This is the last x-value

used by G′}

□

We have at once:
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2.3.23 Proposition. P is closed under unbounded search; that is, if
λxy⃗.g(x, y⃗) is in P , then so is λy⃗.(µx)g(x, y⃗).
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2.3.24 Example. Is the function λx⃗n.xi, where 1 ≤ i ≤ n, in P? Yes,
and here is a program, M , for it:

1 : w1 ← w1 + 1
...
i : z← wi {Comment. Cf. Exercise 2.3.12}
...
n : wn ← 0
n+ 1 : stop

λx⃗n.xi =M w⃗n
z . To ensure that M indeed has the wi as variables we

reference them in instructions at least once, in any manner whatsoever.

□
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Before we get more immersed into partial functions let us redefine equality
for function calls.

2.3.25 Definition. Given λx⃗.f(x⃗n) and λy⃗.g(y⃗m).

We extend the notion of equality f (⃗an) = g(⃗bm) to include the case
of undefined calls :

For any a⃗n and b⃗m, f (⃗an) = g(⃗bm) means precisely one of

• For some k ∈ N, f (⃗an) = k and g(⃗bm) = k

• f (⃗an) ↑ and g(⃗bm) ↑

In short,

f (⃗an) = g(⃗bm) ≡ (∃z)
(
f (⃗an) = z ∧ g(⃗bm) = z ∨ f (⃗an) ↑ ∧g(⃗bm) ↑

)
□

� The definition is due to Kleene and he preferred, as I do in the text,
to use a new symbol for the extended equality, namely ≃.

Regardless, by way of this note we agree to use the same symbol for
equality for both total and nontotal calls, namely, “=” (this conven-
tion is common in the literature, e.g., [Rog67]). �
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Let’s do this for posterity:

2.3.26 Lemma. If f = prim(h, g) and h and g are total, then so is
f .

Proof. Do (∀x)(∀y⃗)f(x, y⃗) ↓ by induction on x.

Let f be given by:

f(0, y⃗) = h(y⃗)

f(x+ 1, y⃗) = g(x, y⃗, f(x, y⃗))

We do induction on x to prove

“For all x, y⃗, f(x, y⃗) ↓” (∗)

Basis. x = 0: Well, f(0, y⃗) = h(y⃗), but h(y⃗) ↓ for all y⃗, so

f(0, y⃗) ↓ for all y⃗ (∗∗)

As I.H. (Induction Hypothesis) take that

f(x, y⃗) ↓ for all y⃗ and fixed x (†)

Do the Induction Step (I.S.) to show

f(x+ 1, y⃗) ↓ for all y⃗ and the fixed x of (†) (‡)

Well, by (†) and the assumption on g,

g
(
x, y⃗, f(x, y⃗)

)
↓, for all y⃗ and the fixed x of (†)

which says the same thing as (‡). □
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2.3.27 Corollary. R is closed under primitive recursion.

Proof. Let h and g be inR. Then they are in P . But then prim(h, g) ∈
P as we showed in class/text and Notes.

By 2.3.26, prim(h, g) is total.

By definition of R, as the subset of P that contains all total
functions of P , we have prim(h, g) ∈ R. □

� Why all this dance in colour above? Because to prove f ∈ R you
need TWO things: That

1. f ∈ P

AND

2. f is total

But aren’t all the total functions in R anyway?

NO! They need to be computable too!

We will see in this course soon that NOT all total functions are
computable! �
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Chapter 3

Primitive Recursive Functions

Sep. 21, 2022
We saw that

1. The successor —S

2. zero —Z

3. and the generalised identity functions —Un
i = λx⃗n.xi

are all in P

Thus, not only are they “intuitively computable”, but they are so in
a precise mathematical sense:

each is computable by a URM.
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We have also shown that “computability” of functions is preserved
by the operations of composition, primitive recursion, and un-
bounded search.

3.1. Primitive recursive functions —the beginning

In this section we will explore the properties of the important set of
functions known as primitive recursive.

Most people introduce them via derivations just as one introduces
the theorems of logic via proofs, as in the definition below.
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3.1.1 Definition. (PR-derivations; PR-functions) The set

I =

{
S,Z,

(
Un
i

)
n≥i>0

}
is the set of Initial PR functions.

A PR-derivation is a finite (ordered!) sequence of number-theoretic
functions∗

f1, f2, f3, . . . , fi, . . . , fn (1)

such that, for each i, one of the following holds

1. fi ∈ I.

2. fi = prim(fj, fk) and j < i and k < i —that is, fj, fk appear to
the left of fi.

3. fi = λy⃗.g
(
r1(y⃗), r2(y⃗), . . . , rm(y⃗)

)
, and all of the λy⃗.rq(y⃗) and

λx⃗m.g(x⃗m) appear to the left of fi in the sequence.

Any fi in a derivation is called a derived function.†

The set of primitive recursive functions, PR, is all those that are
derived.

That is,

PRDef
= {f : f is derived} □

∗Recall: That is, left field is Nn for some n > 0, and right field is N.
†Strictly speaking, primitive recursively derived, but we will not considered other sets of derived functions, so we

omit the qualification.
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The above (3.1.1) defines essentially what Dedekind ([Ded88]) called
“recursive” functions. In plain English: “Each such function is
obtained from the initial functions by a finite number of applica-
tions of primitive recursion and composition”.

Subsequently they were renamed (by Kleene) to primitive recursive
allowing the unqualified term recursive to be synonymous with (total)
computable and apply to the functions of R.
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3.1.2 Lemma. The concatenation of two derivations is a derivation.

Proof. Let
f1, f2, f3, . . . , fi, . . . , fn (1)

and
g1, g2, g3, . . . , gj, . . . , gm (2)

be two derivations. Then so is

f1, f2, f3, . . . , fi, . . . , fn, g1, g2, g3, . . . , gj, . . . , gm

because of the fact that each of the fi and gj satisfies the three cases
of Definition 3.1.1 in the standalone derivations (1) and (2). But this
property of the fi and gj is preserved after concatenation. □
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3.1.3 Corollary. The concatenation of any finite number of deriva-
tions is a derivation.

3.1.4 Lemma. If

f1, f2, f3, . . . , fk, fk+1, . . . , fn

is a derivation, then so is f1, f2, f3, . . . , fk.

Proof. In f1, f2, f3, . . . , fk every fm, for 1 ≤ m ≤ k, satisfies 1.–3. of
Definition 3.1.1 since all conditions are in terms of what fm is, or what
lies to the left of fm. Chopping the “tail” fk+1, . . . , fn in no way
affects what lies to the left of fm, for 1 ≤ m ≤ k. □
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3.1.5 Corollary. f ∈ PR iff f appears at the end of some deriva-
tion.

Proof.

(a) The If (appears). Say g1, . . . , gn, f is a derivation. Since f occurs
in it, f ∈ PR by 3.1.1.

(b) The Only If (appears). Say f ∈ PR. Then, by 3.1.1,

g1, . . . , gm, f , gm+2, . . . , gr (1)

for some derivation like the (1) above.

By 3.1.4, g1, . . . , gm, f is also a derivation. □
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3.1.6 Theorem. PR is closed under composition and primitive re-
cursion.

Proof.

• Closure under primitive recursion. So let λy⃗.h(y⃗) and λxy⃗z.g(x, y⃗, z)
be in PR. Thus we have derivations

h1, h2, h3, . . . , hn, h (1)

and
g1, g2, g3, . . . , gm, g (2)

Then the following is a derivation by 3.1.2.

h1, h2, h3, . . . , hn, h , g1, g2, g3, . . . , gm, g

Therefore so is

h1, h2, h3, . . . , hn, h , g1, g2, g3, . . . , gm, g , prim(h, g)

by applying step 2 of Definition 3.1.1.

This implies prim(h, g) ∈ PR by 3.1.1.

• Closure under composition. So let λy⃗.h(x⃗n) and λy⃗.gi(y⃗), for
1 ≤ i ≤ n, be in PR. By 3.1.1 we have derivations

. . . , h (3)

and
. . . , gi , for 1 ≤ i ≤ n (4)

By 3.1.2,

. . . , h , . . . , g1 , . . . , . . . , gn

is a derivation, and by 3.1.1, case 3, so is

. . . , h , . . . , g1 , . . . , . . . , gn , λy⃗.h(g1(y⃗), . . . , gn(y⃗))

This implies λy⃗.h(g1(y⃗), . . . , gn(y⃗)) ∈ PR by 3.1.1. □
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3.1.7� Remark. How do you prove that some f ∈ PR?

Answer. By building a derivation

g1, . . . , gm, f

(Analogy: Just like showing a formula is a theorem: You build a
proof!)

After a while this becomes easier because

▶ you might know an h and g in PR such that f = prim(h, g),

▶ or you might know some g, h1, . . . , hm in PR, such that f =
λy⃗.g

(
h1(y⃗), . . . , hm(y⃗)

)
.

If so, just apply 3.1.6.

How do you prove that ALL f ∈ PR have a property Q —that is,
for all f , Q(f) is true?

Answer. By doing induction on the derivation length of f .

□ �
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Here are two examples demonstarting the above questions and their
answers.

3.1.8 Example. (1) To demonstrate the first Answer above (3.1.7),
show (prove) that λxy.x+ y ∈ PR. Well, observe that

0 + y = y

(x+ 1) + y = (x+ y) + 1

Does the above look like a primitive recursion?

Well, almost.

However, the first equation should have a function call “H(y)” on
the rhs but instead has just a variable y —an input!

Also the second equation should have a rhs like

G(x, y,

“recursive” call︷ ︸︸ ︷
x+ y )

We can do that!

Take H = U 1
1 and G = SU 3

3 —NOTE the “SU 3
3” with no brackets

around U 3
3 ; this is normal practise!
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Be sure to agree that we now have

• f(x, y) = x + y and f(0, y) = y = U 1
1 (y) and f(x + 1, y) =

G(x, y, f(x, y))

0 + y = H(y)

(x+ 1) + y = G
(
x, y, x+ y

)
• The functions H = U 1

1 (initial) and G = SU 3
3 (composition)

are in PR. By 3.1.6 so is λxy.x+ y.

In terms of derivations, we have produced the derivation:

U 1
1 , S, U

3
3 , SU

3
3 , prim

(
U 1
1 , SU

3
3

)︸ ︷︷ ︸
λxy.x+y
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(2) To demonstrate the second Answer above (3.1.7), show (prove)
that every f ∈ PR is total. Induction on the length n of a deriva-
tion where f occurs.

Basis. n = 1. Then f is the only function in the derivation. Thus
it must be one of S, Z, or Um

i . But all these are total.

I.H. (Induction Hypothesis) Fix an l. Assume that the claim is
true for all f that occur at the end of derivations of lengths n ≤ l.
That is, we assume that all such f are total.

I.S. (Induction Step) Prove that the claim is true for all f that
occur at the end of a derivation —see 3.1.5— of length n = l+ 1.

g1, . . . , gl, f (1)

We have three subcases:

• f ∈ I. But we argued this under Basis.

• f = prim(h, g), where h and g are among the g1, . . . , gl. By
the I.H. h and g are total. Elaboration: Any such gi is at the
end of a derivation‡ of length ≤ l. So I.H. kicks in.

But then so is f by Lemma 2.3.26.

• f = λy⃗.h
(
q1(y⃗), . . . , qt(y⃗)

)
, where the functions h and q1, . . . , qt

are among the g1, . . . , gl. By the I.H. h and q1, . . . , qt are total.
But then so is f by proof of 2.3.17. □

‡By the chop the tail theorem.
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3.1.9 Example. (Substitution Ops) If λxyw.f(x, y, w) and λz.g(z)
are in PR,

how about λxzw.f(x, g(z), w)?

Simulate it with COMPOSITION!

It is in PR since, by COMPOSITION,

f(x, g(z), w) = f(U 3
1 (x, z, w), g(U

3
2 (x, z, w)), U

3
3 (x, z, w))

and the Un
i are all primitive recursive.

The reader will see at once that to the right of “=” we have correctly
formed compositions as expected by the “rigid” definition of composi-
tion given in class.

Similarly, for the same functions above,

(1) λyw.f(2, y, w) is in PR. Indeed, this function can be obtained by
composition, since 2 = SSZ(y). Now use the above.

(2) λxyw.f(y, x, w) is in PR. Indeed, this function can be obtained
by composition, since

f(y, x, w) = f
(
U 3
2 (x, y, w), U

3
1 (x, y, w), U

3
3 (x, y, w)

)
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� In this connection, note that while λxy.g(x, y) = λyx.g(y, x), yet

λxy.g(x, y) ̸= λxy.g(y, x) in general.

For example, λxy.x .− y asks that we subtract the second input (y) from the

first (x), but λxy.y .− x asks that we subtract the first input (x) from the second

(y). �

(3) λxy.f(x, y, x) is in PR. Indeed, this function can be obtained by
composition, since

f(x, y, x) = f
(
U 2
1 (x, y), U

2
2 (x, y), U

2
1 (x, y)

)
(4) λxyzwu.f(x, y, w) is in PR. Indeed, this function can be obtained

by composition, since

λxyzwu.f(x, y, w) =

λxyzwu.f(U 5
1 (x, y, z, w, u), U

5
2 (x, y, z, w, u), U

5
4 (x, y, z, w, u))

□

The above four examples are summarised, named, and generalised
in the following straightforward exercise:

3.1.10 Exercise. (The [Grz53] Substitution Operations) PR is
closed under the following operations:

(i) Substitution of a function invocation for a variable:

From λx⃗yz⃗.f(x⃗, y, z⃗) and λw⃗.g(w⃗) obtain λx⃗w⃗z⃗.f(x⃗, g(w⃗), z⃗).

(ii) Substitution of a constant for a variable:

From λx⃗yz⃗.f(x⃗, y, z⃗) obtain λx⃗z⃗.f(x⃗, k, z⃗).

(iii) Interchange of two variables:

From λx⃗yz⃗wu⃗.f(x⃗, y, z⃗, w, u⃗) obtain λx⃗yz⃗wu⃗.f(x⃗, w, z⃗, y, u⃗).
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(iv) Identification of two variables:

From λx⃗yz⃗wu⃗.f(x⃗, y, z⃗, w, u⃗) obtain λx⃗yz⃗u⃗.f(x⃗, y, z⃗, y, u⃗).

(v) Introduction of “don’t care” variables:

From λx⃗.f(x⃗) obtain λx⃗z⃗.f(x⃗). □

By 3.1.10 composition can simulate the Grzegorczyk operations if the
initial functions I are present.

Of course, (i) alone can in turn simulate composition. With these
comments out of the way, we see that the “rigidity” of the definition
of composition is gone.
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3.1.11 Example. The definition of primitive recursion is also rigid.
However this is also an illusion.

Take p(0) = 0 and p(x+1) = x—this one defining p = λx.x .− 1
—does not fit the schema.

The schema requires the defined function to have one more variable
than the basis, so no one-variable function can be directly defined!

We can get around this.

Define first p̃ = λxy.x .− 1 as follows: p̃(0, y) = 0 and p̃(x+1, y) = x.

Now this can be dressed up according to the syntax of the schema,

p̃(0, y) = Z(y)
p̃(x+ 1, y)= U 3

1 (x, y, p̃(x, y))

that is, p̃ = prim(Z,U 3
1 ).

Then we can get p by (Grzegorczyk) substitution: p = λx.p̃(x, 0).

Incidentally, this shows that both p and p̃ are in PR:

• p̃ = prim(Z,U 3
1 ) is in PR since Z and U 3

1 are, then invoking 3.1.6.

• p = λx.p̃(x, 0) is in PR since p̃ is, then invoking 3.1.10.
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Another rigidity in the definition of primitive recursion is that, ap-
parently, one can use only the first variable as the iterating variable.

Not so. This is also an illusion.

Consider, for example, sub = λxy.x .− y, hence
x .− 0 = x and x .− (y + 1) = (x .− y) .− 1 = p(x .− y)

Clearly, sub(x, 0) = x and sub(x, y + 1) = p(sub(x, y)) is correct
semantically, but the format is wrong:

We are not supposed to iterate along the second variable!

Well, define instead s̃ub = λxy.y .− x:

So
y .− 0 = y

y .− (x+ 1)= p
(
y .− x

)
That is,

s̃ub(0, y) = U 1
1 (y)

s̃ub(x+ 1, y)= p
(
U 3
3 (x, y, s̃ub(x, y))

)
Then, using variable swapping [Grzegorczyk operation (iii)], we can

get sub:

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



82 3. Primitive Recursive Functions

sub = λxy.s̃ub(y, x).

Clearly, both s̃ub and sub are in PR. □
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3.1.12 Exercise. Prove that λxy.x × y is primitive recursive. Of
course, we will usually write multiplication x × y in “implied nota-
tion”, xy. □
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3.1.13 Example. The very important “ switch” (or “if-then-else”) func-
tion

sw = λxyz.if x = 0 then y else z

is primitive recursive.

It is directly obtained by primitive recursion on initial functions:
sw(0, y, z) = y and sw(x+ 1, y, z) = z. □
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3.1.14 Exercise. PR ⊆ R.
Hint. Do induction on derivation length to show if f ∈ PR then

f ∈ R. □

� Indeed, the above inclusion is proper, as we will see later. �
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3.1.15� Example. Consider the exponential function xy given by

x0 = 1
xy+1= xyx

Thus,

if x = 0 and y = 0, then xy = 1, but xy = 0 for all x = 0, y > 0.

BUT xy is “mathematically” undefined when x = y = 0. What do we do?.§

Thus, by Example 3.1.8, item 2, the exponential cannot be a primi-
tive recursive function!

This is rather silly, since the computational process for the expo-
nential is extremely easy; thus it is ridiculous to declare the function
non-PR.

After all, we know exactly where and how it is undefined
and we can remove this undefinability by redefining “xy” so that
“ 00 = 1”.

� We already did this redefinition in equation one setting x0 = 1 for
any x. �

In computability we do this kind of redefinition a lot in
order to remove easily recognisable points of “non definition” of calcu-
lable functions.

§In first-year university calculus we learn that “00” is an “indeterminate form”.
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We will see further examples, such as the remainder, quotient, and
logarithm functions.

BUT also examples where we CANNOT do this (LATER!);
and WHY. □ �
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3.1.16 Definition. A relation R(x⃗) is (primitive) recursive iff its char-
acteristic function,

cR = λx⃗.

{
0 if R(x⃗)

1 if ¬R(x⃗)

is (primitive) recursive. The set of all primitive recursive (respectively,
recursive) relations is denoted by PR∗ (respectively, R∗). □

� Computability theory practitioners often call relations predicates.
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It is clear that one can go from relation to characteristic function
and back in a unique way,

Thus, we may think of relations as “0-1 valued” functions: We just
re-coded the outputs t and f to 0 and 1 respectively!.

The concept of relation significantly simplifies the further develop-
ment and exposition of the theory of primitive recursive functions. �

The following is useful:
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3.1.17 Proposition. R(x⃗) ∈ PR∗ iff some f ∈ PR exists such that,
for all x⃗, we have the equivalence R(x⃗) ≡ f(x⃗) = 0.

Proof. For the if-part, I want cR ∈ PR.

This is so since cR = λx⃗.1 .− (1 .− f(x⃗)) (using Grzegorczyk substi-
tution and λxy.x .− y ∈ PR; cf. 3.1.11).

For the only if-part, taking f = cR will do. □

3.1.18 Corollary. R(x⃗) ∈ R∗ iff some f ∈ R exists such that, for all
x⃗, R(x⃗) ≡ f(x⃗) = 0.

Proof. By the above proof, and 3.1.14. □

3.1.19 Corollary. PR∗ ⊆ R∗.

Proof. By the above corollary and 3.1.14. □
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3.1.20 Theorem. PR∗ is closed under the Boolean operations.

Proof. It suffices to look at the cases of ¬ and ∨, since R→ Q ≡ ¬R∨
Q, R∧Q ≡ ¬(¬R∨¬Q) and R ≡ Q is short for (R→ Q)∧ (Q→ R).

(¬) Say, R(x⃗) ∈ PR∗. Thus (3.1.16), cR ∈ PR. But then c¬R ∈
PR, since c¬R = λx⃗.1 .− cR(x⃗), by Grzegorczyk substitution and
λxy.x .− y ∈ PR.

(∨) Let R(x⃗) ∈ PR∗ and Q(y⃗) ∈ PR∗. Then λx⃗y⃗.cR∨Q(x⃗, y⃗) is
given by

cR∨Q(x⃗, y⃗) = if R(x⃗) then 0 else cQ(y⃗)

which is the same as

cR∨Q(x⃗, y⃗) = if cR(x⃗) = 0 then 0 else cQ(y⃗)

and therefore is in PR. □

3.1.21 Remark. Alternatively, for the ∨ case above, note that cR∨Q(x⃗, y⃗) =
cR(x⃗)× cQ(y⃗) and invoke 3.1.12. □
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3.1.22 Corollary. R∗ is closed under the Boolean operations.

Proof. As above, mindful of 3.1.14. □

3.1.23� Example. The relations x ≤ y, x < y, x = y are in PR∗.

An addendum to λ notation: Absence of λ is allowed ONLY for re-
lations! Then it means (the absence, that is) that ALL variables are
active input!

Note that x ≤ y ≡ x .− y = 0 and invoke 3.1.17. Finally invoke
Boolean closure and note that x < y ≡ ¬y ≤ x while x = y is equiva-
lent to x ≤ y ∧ y ≤ x.

Or, directly: x = y ≡ |x−y| = 0; Note that |x−y| = x .− y+y .− x.

□ �
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PR: Basic Properties Part II

4.1. Bounded Quantification and Search

4.1.1 Proposition. If R(x⃗, y, z⃗) ∈ PR∗ and λw⃗.f(w⃗) ∈ PR, then
R(x⃗, f(w⃗), z⃗) is in PR∗.

Proof. By Proposition 3.1.17, let g ∈ PR such that

R(x⃗, y, z⃗) ≡ g(x⃗, y, z⃗) = 0, for all x⃗, y, z⃗

Then
R(x⃗, f(w⃗), z⃗) ≡ g(x⃗, f(w⃗), z⃗) = 0, for all x⃗, w⃗, z⃗

By 3.1.17, and since λx⃗w⃗z⃗.g(x⃗.f(w⃗), z⃗) ∈ PR by Grzegorczyk Ops,
we have that R(x⃗, f(w⃗), z⃗) ∈ PR∗. □
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4.1.2 Proposition. If R(x⃗, y, z⃗) ∈ R∗ and λw⃗.f(w⃗) ∈ R, then R(x⃗, f(w⃗), z⃗)
is in R∗.

Proof. Similar to that of 4.1.1. □
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4.1.3 Corollary. If f ∈ PR (respectively, in R), then its graph, z =
f(x⃗) is in PR∗ (respectively, in R∗).

Proof. Using the relation z = y and 4.1.1. □
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4.1.4 Exercise. Using unbounded search, prove that if z = f(x⃗) is in
R∗ and f is total, then f ∈ R. □

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



4.1. Bounded Quantification and Search 97

4.1.5 Definition. (Bounded Quantifiers) The abbreviations

(∀y)<zR(y, x⃗)

(∀y)y<zR(y, x⃗)

(∀y < z)R(y, x⃗)

all stand for

(∀y)
(
y < z → R(y, x⃗)

)
while correspondingly,

(∃y)<zR(y, x⃗)

(∃y)y<zR(y, x⃗)

(∃y < z)R(y, x⃗)

all stand for

(∃y)
(
y < z ∧R(y, x⃗)

)
Similarly for the non strict inequality “≤”. □
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4.1.6 Theorem. PR∗ is closed under bounded quantification.

Proof. By logic it suffices to look at the case of (∃y)<z since (∀y)<zR(y, x⃗) ≡
¬(∃y)<z¬R(y, x⃗).

Let then R(y, x⃗) ∈ PR∗ and let us give the name Q(z, x⃗) to

(∃y)<zR(y, x⃗) for convenience.

We note that Q(0, x⃗) is false (why?).
Moreover, logic says:

Q(z + 1, x⃗) ≡ Q(z, x⃗) ∨R(z, x⃗).

Thus, as the following prim. rec. shows, cQ ∈ PR.

cQ(0, x⃗) = 1

cQ(z + 1, x⃗) = cQ(z, x⃗)cR(z, x⃗) □
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4.1.7 Corollary. R∗ is closed under bounded quantification.
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4.1.8 Definition. (Bounded Search) Let f be a total number-
theoretic function of n+ 1 variables.

The symbol (µy)<zf(y, x⃗), for all z, x⃗, stands for

{
min{y : y < z ∧ f(y, x⃗) = 0} if (∃y)<zf(y, x⃗) = 0

z otherwise

So, unsuccessful search returns the first number to the right
of the search-range.

We define “(µy)≤z” to mean “(µy)<z+1”. □
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4.1.9 Theorem. PR is closed under the bounded search operation
(µy)<z. That is, if λyx⃗.f(y, x⃗) ∈ PR, then λzx⃗.(µy)<zf(y, x⃗) ∈ PR.

Proof. Set g = λzx⃗.(µy)<zf(y, x⃗) for convenience.

Then the following primitive recursion settles it:

Recall that “ ifR(z⃗) then y else w”means “ ifcR(z⃗) = 0 then y else w”.

Note that 0, 1, 2, . . . , z − 1, z =
︷ ︸︸ ︷
0, 1, 2, . . . , z − 1, z

So

g(0, x⃗) = 0

Why 0 above?

g(z + 1, x⃗) = if

name it Q(z,x⃗)︷ ︸︸ ︷
(∃y)<z

(
f(y, x⃗) = 0

)
then g(z, x⃗)

else if f(z, x⃗) = 0 then z

else z + 1 □

The iterator above (or “G-part”) is

G(z, x⃗, w)= if

same as cQ(z,x⃗)=0︷ ︸︸ ︷
Q(z, x⃗) then

rec. call here!︷︸︸︷
w

else if f(z, x⃗) = 0 then z

else z + 1 □
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4.1.10 Corollary. PR is closed under the bounded search operation
(µy)≤z.

4.1.11 Exercise. Prove the corollary. □

4.1.12 Corollary. R is closed under the bounded search operations
(µy)<z and (µy)≤z.
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Oct. 3, 2022

Consider now a set ofmutually exclusive relationsRi(x⃗), i = 1, . . . , n,
that is, Ri(x⃗) ∧Rj(x⃗) is false, for each x⃗ as long as i ̸= j.

Then we can define a function f by cases Ri from given functions fj
by the requirement (for all x⃗) given below:

f(x⃗) =



f1(x⃗) if R1(x⃗)

f2(x⃗) if R2(x⃗)

. . . . . .

fn(x⃗) if Rn(x⃗)

fn+1(x⃗) otherwise

where, as is usual in mathematics, “if Rj(x⃗)” is short for “if Rj(x⃗) is true”

and the “otherwise” is the condition ¬(R1(x⃗) ∨ · · · ∨Rn(x⃗)).
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We have the following result:

4.1.13 Theorem. (Definition by Cases) If the functions fi, i =
1, . . . , n+1 and the relations Ri(x⃗), i = 1, . . . , n are in PR and PR∗,
respectively, then so is f above.

Proof. By repeated use (Grz Ops) of if-then-else. So,

f(x⃗) = if R1(x⃗) then f1(x⃗)
else if R2(x⃗) then f2(x⃗)

...
else if Rn(x⃗) then fn(x⃗)
else fn+1(x⃗)

□

4.1.14 Corollary. Same statement as above, replacing PR and PR∗
by R and R∗, respectively.
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The tools we now have at our disposal allow easy certification of
the primitive recursiveness of some very useful functions and relations.
But first a definition:

4.1.15 Definition. (µy)<zR(y, x⃗) means (µy)<zcR(y, x⃗). □

Thus, if R(y, x⃗) ∈ PR∗ (resp. ∈ R∗), then λzx⃗.(µy)<zR(y, x⃗) ∈ PR
(resp. ∈ R), since cR ∈ PR (resp. ∈ R).
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4.1.16 Example. The following are in PR or PR∗ as appropriate:

(1) λxy.⌊x/y⌋∗ (the quotient of the division x/y).

This is another example of a nontotal function with an “obvious”
way to remove the points where it is undefined (recall λxy.xy).

Thus the symbol “⌊x/y⌋”

is extended to mean

(µz)≤x
(
(z + 1)y > x

)
(∗)

for all x, y.

▶ Pause. Why is the above expression correct?

Because setting z = ⌊x/y⌋ we have

∗For any real number x, the symbol “⌊x⌋” is called the floor of x. It succeeds in the literature (with the
same definition) the so-called “greatest integer function, [x]”, i.e., the integer part of the real number x. Thus, by
definition, ⌊x⌋ ≤ x < ⌊x⌋+ 1.
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z ≤ x

y
< z + 1

by the definition of “⌊. . .⌋”.

Thus, z is smallest such that x/y < z+1, or such that x < y(z+1).
BTW, I have no division in “x < y(z + 1)” to bother me! ◀

It follows that, for y > 0, the search in (∗) yields the “normal
math” value for ⌊x/y⌋, while it re-defines ⌊x/0⌋ as = x+ 1.
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(2) λxy.rem(x, y) (the remainder of the division x/y).

rem(x, y) = x .− y⌊x/y⌋.
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(3) λxy.x|y (x divides y).

x|y ≡ rem(y, x) = 0.

Note that if y > 0, we cannot have 0|y —a good thing!— since
rem(y, 0) = y > 0.

� Our redefinition of ⌊x/y⌋ yields, however, that 0|0, but we can live
with this in practice. �
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(4) Pr(x) (x is a prime).

Pr(x) ≡ x > 1 ∧ (∀y)≤x(y|x→ y = 1 ∨ y = x).

ALSO: Pr(x) ≡ x > 1 ∧ (∀y)<x(y|x→ y = 1).
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(5) π(x) (the number of primes ≤ x).†

The following primitive recursion certifies the claim:

π(0) = 0,

and

π(x+ 1) = if Pr(x+ 1) then π(x) + 1 else π(x).

†The π-function plays a central role in number theory, figuring in the so-called prime number theorem. See, for
example, [LeV56].
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(6) λn.pn (the nth prime).

First note that the graph y = pn is primitive recursive:

y = pn ≡ Pr(y) ∧ π(y) = n+ 1.

Next note that, for all n,

pn ≤ 22
n

(see Exercise 4.1.18 below),

thus pn = (µy)≤22n(y = pn),

which settles the claim.
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(7) λnx. exp(n, x) ( the exponent of pn in the prime factorization of x).

exp(n, x) = (µy)≤x¬(py+1
n |x).

▶ Is x a good bound? Yes! x = . . . pyn . . . ≥ pyn ≥ 2y > y.

A good bound: Allows us to search long enough. Too small a
bound might obstruct a full search. In short, if b is a good bound
then if a solution exists it will be found among the numbers 0, 1, 2, . . . , b.
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(8) Seq(x) (x’s prime number factorisation contains at least one prime,
but no gaps).

Seq(x) ≡ x > 1∧(∀y)≤x(∀z)≤x(Pr(y)∧Pr(z)∧y < z∧z|x→ y|x).
□
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4.1.17� Remark. What makes exp(n, x) “ the exponent of pn in the
prime factorisation of x”, rather than an exponent, is Euclid’s prime
number factorisation theorem: Every number x > 1 has a unique fac-
torisation —within permutation of factors— as a product of primes.

□ �
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4.1.18 Exercise. Prove by induction on n, that for all n we have
pn ≤ 22

n

.
Hint. Consider, as Euclid did,‡ p0p1 · · · pn + 1. If this number is

prime, then it is greater than or equal to pn+1 (why?). If it is composite,
then none of the primes up to pn divide it. So any prime factor of it is
greater than or equal to pn+1 (why?). □

‡In his proof that there are infinitely many primes.
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4.2. CODING Sequences

4.2.1 Definition. (Coding Sequences) Any sequence of numbers,
a0, . . . , an, n ≥ 0, is coded by the number denoted by the symbol

⟨a0, . . . , an⟩

and defined as
∏

i≤n p
ai+1
i □

Example. Code 1, 0, 3. I get 21+130+153+1

For coding to be useful, we need a simple decoding scheme.
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By Remark 4.1.17 there is no way to have z = ⟨a0, . . . , an⟩ =
⟨b0, . . . , bm⟩, unless

(i) n = m

and

(ii) For i = 0, . . . , n, ai = bi.

Thus, it makes sense to correspondingly define the decoding expres-
sions:

(i) lh(z) (pronounced “length of z”) as shorthand for (µy)≤z¬(py|z)

▶ A comment and a question:

• The comment: If py is the first prime NOT in the decom-
position of z, and Seq(z) holds, then since numbering of
primes starts at 0, the length of the coded sequence z is
indeed y.

• Question: Is the bound z sufficient? Yes!

z = 2a+13b+1 . . . p
exp(y .−1,z)
y .−1 ≥ 2 · 2 · · · 2︸ ︷︷ ︸

y times

= 2y > y

(ii) (z)i is shorthand for exp(i, z) .− 1
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Note that

(a) λiz.(z)i and λz.lh(z) are in PR.

(b) If Seq(z), then z = ⟨a0, . . . , an⟩ for some a0, . . . , an. In this case,
lh(z) equals the number of distinct primes in the decomposition of
z, that is, the length n + 1 of the coded sequence. Then (z)i, for
i < lh(z), equals ai. For larger i, (z)i = 0. Note that if ¬Seq(z)
then lh(z) need not equal the number of distinct primes in the
decomposition of z. For example, 10 has 2 primes, but lh(10) = 1.

� The tools lh, Seq(z), and λiz.(z)i are sufficient to perform decoding,
primitive recursively, once the truth of Seq(z) is established. This
coding/decoding scheme is essentially that of [Göd31], and will be the
one we use throughout these notes. �
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4.2.1. Simultaneous Primitive Recursion

Oct. 5, 2022

Start with total hi, gi for i = 0, 1, . . . , k. Consider the new functions
fi defined by the following “simultaneous primitive recursion schema”
for all x, y⃗. 

f0(0, y⃗) = h0(y⃗)
...

fk(0, y⃗) = hk(y⃗)

f0(x+ 1, y⃗) = g0(x, y⃗, f0(x, y⃗), . . . , fk(x, y⃗))
...

fk(x+ 1, y⃗) = gk(x, y⃗, f0(x, y⃗), . . . , fk(x, y⃗))

(2)

Hilbert and Bernays proved the following:
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4.2.2 Theorem. If all the hi and gi are in PR (resp. R), then so are
all the fi obtained by the schema (2) of simultaneous recursion.

Proof. Define, for all x, y⃗,

F (x, y⃗)
Def
= ⟨f0(x, y⃗), . . . , fk(x, y⃗)⟩

H(y⃗)
Def
= ⟨h0(y⃗), . . . , hk(y⃗)⟩

G(x, y⃗, z)
Def
= ⟨g0(x, y⃗, (z)0, . . . , (z)k), . . . , gk(x, y⃗, (z)0, . . . , (z)k)⟩

We readily have that H ∈ PR (resp. ∈ R) and G ∈ PR (resp. ∈ R)
depending on where we assumed the hi and gi to be. We can now
rewrite schema (2) (p.120) asF (0, y⃗) = H(y⃗)

F (x+ 1, y⃗) = G
(
x, y⃗, F

(
x, y⃗

)) (3)

▶ The 2nd line of (3) is obtained from

F (x+ 1, y⃗) = ⟨f0(x+ 1, y⃗), . . . , fk(x+ 1, y⃗)⟩
=

〈
g0

(
x, y⃗, f0(x, y⃗), . . . , fk(x, y⃗)

)
, . . . , gk

(
same as g0

)〉
=

〈
g0

(
x, y⃗,

(
F (x, y⃗)

)
0
, . . . ,

(
F (x, y⃗)

)
k

)
, . . . , gk

(
same as g0

)〉
So, for all x, y⃗, w,

G(x, y⃗, w) =
〈
g0

(
x, y⃗,

(
w
)
0
, . . . ,

(
w
)
k

)
, . . . , gk

(
same as g0

)〉
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By the above remarks, F ∈ PR (resp. ∈ R) depending on where
we assumed the hi and gi to be. In particular, this holds for each fi
since, for all x, y⃗, fi(x, y⃗) =

(
F (x, y⃗)

)
i
. □
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4.2.3 Example. We saw one way to justify that λx.rem(x, 2) ∈ PR
in 4.1.16. A direct way is the following. Setting f(x) = rem(x, 2), for
all x, we notice that the sequence of outputs (for x = 0, 1, 2, . . .) of f
is

0, 1, 0, 1, 0, 1 . . .

Thus, the following primitive recursion shows that f ∈ PR:{
f(0) = 0

f(x+ 1) = 1 .− f(x)

Here is a way, via simultaneous recursion, to obtain a proof that f ∈
PR, without using any arithmetic! Notice the infinite “matrix”

0 1 0 1 0 1 . . .

1 0 1 0 1 0 . . .

Let us call g the function that has as its sequence outputs the entries
of the second row—obtained by shifting the first row by one position
to the left. The first row still represents our f . Now

f(0) = 0

g(0) = 1

f(x+ 1) = g(x)

g(x+ 1) = f(x)

(1)

□
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4.2.4 Example. We saw one way to justify that λx. ⌊x/2⌋ ∈ PR
in 4.1.16. A direct way is the following.

⌊
0

2

⌋
= 0⌊

x+ 1

2

⌋
=

⌊x
2

⌋
+ rem(x, 2)

where rem is in PR by 4.2.3.
Alternatively, here is a way that can do it —via simultaneous recursion—

and with only the knowledge of how to add 1. Consider the matrix

0 0 1 1 2 2 3 3 . . .

0 1 1 2 2 3 3 4 . . .

The top row represents λx. ⌊x/2⌋, let us call it “f”. The bottom row
we call g and is, again, the result of shifting row one to the left by one
position. Thus, we have a simultaneous recursion

f(0) = 0

g(0) = 0

f(x+ 1) = g(x)

g(x+ 1) = f(x) + 1

(2)

□
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Chapter 5

Syntax and Semantics of Loop
Programs

Loop programs were introduced by D. Ritchie and A. Meyer ([MR67])
as program-theoretic counterpart to the number theoretic introduction
of the set of primitive recursive functions PR.

This programming formalism among other things connected the definitional
(or structural) complexity of primitive recursive functions with their
(run time) computational complexity.
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5.1. Preliminaries

Loop programs are very similar to programs written in FORTRAN,

but have a number of simplifications,

notably they lack an unrestricted do-while instruction (equivalently,
there is NO goto instruction).
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What they do have is

(1) Each program references (uses) a finite number of N-valued vari-
ables that we denote metamathematically by single letter names
(upper or lower case is all right) with or without subscripts or
primes.∗

(2) Instructions are of the following types (X, Y could be any variables
below, including the case of two identical variables):

(i) X ← 0

(ii) X ← Y

(iii) X ← X + 1

(iv) Loop X. . . end,

where “. . .” represents a sequence of syntactically valid in-
structions (which in 5.1.1 will be called a “loop program”).
The Loop part is matched or balanced by the end part as it
will become evident by the inductive definition below (5.1.1).

∗The precise syntax of variables will be given shortly, but even after this fact we will continue using signs such
as X, A, Z′, Y ′′

34 for variables—i.e., we will continue using metanotation.
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Informally, the structure of loop programs can be defined by induc-
tion:

5.1.1 Definition.

• Every ONE instruction of type (i)–(iii) standing by itself is a loop
program.

If we already have two loop programs P and Q, then so are

• P;Q, built by superposition (concatenation)

normally written vertically, without the separator “;”, like this:

P

Q

and,

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



5.1. Preliminaries 129

• for any variable X (that may or may not be in P ),

Loop X; P ; end, is a program,

called the loop closure (of P ),

and normally written vertically without separators “;” like this:

Loop X

P

end

□
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5.1.2 Definition. The set of all loop programs will be denoted by L.

□

The informal semantics of loop programs are precisely those given
in [Tou12].

They are almost identical to the semantics of the URM programs.
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5.2. Semantics of Loop Programs

5.2.1 Definition. (Semantics)

1. A loop program terminates “if it has nothing to do”, that is,

If the current instruction is EMPTY.

2. All three assignment statements behave as in any programming lan-
guage,

and after execution of any such instruction, the instruction below
it (if any) is the next CURRENT instruction.

3. When the instruction

“Loop X; P; end”

becomes current, its execution DOES (a) or (b) below:

▶ We view the Loop-end construct as an “instruction” just as a
begin-end block is in, say, Pascal or C. ◀

(a) NOTHING, if X = 0 at that time

and program execution moves to the first instruction below the
loop.

(b) If X = a > 0 initially, then the instruction execution has
the same effect as the program
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a copies


P

P
...

P

□
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So, the semantics of Loop-end are such that the num-
ber of times around the loop is NOT affected if the pro-
gram CHANGES X by an assignment statement inside
the loop!
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5.3. Loop Programs as (Computable) Functions

5.3.1 Definition. The symbol P X⃗n

Y has exactly the same meaning as
for the URMs, but here “P” is some loop program.

It is the function computed by loop program P if we use X⃗n =
X1, X2, . . . , Xn as the input and Y as the output variables. As in
URMs, an “agent” that is NOT involved in the computation initialises
the input variables, reads the output from Y when the program ends
(they all end) and also intialises all non-input variables to zero (0). □

All P X⃗n
Y are total.

This is trivial to prove by induction on the formation of P —that
ALL loop Programs Terminate.

Basis: Let P be a one-instruction program. By 1 and 3 of 5.2.1,
such a program terminates.

I.H. Fix and Assume for programs P and Q.

I.S.

• What about the program

P

Q
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By the I.H. starting at the top of program P we eventually over-
shoot it and make the first instruction of Q current.

By I.H. again, we eventually overshoot Q and the whole computa-
tion ends.

• What about the program

LoopX;P ; end

Well, if X = 0 initially, then this terminates (does nothing).

So suppose X has the value a > 0 initially.

Then the program behaves like

a copies


P

P
...

P

By the I.H. for each copy of P above when started with its first instruction,
the instruction pointer of the computation will eventually overshoot
the copy’s last instruction.

But then starting the computation with the 1st instruction of the
1st P , eventually the computation executes the 1st instruction of
the 2nd P ,
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then, eventually, that of the 3rd P . . .

and, then, eventually, that of the last (a-th) P .

We noted that each copy of P will be overshot by the computation;
THUS the overall computation will be over after the LAST copy
has been overshot. PROVED!
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5.3.2 Definition. We define the set of loop programmable functions,
L:

The symbol L stands for {P X⃗n

Y : P ∈ L}. □
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5.3.1. “Programming” Examples

Refer to the Examples 4.2.3 and 4.2.4, of λx.rem(x, 2) and λx.⌊x/2⌋
earlier.

If we let f = λx.rem(x, 2) we saw that the following sim. recursion
computes f .


f(0) = 0

g(0) = 1

f(x+ 1) = g(x)

g(x+ 1) = f(x)

(1)

As a loop program this is implemented as the program P below
—that is, f = PX

F .

G← G+ 1
Loop X
T ← F

F ← G

G← T

end
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As for λx.⌊x/2⌋ we saw earlier that if f = λx.⌊x/2⌋ then we have:


f(0) = 0

g(0) = 0

f(x+ 1) = g(x)

g(x+ 1) = f(x) + 1

(2)

We translate the above recursion easily to

Loop X

T ← F

F ← G
T ← T + 1
G← T

end

If P is the name of the above program, then PX
F = f .
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Subtracting by adding!
The program QX

X below computes λx.x .− 1.

How?

X lags behind T by one. At the end of the loop T holds the original
value of X, but X is ONE behind its original value!

T ← 0
Loop X
X ← T

T ← T + 1
end
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Addition

Program P below computes λxy.x+ y as PXY
Y .

Loop X
Y ← Y + 1
end
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Multiplication

Program Q below computes λxy.x× y as QXY
Z .

Loop X
Loop Y
Z ← Z + 1
end

end

Why? Because we add 1 —X × Y times— to Z that starts as 0.
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5.4. PR ⊆ L

Oct. 17, 2022

5.4.1 Theorem. PR ⊆ L.

Proof. By induction on derivation length n of f and brute-force pro-
gramming we are proving THIS property of ALL f ∈ PR:

“f is loop programmable”.

Basis (Derivation length n = 1; Initial Functions of PR):

λx.x+ 1 is PX
X where P is X ← X + 1.

Similarly, λx⃗n.xi is P
X⃗n

Xi
where P is

X1 ← X1;X2 ← X2; . . . ;Xn ← Xn

The case of λx.0 is as easy.
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I.H. Assume claim for derivation length n ≤ k.

I.S. Prove for n = k + 1. So let

f1, f2, . . . , fk, f

be a derivation of f .
Cases:

1. f is initial. This has already been argued.

2. f is the result of Grzegorczyk substitution† using two of the
fi, say, fm and ft where f = λx⃗z⃗y⃗.ft(x⃗, fm(z⃗), y⃗).

By the I.H. fm, ft are loop programmable, say fm = M z⃗
w and

ft = T x⃗wy⃗
u where the loop programs T and M , wlg, have only

the variable w common.

Then f is (
M

T

)x⃗z⃗y⃗

u

†We have been using substitution for a while as an alternative to composition.
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3. f = prim(h, g) where h and g are among the fi. So let h = H Y⃗
Z

and g = GX,Y⃗ ,Z
Z where H and G are in L.

We indicate in pseudo-code how to compute f = prim(h, g).

We have

f(0, y⃗n) = h(y⃗n)

f(x+ 1, y⃗n) = g(x, y⃗n, f(x, y⃗n))

Program the above as follows:

The pseudo-code is

z← h(y⃗n) Computed as H Y⃗n

Z

i← 0

Loop x

z ← g(i, y⃗n, z) Computed as GI,Y⃗n,Z
Z

i← i+ 1

end

See the similar more complicated programming for URMs to recall
precautions needed to avoid side-effects. For example, I must be
read-only in the G-program and Y⃗n must be read only in both H
and G. X does not occur in G or H —just ensures going round
the loop a times, where a is the original value of X. The last value
of i used in the blue line is a− 1. □
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5.5. L ⊆ PR

To handle the converse of 5.4.1 we will simulate the computation of
any loop program P by an array of primitive recursive functions.

5.5.1 Definition. For any P ∈ L and any variable Y in P , the symbol

PY is an abbreviation of P X⃗n

Y , where X⃗n are all the variables that occur
in P . □

5.5.2 Lemma. For any P ∈ L and any variable Y in P , we have that
PY ∈ PR.

Proof. We do induction on the way loop-programs are built:

(A) For the Basis, we have cases:

• P is X ← 0. Then PX = PX
X = λx.0 ∈ PR.

• P is X ← Y . Then PX = PXY
X = λxy.y ∈ PR, while PY =

PXY
Y = λxy.y ∈ PR.

• P is X ← X + 1. Then PX = PX
X = λx.x+ 1 ∈ PR
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Let us next do the induction step:

(B) P is Q;R.

(i) Case where NO variables are common between Q and R.

Let the Q variables be z⃗k and the R variables be u⃗m.

• What can we say about
(
Q;R

)
zi
?

Consider λz⃗k.f(z⃗k) = Qzi.

f ∈ PR by the I.H.

But then, so is λz⃗ku⃗m.f(z⃗k) by Grzegorczyk Ops.

But this is
(
Q;R

)
zi
.

• Similarly we argue for
(
Q;R

)
uj

.
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(ii) Case where y⃗n are common between Q and R.

z⃗ and u⃗ —just as in case (i) above— are the NON -common
variables.

▶ Thus the set of variables of
(
Q;R

)
is y⃗nz⃗ku⃗m

Now, pick an output variable wi.

• If wi is among the zj, then we are back to the first bullet
of case (i) because nothing that R does can change zj.
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• So let the wi be a component of the vector y⃗nu⃗m instead.
This case is fully captured by the figure below. In the
figure of this page we utilise this notation:

fi = Qyi = Qy⃗nz⃗k
yi

and gj = Rwj
= Ry⃗nu⃗m

wj

inputs

outputs

inputs

outputs

Q

R
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(C) P is
Loop X

Q

end

NOTATION: Let
gj

Def
= QYj

= QY⃗n

Yj
(1)

Thus

Yj holds
† gj(y⃗n) at the end of the Q-computation (1′)

if ym is the input value in Ym, for m = 1, 2, . . . , n.

Similarly, define

fk
Def
= PYk

= PXY⃗n

Yk
, k ≥ 1, and f0

Def
= PX

Def
= PY0

= PXY⃗n

X (2)

using also the name Y0 as an alternative to the name X.

Thus

X and Yt, t ≥ 1, store fX(a, y⃗n) and ft(a, y⃗n) respectively, (2′)

at the end of the P -computation, if a is the input value
in X, i.e., in Y0, and ym is the input value in Ym, for
m = 1, 2, . . . , n.

By the I.H. all gj are in PR.

We will prove that fX ( = f0) and all ft, t ≥ 1, are also

in PR.
†Meaning “stores”, “contains”.
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There are two subcases: X is in Q; OR X is not in Q.

(a) X is not in Q: Using the notation from (1), (1′), (2), and
(2′), we show pictorially below —for a > 0— the dependency
between fi(a+ 1, y⃗n) and fm(a, y⃗n), for 1 ≤ i,m ≤ n.

y⃗n is an invariant “parameter” (as in (simultaneous) primitive
recursion). To avoid cluttering the figure we only show the
output Yi from the left box and Yk from the right box,
and don’t show the Yj with j ̸= i and j ̸= k.

Loop X; Q; end, a>0︷ ︸︸ ︷
Q;Q · · · ;Q

Yi

⃝ fi(a,y⃗n)−→
Yi

⃝ Q
Yk

⃝
gk

(
f1(a,y⃗n),...,fn(a,y⃗n)

)
−→

By the definition of the Loop X-semantics (5.2.1), the above
is the same as

Loop X; Q; end, a+1︷ ︸︸ ︷
Q;Q · · · ;Q

Yk

⃝ fk(a+1,y⃗n)−→

Therefore,

fk(a+ 1, y⃗n) = gk

(
f1(a, y⃗n), . . . , fn(a, y⃗n)

)
, for k = 1, . . . , n

and, for the basis where a = 0 (loop skipped),

fk(0, y⃗n) = yi, for k = 1, . . . , n

Moreover,

fX(a, y⃗n) = a, for all a since X —i.e., Y0— is not changed by P
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Thus fX = Un+1
1 ∈ PR and the fk, k ≥ 1, are in PR, the

latter by closure under simultaneous primitive recursion.
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(b) X is in Q:

So, let X, Y⃗n be all the variables of Q. Recall that X has the
alias Y0. The two figures above apply with trivial modifications
to allow the presence of X (Y0) in Q: See below.

Loop X; Q; end, a>0︷ ︸︸ ︷
Q;Q · · · ;Q

Yi

⃝ fi(a,y⃗n)−→
Yi

⃝ Q
Yk

⃝
gk

(
f0(a,y⃗n),f1(a,y⃗n),...,fn(a,y⃗n)

)
−→

By the definition of the Loop X-semantics (5.2.1), the above
is the same as

Loop X; Q; end, a+1︷ ︸︸ ︷
Q;Q · · · ;Q

Yk

⃝ fk(a+1,y⃗n)−→

Therefore,

fk(a+1, y⃗n) = gk

(
f0(a, y⃗n), f1(a, y⃗n), . . . , fn(a, y⃗n)

)
, for k = 0, 1, . . . , n

and, for the basis where a = 0 (loop skipped),

fk(0, y⃗n) = yi, for k = 0, 1, . . . , n

This concludes Case (b).

At the end of all this we have that, when P is a loop-closure,
then PZ ∈ PR for all Z in P . This concludes the Induction
over L and also the proof of the Lemma. □
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We can now prove

5.5.3 Theorem. L ⊆ PR.

Proof. We must show that if P ∈ L then for any choice of X⃗n, Y in P
we have

P X⃗n

Y ∈ PR

So pick a P and also X⃗n, Y in it.
Let Z⃗m the rest of the variables (the non-input variables) of P , and

let
f = PY = P X⃗nZ⃗m

Y

and

g = P X⃗n

Y

By the lemma, f ∈ PR.

But

g(X⃗n) = f(X⃗n,

m zeros︷ ︸︸ ︷
0, . . . , 0)

By Grzegorczyk substitution, g = P X⃗n

Y ∈ PR. □
All in all, we have that

PR = L
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5.6. Incompleteness of PR

We can now see that PR cannot possibly contain all the intuitively
computable total functions. We see this as follows:

(A) It is immediately believable that we can write a program that
checks if a string over the alphabet

Σ = {X, 0, 1,+,←, ; ,Loop, end}

of loop programs is a correctly formed program or not.

BTW, the symbols X and 1 above generate all the variables,

X1, X11, X111, X1111, . . .

We will not ever write variables down as what they really are
—“X 1 . . . 1︸ ︷︷ ︸

k 1s

”— but we will continue using metasymbols like

X, Y, Z,A,B,X ′′, Y ′′′23 , x, y, z
′′′
15

etc., for variables!
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(B) We can algorithmically build the list, List1, of ALL strings over Σ:

List by length; and in each length group lexicographically.†

(C) Simultaneously to building List1 build List2 as follows:

For every string α generated in List1, copy it into List2 iff α ∈ L
(which we can test by (A)).

(D) Simultaneously to building List2 build List3:

For every P (program) copied in List2 copy all the finitely many

strings PX
Y (for all choices of X and Y in P ) alphabetically (think

of the string PX
Y as “P ;X;Y ”).

At the end of all this we have an algorithmic list of all the functions
λx.f(x) of PR,

listed by their aliases, the PX
Y programs.

Let us call this list of ALL the one-argument PR FUNCTIONS

f0, f1, f2, . . . , fx, . . . (1)

Each fi is a λx.fi(x)

†Fix the ordering of Σ as listed above.
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5.6.1. A Universal function for unary PR functions

Oct. 19, 2022

At the end of all this we got a universal or enumerating function
U (PR) for all the unary functions functions in PR.

That is the function of TWO arguments

U (PR) = λix.fi(x) (2)

U (PR)(
prog

i ,
data
x )︸ ︷︷ ︸

programmable computer

= fi(x)

What do I mean by “Universal”?

5.6.1 Definition. U (PR) of (2) is universal or enumerating for all the
unary functions of PR meaning it has two properties:

1. If g ∈ PR is unary, then there is an i such that

g = λx.U (PR)(i, x)

and

2. Conversely, for every i ∈ N, λx.U (PR)(i, x) ∈ PR. □
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5.6.2 Theorem. The function of two variables, λix.U (PR)(i, x) is com-
putable informally.

Proof. Here is how to calculate U (PR)(i, x) for each given i and a:

1. Find the i-th PX
Y in the enumeration (1) that we have built in (D)

above. That is, the fi in List3.

This does NOT mean we HAVE an infinite List sitting there:

It means: build List1 and simultaneously the lists List2 and List3
and stop once you got the i-th element of the last List enumerated.

2. Now, run the PX
Y you just found with input a into X. This

terminates!

After termination Y holds fi(a) = U (PR)(i, a). □

� Important. We repeat for posterity TWO by-products of 5.6.1
and 5.6.2:

• The informally computable Enumeration function U (PR) is total.

• λx.U (PR)(i, x) = fi for all i.

�
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5.6.3 Theorem. U (PR) is NOT primitive recursive.

Proof. If it is, then so is λx.U (PR)(x, x)+1 by Grzegorczyk operations.
As this is a unary PR function, we must have an i such that

fi(x), for some x︷ ︸︸ ︷
U (PR)(x, x) + 1 = U (PR)(i, x), for all x (3)

Setting i into x in (3) we get the contradiction

U (PR)(i, i) + 1 = U (PR)(i, i) □

5.6.4� Remark. Thus λix.U (PR)(i, x) acts as the COMPILER of a
stored program computer:

You give it a (pointer to a) PROGRAM i and DATA x and it
simulates the Program (at address) i on the Data x!

We have just learnt in the above theorem that this compiler CAN-
NOT be programmed in the Loop-Programs Programming
Language! □

�
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Chapter 6

A user-friendly Introduction to
(un)Computability
and Unprovability
via “Church’s Thesis”

Computability is the part of logic that gives a mathematically pre-
cise formulation to the concepts algorithm, mechanical procedure, and
calculable function (or relation). Its advent was strongly motivated,
in the 1930s, by Hilbert’s program, in particular by his belief that
the Entscheidungsproblem, or decision problem, for axiomatic theories,
that is, the problem “Is this formula a theorem of that theory?” was
solvable by a mechanical procedure that was yet to be discovered.

Now, since antiquity, mathematicians have invented “mechanical
procedures”, e.g., Euclid’s algorithm for the “greatest common di-
visor”,† and had no problem recognising such procedures when they
encountered them. But how do you mathematically prove the nonex-
istence of such a mechanical procedure for a particular problem? You
need a mathematical formulation of what is a “mechanical procedure”
in order to do that!

Intensive activity by many (Post [Pos36, Pos44], Kleene [Kle43],
†That is, the largest positive integer that is a common divisor of two given integers.
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Church [Chu36b], Turing [Tur37], Markov [Mar60]) led in the 1930s
to several alternative formulations, each purporting to mathematically
characterise the concepts algorithm, mechanical procedure, and calcula-
ble function. All these formulations were quickly proved to be equiva-
lent; that is, the calculable functions admitted by any one of them were
the same as those that were admitted by any other. This led Alonzo
Church to formulate his conjecture, famously known as “Church’s The-
sis”, that any intuitively calculable function is also calculable within
any of these mathematical frameworks of calculability or computabil-
ity.†

By the way, Church proved ([Chu36a, Chu36b]) that Hilbert’s Entschei-
dungsproblem admits no solution by functions that are calculable within
any of the known mathematical frameworks of computability. Thus, if
we accept his “thesis”, the Entscheidungsproblem admits no algorith-
mic solution, period!

The eventual introduction of computers further fueled the study of
and research on the various mathematical frameworks of computation,
“models of computation” as we often say, and “computability” is nowa-
days a vibrant and very extensive field.

†I stress that even if this sounds like a “completeness theorem” in the realm of computability, it is not. It is just
an empirical belief, rather than a provable result. For example, Péter [P6́7] and Kalmár [Kal57], have argued that it
is conceivable that the intuitive concept of calculability may in the future be extended so much as to transcend the
power of the various mathematical models of computation that we currently know.
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6.1. A leap of faith: Church’s Thesis

The aim of Computability is to mathematically capture (for example,
via URMs) the informal notions of “algorithm” and “computable func-
tion” (or “computable relation”).

A lot of models of computation, that were very different in their
syntactic details and semantics, have been proposed in the 1930s by
many people (Post, Church, Kleene, Turing) and more recently by
Shepherdson and Sturgis ([SS63]). They were all proved to compute
exactly the same number theoretic functions—those in the set P . The
various models, and the gory details of why they all do the same job
precisely, can be found in [Tou84].

This prompted Church to state his belief, famously known as “Church’s
Thesis”, that

Every informal algorithm (pseudo-program) that we propose
for the computation of a function can be implemented (made
mathematically precise, in other words) in each of the known
models of computation. In particular, it can be “programmed”
as a URM.

� We note that at the present state of our understanding the concept
of “algorithm” or “algorithmic process”, there is no known way to
define an “intuitively computable” function—via a pseudo-program of
sorts—which is outside of P .†

Thus, as far as we know, P appears to formalise the largest—i.e.,
most inclusive—set of “intuitively computable” functions known.

This “empirical” evidence supports Church’s Thesis. �

Church’s Thesis —acronym CT— is not a theorem. It can never be,
as it “connects” precise mathematical objects (URM, P) with impre-
cise informal ones (“algorithm”, “computable function”).

†In the so-called relativised computability (with partial oracles) Church’s Thesis fails [Tou86].
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It is simply a belief that has overwhelming empirical backing, and
should be only read as an encouragement to present algorithms
in “pseudo-code”—that is, informally.

In the literature, Rogers ([Rog67], a very advanced book) heavily
relies on CT. On the other hand, [Dav58, Tou84, Tou12] never use CT,
and give all the necessary constructions (implementations) in their full
gory details —that is the price to pay, if you avoid CT.
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� Here is the template of how to use CT:

• We completely present —that is, no essential detail is missing—
an algorithm in pseudo-code.

▶BTW, “pseudo-code” does not mean “sloppy-code”!◀

• We then say: By CT, there is a URM that implements our al-
gorithm. Hence the function that our pseudo code computes is in
P .

�

6.2. The Universal and S-m-n Theorems

We note that

Exactly the same technique (used for unary PR functions in the
previous chapter) —building three algorithmically generated Lists—
works if we apply it to all Mx

y where M runs over all URMs.
That is, List3 enumerates all possible unary functions of P as

Mx
y . We can indicate this listing of unary functions Mx

y as

ϕ0, ϕ1, ϕ2, . . . , ϕi, . . .

Correspondingly, we have a universal function λix.ϕi(x) for P unary
functions that we will denote by “h” —that is

h
Def
= λix.ϕi(x)

Since every λx.f(x) ∈ P is an Mx
z , that is, a ϕi we have that

Given a unary f in P . Then, for some i, h(i, x) = f(x), for all x.
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Kleene’s “universal function theorem” states that h ∈ P .

6.2.1 Theorem. (Universal function theorem) The universal func-
tion is computable.

Proof. By CT:
Here is how the universal h is computed in pseudo code

• Given input i and x.

• Generate the listing of the Nw
z long enough and stop as soon as

the i-th entry was generated. Say, this entry is Mx
y .

• Now run program M with x inputed into the input program-
variable x. If and when M stops, then we return the value held in
the program-variable y of M .

By CT, the three-bullet algorithm (pseudo-program) above can be im-
plemented as a URM. So h is partial computable. □

� Hmm. Can we not imitate the proof that U (PR) is not primitive recur-
sive to show that λxy.h(x, y) is not partial recursive?

We cannot!

Suppose we went like this:

OK. If λxy.h(x, y) is in P (as we argued by CT)† then so is λx.h(x, x) + 1
by Grzegorczyk substitution. As h is universal, for some i and all x
we have h(i, x) = h(x, x) + 1 and specifically

h(i, i) = h(i, i) + 1 (1)

A contradiction, right?

Nope. We cannot be sure that the two sides of (1) are necessarily
defined. If undefined then (1) is true. No contradiction! �

†WHAT?! Now you doubt Mr. Church?!
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The notation “ϕi(x)” is due to Rogers ([Rog67]).

� Calling x the “program” for λy.ϕx(y) is not exact, but is eminently
apt: x is just a number, not a set of URM instructions; but this number
is the address (location) of a URM program for λy.ϕx(y). Given the
address, we can retrieve the program from a list via a computational
procedure, in a finite number of steps!

In the literature the address x in ϕx is called a ϕ-index. So, if f = ϕi
then i is one of the infinitely many addresses where we can find how
to program f . �
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Oct. 24, 2022

Another fundamental theorem in computability is the Parametrisa-
tion or Iteration or also “S-m-n” theorem of Kleene.

6.2.2 Theorem. (Parametrisation theorem) For every λxy.g(x, y) ∈
P there is a function λx.f(x) ∈ R such that

g(x, y) = ϕf(x)(y), for all x, y (1)
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� This says that given a programM that computes the function g asMuv
z

with u receiving the input value x and v receiving the input value y,
we can, for any fixed value x, construct a new program located in
position f(x) of the algorithmic enumeration of all Nw

w′ —the con-
struction (of this address) effected by the total computable function f .
The program at address f(x) “knows” the value x, it is “hardwired” in
its instructions, thus it does not receive the value x as a “read” input.

This hardwiring is effected by adding to program M a new first
instruction, namely, 1 : u ← x. The original first instruction of M is
now the 2nd of the modified program. Indeed all instructions ofM are
pushed down (their addresses increase by 1).

M

M

0

1

2

N

So the new program at location f(x) of the listing, and the original
program for g = Muv

z yield the same answer for the arbitrary fixed x,
and all input values y “read” into the variable v, as long as the the
variable u gets the same value x in both programs. �
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Proof. Of the S-m-n theorem. The proof is encapsulated by the pre-
ceding figure.

It is clear that

1. We can construct program N(x)vu given x and program Muv
u .

2. We call its location in “List3” “f(x)” to indicate dependency on
x.

All that remains to argue is that this address, λx.f(x) is total com-
putable. Well,

• Given Muv
z .

• Given x.

• build N(x) from M as indicated in the figure above.

• Go down the list of all Nw
w′ and keep comparing, until you find

N(x)vz .

• Output the location, f(x), of N(x)vz . YouWILL find said location
due to the underlined “all” above. So f is total.

By CT all informal computations here (building N(x) fromM and the
process for finding f(x) for the given x) can be done by URMs. Thus,
f ∈ R. □
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6.3. Unsolvable “Problems”
The Halting Problem

Some of the comments below (and Definition 6.3.1) occurred already in
earlier posted Notes. We revisit and introduce some additional termi-
nology (e.g., “decidable”).

A number-theoretic relation is some set of n-tuples —n ≥ 1—
from N. A relation’s outputs are t or f (or “yes” and “no”). However,
a number-theoretic relation must have values (“outputs”) also in N.

� Thus we re-code t and f as 0 and 1 respectively. This convention is
preferred by Recursion Theorists (as people who do research in Com-
putability like to call themselves) and is the opposite of the re-coding
that, say, the C language employs (0 for f and non-zero for t). �

6.3.1 Definition. (Computable or Decidable relations) “A rela-
tion Q(x⃗n) is computable, or decidable” or “solvable” means that
the function

cQ = λx⃗n.

{
0 if Q(x⃗n)

1 otherwise

is in R.
The collection (set) of all computable relations we denote by R∗.

Computable relations are also called recursive.
By the way, we call the function λx⃗n.cQ(x⃗n) —which does the re-

coding of the outputs— the characteristic function of the relation Q
(“c” for “characteristic”). □
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� Thus, “a relation Q(x⃗n) is computable or decidable” means that some
URM computes cQ. But that means that some URM behaves as fol-
lows:

On input x⃗n, it halts and outputs 0 iff x⃗n satisfies Q (i.e., iff Q(x⃗n)),
it halts and outputs 1 iff x⃗n does not satisfy Q (i.e., iff ¬Q(x⃗n)).

We say that the relation has a decider, i.e., the URM that decides
membership of any tuple x⃗n in the relation.

�

6.3.2 Definition. (Problems) A “Problem” is a formula of the type
“x⃗n ∈ Q” or, equivalently, “Q(x⃗n)”.

Thus, by definition, a “problem” is a membership question. □
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6.3.3 Definition. (Unsolvable Problems) A problem “x⃗n ∈ Q” is
called any of the following:

Undecidable
Recursively unsolvable
or just
Unsolvable
iff Q /∈ R∗—in words, iff Q is not a computable relation. □

Here is the most famous undecidable problem:

ϕx(x) ↓ (1)

A different formulation uses the set

K = {x : ϕx(x) ↓}† (2)

that is, the set of all numbers x, such that machine Mx on input x
has a (halting!) computation.
K we shall call the “halting set”, and (1) we shall the “halting

problem”.

Clearly, (1) is equivalent to

x ∈ K

†All three [Rog67, Tou84, Tou12] use K for this set, but this notation is by no means standard. It is unfortunate
that this notation clashes with that for the first projection K of a pairing function J . However the context will
manage to fend for itself!
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6.3.4 Theorem. The halting problem is unsolvable.

Proof. We show, by contradiction, that K /∈ R∗.

Thus we start by assuming the opposite.

Let K ∈ R∗ (3)

that is, we can decide membership in K via a URM, or, what is the
same, we can decide truth or falsehood of ϕx(x) ↓ for any x:

Consider then the infinite matrix below, each row of which denotes
a function in P as an array of outputs, the outputs being numerical,
or the special symbol “↑” for any undefined entry ϕx(y).

� By 6.2.1 and the comments following it, each one argument function
of P are in some row (as an array of outputs). �

ϕ0(0) ϕ0(1) ϕ0(2) . . . ϕ0(i) . . .

ϕ1(0) ϕ1(1) ϕ1(2) . . . ϕ1(i) . . .
ϕ2(0) ϕ2(1) ϕ2(2) . . . ϕ2(i) . . .
...

ϕi(0) ϕi(1) ϕi(2) . . . ϕi(i) . . .
...

We will show that under the assumption (3) that we hope to con-
tradict the flipped diagonal —flipping all ↑ red entries to ↓ and vice
versa; (3) says we can tell via a URM decider whether ϕx(x) ↓ or not—
represents a partial recursive function and hence must fit the matrix
along some row i since we have all ϕi captured in the matrix.
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On the other hand, after flipping the diagonal the modified-diagonal
function constructed, namely,

ϕ0(0), ϕ1(1), ϕ2(2), . . . , ϕi(i), . . .

cannot fit.

We say we performed a “diagonalisation”.

In more detail, or as most texts present this, we have defined the
flipped diagonal for all x as

d(x) =

{
↓ if ϕx(x) ↑
↑ if ϕx(x) ↓

The above “diagonalisation” shows that said diagonal does not fit as a
row in the matrix. We will get a contradiction if we also show that it
must fit!

Strictly speaking, the above definition by cases does not define d
since the “↓” in the top case is not a value; it is ambiguous. Easy to
fix:

Say,

d(x) =

{
42 if ϕx(x) ↑
↑ if ϕx(x) ↓

(4)

Here is why the function in (4) is partial computable:

Given x, do:

• Use the decider for K (for ϕx(x) ↓, that is) —assumed to exist by
(3)— to test which condition obtains in (4); top or bottom.

• If the top condition is true, then we return 42 and stop.
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• If the bottom condition holds, then transfer to an infinite loop:

while 1 = 1 do

end

By CT, the 2-bullet program has a URM realisation, so d is com-
putable.

Say now
d = ϕi (5)

What can we say about d(i) = ϕi(i)? Well, we have two cases:

Case 1. ϕi(i) ↓. Then we are in the bottom case of (4). Thus d(i) ↑.
But we also have d(i) = ϕi(i) by (5), and our case assumes
ϕi(i) ↓, that is, d(i) ↓; a contradiction.

Case 2. ϕi(i) ↑. This leads to a contradiction too, since d(i) = 42
in this case, thus, d(i) ↓. But by (5) d(i) = ϕi(i), so we must
also have d(i) ↑; contradiction once more.

So we reject (3). □
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In terms of theoretical significance, the above is the most significant
unsolvable problem that enables the process of finding more! How?

As an Example we illustrate the “program correctness problem” (see
below).
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But how does “x ∈ K” help? Through the following technique of
reduction:

� Let P be a new problem (relation!) for which we want to see whether
y⃗ ∈ P can be solved by a URM. We build a reduction that goes like
this:

(1) Suppose that we have a URM M that decides y⃗ ∈ P , for any y⃗.
(2) Then we show how to useM as a subroutine to also solve x ∈ K,

for any x.
(3) Since the latter is unsolvable, no such URM M exists! �

The equivalence problem is

Given two programsM and N can we test to see whether they
compute the same function?

� Of course, “testing” for such a question cannot be done by experiment:
We cannot just run M and N for all inputs to see if they get the same
output, because, for one thing, “all inputs” are infinitely many, and,
for another, there may be inputs that cause one or the other program
to run forever (infinite loop). �
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By the way, the equivalence problem is the general case of the “pro-
gram correctness” problem which asks

Given a program P and a program specification S, does the
program fit the specification for all inputs?

since we can view a specification as just another formalism to express
a function computation.

By CT, all such formalisms, programs or specifications, boil down to
URMs, and hence the above asks whether two given URMs compute
the same function —program equivalence.

Let us show now that the program equivalence problem cannot be
solved by any URM.
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6.3.5 Theorem. (Equivalence problem) The equivalence problem
of URMs is the problem “given i and j; is ϕi = ϕj?”

‡

This problem is undecidable.

Proof. The proof is by a reduction (see above), hence by contradiction.
We will show that if we have a URM that solves it, “yes”/“no”, then
we have a URM that solves the halting problem too!

So

Assume we have a (URM) E for the equivalence problem. (‡)

Let us use it to answer the question “a ∈ K”—that is, “ϕa(a) ↓”,
for any a.

So, fix an a (2)

Consider these two computable functions given by:

For all x by:

Z(x) = 0

and

Z̃(x) =

{
0 if x = 0 ∧ ϕa(a) ↓
0 if x ̸= 0

Both functions are intuitively computable: For Z we already have
shown a URM M that computes it (in class). For Z̃ and input x
compute as follows:

• Print 0 and stop if x ̸= 0.

• On the other hand, if x = 0 then, using the universal function h
start computing h(a, a), which is the same as ϕa(a) (cf. 6.2.1). If
this ever halts just print 0 and halt; otherwise let it loop forever.

‡If we set P = {(i, j) : ϕi = ϕj}, then this problem is the question “(i, j) ∈ P?” or “P (i, j)?”.
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By CT, Z̃ is in P , that is, it has a URM program, say M̃ .

We can compute the locations i and j of M and M̃ respectively by
going down the list of all Nw

w′. Thus Z = ϕi and Z̃ = ϕj.

By the assumption (‡) above, we proceed to feed i and j to E. This
machine will halt and answer “yes” (0) precisely when ϕi = ϕj; will halt
and answer “no” (1) otherwise. But note that ϕi = ϕj iff ϕa(a) ↓. We
have thus solved the halting problem! A contradiction to the existence
of URM E. □
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Chapter 7

More (Un)Computability via
Reductions

Oct. 31, 2022

This is Part II of our (Un)Computability notes. We introduce “half-
computable” relations Q(x⃗) here. These play a central role in Com-
putability.

The term “half-computable” describes them well: For each of these
relations there is a URM M that will halt precisely for the inputs a⃗
that make the relation true: i.e., exactly if a⃗ ∈ Q or equivalently Q(⃗a)
is true.

For the inputs that make the relation false —b⃗ /∈ Q— M loops for-
ever. That is, M verifies membership but does not yes/no-decide it by
halting and “printing” the appropriate 0 (yes) or 1 (no).

Can’t we tweak M into M ′ that is a decider of such a Q? No, not
in general!

For example, our halting set K does have a verifier but no decider!
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(The latter we know: having a decider means K ∈ R∗ and we know
that this NOT the case).

Why does a verifier exist for x ∈ K?

Well, x ∈ K iff ϕx(x) ↓ iff h(x, x) ↓.

A verifier for “x ∈ K” is any URM M that computes λx.h(x, x).

Since the “yes” of a verifier M is signalled by halting but the “no”
is signalled by looping forever, the definition below does not require
the verifier to print 0 for “yes”. Here “yes” equals “halting”.
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7.1. Semi-decidable relations (or sets)

7.1.1 Definition. (Semi-recursive or semi-decidable sets)
A relationQ(x⃗n) is semi-decidable or semi-recursive—what we called

suggestively “half-computable” above—

iff

there is a URM, M , which on input x⃗n has a (halting!) compu-
tation iff x⃗n ∈ Q. The output of M is unimportant!

A more mathematically precise way to say the above is:

A relation Q(x⃗n) is semi-decidable or semi-recursive iff there is an
f ∈ P such that

Q(x⃗n) ≡ f(x⃗n) ↓ (1)

Since f ∈ P is some M x⃗n
y , M is a verifier for Q.

The set of all semi-decidable relations we will denote by P∗.† □

†This is not a standard symbol in the literature. Most of the time the set of all semi-recursive relations has no
symbolic name! We are using this symbol in analogy to R∗—the latter being fairly “standard”.
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The following figure shows the two modes of handling a query, “x⃗n ∈
A”, by a URM.

A  Decider

"yes"=print"0"
andhalt

"yes"=justhalt.
Output is irrelevant

"no"=print"1"
andhalt "no"=loop

for ever

input input

A Verifier

A URM for the

    problem
A URM for the

     problem

Here is an important semi-decidable set.

7.1.2� Example. K is semi-decidable. To work within the formal def-
inition (7.1.1) we note that the function λx.ϕx(x) is in P via the uni-
versal function theorem λx.ϕx(x) = λx.h(x, x) and we know h ∈ P .

Thus x ∈ K ≡ h(x, x) ↓ settles it. By Definition 7.1.1 (statement
labeled (1)) we are done. □ �
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7.1.3� Example. Any recursive relation A is also semi-recursive.
That is,

R∗ ⊆ P∗
Indeed, intuitively, all we need to do to convert a decider for x⃗n ∈ A

into a verifier is to “intercept” the “print 1”-step and replace it by an
“infinite loop”,

while(1 = 1)
{
}

By CT we can certainly do that via a URM implementation.

A more elegant way (which still invokes CT) is to say, OK: Since
A ∈ R∗, it follows that cA, its characteristic function, is in R.

Define a new function f as follows:

f(x⃗n) =

{
0 if cA(x⃗n) = 0

↑ if cA(x⃗n) = 1

This is intuitively computable (the “↑” is implemented by the same
while as above).

Hence, by CT, f ∈ P . But

x⃗n ∈ A ≡ f(x⃗n) ↓

because of the way f was defined. Definition 7.1.1 rests the case.
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One more way to do this: Totally mathematical (“formal”, as people
say incorrectly†) this time!

OK,
f(x⃗n) = if cA(x⃗n) = 0 then 0 else ∅(x⃗n)

That is using the sw function that is in PR and hence in P , as in

f(x⃗n) = if

cA(x⃗n)
↓
z = 0 then

0
↓
u else

∅(x⃗n)
↓
w

∅ is, of course, the empty function which by Grz-Ops can have any
number of arguments we please! For example, we may take

∅ = λx⃗n.(µy)g(y, x⃗n)

where g = λyx⃗n.SZ(y) = λyx⃗n.1.

In what follows we will favour the informal way (proofs by Church’s
Thesis) of doing things, most of the time. □

�

An important observation following from the above examples de-
serves theorem status:

7.1.4 Theorem. R∗ ⊂ P∗ (or R∗ ⫋ P∗).

Proof. The ⊆ part of “⊂” is Example 7.1.3 above.
The ̸= part is due to K ∈ P∗ (7.1.2) and the fact that the halting

problem is unsolvable (K /∈ R∗).
So, there are sets in P∗ (e.g., K) that are not in R∗. □

†“Formal” refers to syntactic proofs based on axioms. Our “mathematical” proofs are mostly semantic, depend
on meaning, not just syntax. That is how it is in the majority of MATH publications.
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What about K, that is, the complement

K = N−K = {x : ϕx(x) ↑}

of K?

The following general result helps us handle this question.

7.1.5 Theorem. A relation Q(x⃗n) is recursive if both Q(x⃗n) and ¬Q(x⃗n)
are semi-recursive.

� Before we proceed with the proof, a remark on notation is in order.
In “set notation” we write the complement of a set, A, of n-tuples

as A. This means, of course, Nn − A, where

Nn = N× · · · × N︸ ︷︷ ︸
n copies of N

In “relational notation” we write the same thing (complement) as

¬A(x⃗n)

Similarly,
“set notation”: A ∪B, A ∩B
“relational notation”: A(x⃗n) ∨B(y⃗m), A(x⃗n) ∧B(y⃗m) �

Back to the proof.
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Proof. We want to prove that some URM, N , decides

x⃗n ∈ Q

We take two verifiers, M for “x⃗n ∈ Q” and M ′ for “x⃗n ∈ Q”,† and run
them —on input x⃗n— as “co-routines” (i.e., we crank them simulta-
neously).

If M halts, then we stop everything and print “0” (i.e., “yes”).

If M ′ halts, then we stop everything and print “1” (i.e., “no”).

CT tells us that we can put the above —if we want to— into a single
URM, N . □

7.1.6� Remark. The above is really an “iff”-result, becauseR∗ is closed
under complement (negation) as we showed in class/Notes.

Thus, if Q is in R∗, then so is Q, by closure under ¬. By Theo-
rem 7.1.4, both of Q and Q are in P∗. □ �

†We can do that, i.e., M and M ′ exist, since both Q and Q are semi-recursive.
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7.1.7� Example. K /∈ P∗.

Now, this (K) is a horrendously unsolvable problem! This problem
is so hard it is not even semi-decidable!

Why? Well, if instead it were K ∈ P∗, then combining this with
Example 7.1.2 and Theorem 7.1.5 we would get K ∈ R∗, which we
know is not true. □ �
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7.2. Unsolvability via Reducibility

We turn our attention now to a methodology towards discovering
new undecidable problems, and also new non semi-recursive problems,
beyond the ones we learnt about so far, which are just,

1. (both undecidable) x ∈ K (halting problem), ϕi = ϕj (equiva-
lence problem)

and

2. (both not semi-recursive) x ∈ K.

In fact, we will learn shortly that ϕi = ϕj is worse than undecidable;
just like K it is not even semi-decidable.

The tool we will use for such discoveries is the concept of reducibility
of one set to another:
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7.2.1 Definition. (Strong reducibility) For any two subsets of N,
A and B, we write

A ≤m B†

or more simply
A ≤ B (1)

pronounced A is strongly reducible to B, meaning that there is a (total)
recursive function f such that

x ∈ A ≡ f(x) ∈ B (2)

We say that “the reduction is effected by f”. □

� In words, A ≤m B says that we can algorithmically solve the problem
x ∈ A if we know how to solve z ∈ B. The algorithm is:

1. Given x.

2. Given the “subroutine” z ∈ B.

3. Compute f(x).

4. Give the same answer for x ∈ A (true or false) as you did for
f(x) ∈ B.

�

When (1) (or, equivalently, (2)) holds, then, intuitively,

“A is easier than B to either decide or verify” since we can solve
or “half-solve” x ∈ A if we know how to solve or (only) half-solve
z ∈ B.

This observation has a very precise counterpart (Theorem 7.2.3 below).
But first,

†The subscript m stands for “many one”, and refers to f . We do not require it to be 1-1, that is; many (inputs)
to one (output) will be fine.
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7.2.2 Lemma. If Q(y, x⃗) ∈ P∗ and λz⃗.f(z⃗) ∈ R, then Q(f(z⃗), x⃗) ∈
P∗.

Proof. By Definition 7.1.1 there is a g ∈ P such that

Q(y, x⃗) ≡ g(y, x⃗) ↓ (1)

Now, for any z⃗, f(z⃗) is some number which if we plug into y in (1),
throughout, we get an equivalence:

Q(f(z⃗), x⃗) ≡ g(f(z⃗), x⃗) ↓ (2)

But λz⃗x⃗.g(f(z⃗), x⃗) ∈ P by Grz-Ops.

Thus, (2) and Definition 7.1.1 yield Q(f(z⃗), x⃗) ∈ P∗. □

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



7.2. Unsolvability via Reducibility 195

7.2.3 Theorem. If A ≤ B in the sense of 7.2.1, then

(i) if B ∈ R∗, then also A ∈ R∗
(ii) if B ∈ P∗, then also A ∈ P∗

Proof.

Let f ∈ R effect the reduction.

(i) Let z ∈ B be in R∗.
Then for some g ∈ R we have

z ∈ B ≡ g(z) = 0

and thus
f(x) ∈ B ≡ g(f(x)) = 0 (1)

But λx.g(f(x)) ∈ R by composition, so (1) says that “f(x) ∈ B”
is in R∗. But that is the same as “x ∈ A”.

(ii) Let z ∈ B be in P∗. By 7.2.2, so is f(x) ∈ B in P∗. But f(x) ∈ B
says x ∈ A. □
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Taking the “contrapositive”, we have at once:

7.2.4 Corollary. If A ≤ B in the sense of 7.2.1, then

(i) if A /∈ R∗, then also B /∈ R∗
(ii) if A /∈ P∗, then also B /∈ P∗

We can now use K and K as “yardsticks” —or reference “problems”—
and discover more undecidable and also non semi-decidable problems.

The idea of the corollary is applicable to the so-called “complete
index sets”.
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7.2.5 Definition. (Complete Index Sets) Let C ⊆ P and A = {x :
ϕx ∈ C}. A is thus the set ofALL programs (known by their addresses)
x that compute any unary f ∈ C:

Indeed, let f ∈ C. Thus f = ϕi for some i. Then i ∈ A. But this is
true of all ϕm that equal f .

We call A a complete (all) index (programs) set. □

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



198 7. More (Un)Computability via Reductions

7.2.6 Example. The set A = {x : ran(ϕx) = ∅} is not semi-recursive.

� Recall that “range” for λx.f(x), denoted by ran(f), is defined by

ran(f)
Def
= {x : (∃y)f(y) = x}

�

We will try to show that

K ≤ A (1)

If we can do that much, then Corollary 7.2.4, part ii, will do the rest.
Well, define

ψ(x, y) =

{
0 if ϕx(x) ↓
↑ if ϕx(x) ↑

(2)

Here is how to compute ψ:

1. Given x, y, ignore y.

2. Fetch machine M at address x from the standard listing, and call
it on input x. If it ever halts, then print “0” and halt everything.

3. If it never halts, then you will never return from the call, which is
the correct specified in (2) behaviour for ψ(x, y).

By CT, ψ is in P , so, by the S-m-n Theorem, there is a recursive h
such that

ψ(x, y) = ϕh(x)(y), for all x, y

� You may NOT use S-m-n UNTIL after you have proved that
your “λxy.ψ(x, y)” is in P. �

We can rewrite this as,

ϕh(x)(y) =

{
0 if ϕx(x) ↓
↑ if ϕx(x) ↑

=

{
0 if x ∈ K
↑ if x ∈ K

(3)
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or, rewriting (3) without arguments (as equality of functions, not
equality of function calls)

ϕh(x) =

{
λy.0 if ϕx(x) ↓
∅ if ϕx(x) ↑

(3′)

In (3′), ∅ stands for λy. ↑, the empty function.

Thus,

h(x) ∈ A iff ran(ϕh(x)) = ∅
bottom case in 3′︷︸︸︷

iff ϕx(x) ↑ iff x ∈ K

The above says x ∈ K ≡ h(x) ∈ A, hence K ≤ A, and thus A /∈ P∗ by
Corollary 7.2.4, part ii. □
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Nov. 2, 2022

� Given a complete index set A = {x : ϕx ∈ C}. We want K ≤ A —or
even K ≤ A.

The technique part is this:

Purpose: Use S-m-n to obtain h ∈ R such that

ϕh(x) =

{
f if x ∈ K (same as ϕx(x) ↓)
g if x ∈ K (same as ϕx(x) ↑)

Choice of f, g:

• Case where I want K ≤ A. Then choose f to be in C but g /∈ C.
So we have

h(x) ∈ A
Def of A

iff ϕh(x) ∈ C
red type above

iff ϕh(x) = f iff x ∈ K

• Case where I want K ≤ A. Then choose g to be in C but f /∈ C.
So we have

h(x) ∈ A
Def of A

iff ϕh(x) ∈ C
red type above

iff ϕh(x) = g iff x ∈ K

�
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7.2.7 Example. The set B = {x : ϕx has finite domain} is not semi-
recursive.

This is really easy (once we have done the previous example)! All
we have to do is “talk about” our findings, above, differently!

We use the same ψ as in the previous example, as well as the same
h as above, obtained by S-m-n.

Looking at (3′) above we see that the top case has infinite domain,
while the bottom one has finite domain (indeed, empty). Thus,

h(x) ∈ B iff ϕh(x) has finite domain

bottom case in 3′︷︸︸︷
iff ϕx(x) ↑

The above says x ∈ K ≡ h(x) ∈ B, hence B /∈ P∗ by Corollary 7.2.4,
part ii. □
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7.2.8 Example. Let us mine (3′) twice more to obtain two more im-
portant undecidability results.

1. Show that G = {x : ϕx is a constant function} is undecidable.

We (re-)use (3′) of 7.2.6. Note that in (3′) the top case defines
a constant function, but the bottom case defines a non-constant.
Thus

h(x) ∈ G ≡ ϕx = λy.0 ≡ x ∈ K
Hence K ≤ G, therefore G /∈ R∗.

2. Show that I = {x : ϕx ∈ R} is undecidable. Again, we retell what
we can read from (3′) in words that are relevant to the set I:

h(x) ∈ I ∅ /∈ R!≡ ϕx = λy.0 ≡ x ∈ K

Thus K ≤ I, therefore I /∈ R∗. □
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7.2.9� Example. (The Equivalence Problem, again) We now re-
visit the equivalence problem and show it is more unsolvable than
we originally thought (cf. 6.3.5): The relation ϕx = ϕy is not semi-
decidable.

By 7.2.2, if the 2-variable predicate above is in P∗ then so is λx.ϕx =
ϕy, i.e., taking a constant for y.

Choose then for y a ϕ-index for the empty function.
So, if λxy.ϕx = ϕy is in P∗ then so is

ϕx = ∅

which is equivalent to
ran(ϕx) = ∅

and thus not in P∗ by 7.2.6. □ �
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7.2.10 Example. The set C = {x : ran(ϕx) is finite} is not semi-
decidable.

Here we cannot reuse (3′) above, because both cases —in the def-
inition by cases— have functions of finite range. We want one case
to have a function of finite range, but the other to have infinite range.

Aha! This motivates us to choose a different “ψ” (hence a different
“h”), and retrace the steps we took above.

OK, define

g(x, y) =

{
y if ϕx(x) ↓
↑ if ϕx(x) ↑

(ii)

Here is an algorithm for g:

• Given x, y.

• Use the universal program M for unary partial computable func-
tions (computes the λxy.h(x, y)) and start computing h(x, x), that
is, ϕx(x)

• If this ever halts, then print “y” and halt everything.

• If it never halts then you will never return from the call, which
is the correct behaviour for g(x, y): namely, we want g(x, y) ↑ if
x ∈ K.

By CT, g is partial recursive, thus by S-m-n, for some recursive
unary k we have

g(x, y) = ϕk(x)(y), for all x, y
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Thus, by (ii)

ϕk(x) =

{
λy.y if x ∈ K
∅ othw

(iii)

Hence,

k(x) ∈ C iff ϕh(x) has finite range

bottom case in iii︷︸︸︷
iff x ∈ K

That is, K ≤ C and we are done. □
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7.2.11 Exercise. Show that D = {x : ran(ϕx) is infinite} is undecid-
able. □

7.2.12 Exercise. Show that F = {x : dom(ϕx) is infinite} is undecid-
able. □

Enough “negativity”! Here is an important “positive result” that
helps to prove that certain relations are semi-decidable:
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7.3. Some Positive Results

Nov. 7, 2022

7.3.1 Theorem. (Projection theorem) A relation Q(x⃗n) is semi-
recursive iff there is a recursive (decidable) relation S(y, x⃗n) such that

Q(x⃗n) ≡ (∃y)S(y, x⃗n) (1)

� Q is obtained by “projecting” S along the y-co-ordinate, hence the
name of the theorem. �

Proof. If-part. Let S ∈ R∗, and Q be given by (1) of the theorem.

We show that some M semi-decides

x⃗n ∈ Q (2)

Here is how:

proc Q(x⃗n)

y ← 0 /* Initialize “search” */

while (cS(y, x⃗n) = 1) /* This call always terminates since S ∈ R∗
*/

{
y ← y + 1

}

By CT, there is a URM N that implements the above pseudo-code.
Clearly, this URM semi-decides (2).

� Did I say “search”? But of course! Trivially,

(∃y)S(y, x⃗n) ≡
(
(µy)S(y, x⃗n)

)
↓ (∗)
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But λx⃗n.(µy)S(y, x⃗n) ∈ P .† Hence Q(x⃗n) is semi-recursive by Defini-
tion 7.1.1 since, by (∗),

Q(x⃗n) ≡
(
(µy)S(y, x⃗n)

)
↓

�

Only if-part. This is more interesting because it introduces a new
proof-technique:

So, we now know that Q ∈ P∗, and want to show that there is an
S ∈ R∗ for which (1) above holds:

Well, let M semi-decide x⃗n ∈ Q.
Define S(y, x⃗n) as follows:

S(y, x⃗n)
by Def
≡


true if M on input x⃗n halts in ≤ y

computation steps

false otherwise

We argue that S(y, x⃗n) is decidable. Indeed, here is how to decide
it:

1. Enlist the help of someone who keeps track of computing time for
M , from the time the URM’s (program’s) computation starts and
onwards.

In intuitive (non mathematical) terms, this “someone” could be
the Operating System under which the program M is compiled
and executed; or you or me.

†You recall, of course, that (µy)S(y, x⃗n) is defined to mean (µy)cS(y, x⃗n).
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2. Given an input y, x⃗n, the System keeps track of elapsed compu-
tation time during M ’s computation.

This “time” could be in time units, like seconds, nanoseconds,
etc., or in instruction-execution units, that is, the number of in-
structions executed —with repetitions, of course: instruction, say,
L : . . ., if embedded in a loop, may be executed several times.
Each time counts!

The system will halt the entire process (including exiting
M even if M did not hit its stop instruction yet) as soon
as y time units have elapsed.

� It is absolutely important to remember at this point that any URM
M will continue computing in a trivial manner once it hits stop:

This “trivial manner” consists ofM going on “computing”, specif-
ically “executing” stop ad infinitum, and doing so by changing
nothing in any variable. �

3. Output Decisions at time y.

Output will be as follows :

• true (0) if M was executing stop —and probably doing so
even at earlier steps, which explains the “ ≤ y”.

• false (1) if M was not executing stop at the time the System
halted everything.

Comment. The above is the case where M needed MORE
than y steps to finish its computation (if at all).

By CT, the above algorithm, M plus Operating System plus deci-
sions on what to output, can be formalized into a URM, N , which
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decides (true/false) S, i.e., S ∈ R∗.

Now it is trivial that (1) holds (p.207), for we have the equivalences

Q(x⃗n) ≡ For some y, M , on input x⃗n, halts in ≤ y steps

That is
Q(x⃗n) ≡ For some y, S(y, x⃗) is true

or
Q(x⃗n) ≡ (∃y)S(y, x⃗)

□
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7.3.2 Example. The set A = {(x, y, z) : ϕx(y) = z} is semi-recursive.
Here is a verifier for the above predicate:

Given input x, y, z. Comment. Note that ϕx(y) = z is true iff two
things happen: (1) ϕx(y) ↓ and (2) the computed value is z.

1. Call the universal function h on input x, y.

2. If the Universal program H for h halts, then

• If the output of H equals z then halt everything (the “yes”
output).

• If the output is not equal to z, then enter an infinite loop (say
“no”, by looping).

By CT the above informal verifier can be formalised as a URM M .
But is it correct? Does it verify ϕx(y) = z?
Yes. See Comment above. □
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Chapter 8

Uncomputability;
Part III

8.1. Recursively Enumerable Sets

In this section we explore the rationale behind the alternative name
“recursively enumerable” —r.e.— or “computably enumerable” —c.e.—
that is used in the literature for the semi-recursive or semi-computable
sets/predicates.

To avoid cumbersome codings (of n-tuples, by single numbers) we
restrict attention to the one variable case in this section.

That is, our predicates are subsets of N.
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First we define:

8.1.1 Definition. A set A ⊆ N is called computably enumerable (c.e.)
or recursively enumerable (r.e.) precisely if one of the following cases
holds:

• A = ∅

OR

• A = ran(f), where f ∈ R.

□

� Thus, the c.e. or r.e. relations are exactly those we can algorithmi-
cally enumerate as the set of outputs of a (total) recursive func-
tion:

A = {f(0), f(1), f(2), . . . , f(x), . . .}

Hence the use of the term “c.e.” replaces the non technical term “algo-
rithmically” (in “algorithmically” enumerable) by the technical term
“computably”.

Note that we had to hedge and ask that A ̸= ∅ for any enumeration to
take place, because no recursive function (remember: these are total)
can have an empty range. �
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Next we prove:

8.1.2 Theorem. (“c.e.” or “r.e.” vs. semi-recursive) Any non empty
semi-recursive relation A (A ⊆ N) is the range of some (emphasis: to-
tal) recursive function of one variable.

Conversely, every set A such that A = ran(f) —where λx.f(x) is
recursive— is semi-recursive (and, trivially, nonempty).

� In short, the semi-recursive sets are precisely the same as the c.e. or
r.e. sets. For A ̸= ∅ this is the content of 8.1.2, while ∅ is r.e. by
definition and known to us to be also semi-recursive —due to ∅ ∈
PR∗ ⊆ R∗ ⊆ P∗. �
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Before we prove the theorem, here is an example:

8.1.3 Example. The set {0} is c.e. Indeed, f = λx.0, our familiar
function Z, effects the enumeration with repetitions (lots of them!)

x = 0 1 2 3 4 . . .
f(x)= 0 0 0 0 0 . . .

□

Proof. of the theorem.

(I) We prove the first sentence of the theorem. So, let A ̸= ∅
be semi-recursive.

By the projection theorem (cf. 7.3.1) there is a recursive rela-
tion Q(y, x) such that

x ∈ A ≡ (∃y)Q(y, x), for all x (1)

Thus,

for every x ∈ A some y makes Q(y, x) true. (2)

and conversely,

if Q(y, x) holds for some y, x pair, then x ∈ A. (2′)
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(2) and (2′) jointly rephrase (1).

So why not enumerate all POSSIBLE PAIRS y, x

(y = (z)0, x = (z)1)

for each z = 0, 1, 2, 3, . . .— and output x iff we find that Q(y, x)
is true?

We do exactly this!

Recall that A ̸= ∅. So fix an a ∈ A.

f(z) =

{
(z)1 if Q((z)0, (z)1)

a othw
(3)

The above is a definition by recursive cases hence
f is a recursive function, and the values x = (z)1 that it out-
puts for each z = 0, 1, 2, 3, . . . enumerate A.

The case “a” does two things:

• a is an f -output in A. So f ’s outputs are in A in both the
upper and lower case in (3).

• Ensures we are never at a loss and declare f(z) ↑ whenever
Q((z)0, (z)1) is false.
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(II) Proof of the second sentence of the theorem.

So, let A = ran(f) —where f is recursive.

Thus,
x ∈ A ≡ (∃y)f(y) = x (1)

By Grz-Ops, plus the facts that z = x is in R∗ and the assump-
tion f ∈ R,

the relation f(y) = x is recursive.

By (1) we are done by the Projection Theorem. □
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8.1.4 Corollary. An A ⊆ N is semi-recursive iff it is r.e. (c.e.)

Proof. For nonempty A this is Theorem 8.1.2. For empty A we note
that this is r.e. by 8.1.1 but also semi-recursive by ∅ ∈ PR∗ ⊆ R∗ ⊆ P∗.

□

� Corollary 8.1.4 allows us to prove some non-semi-recursiveness results
by good old-fashioned Cantor diagonalisation.

See below. �
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8.1.5 Theorem. The complete index set A = {x : ϕx ∈ R} is not
semi-recursive.

� This sharpens the undecidability result for A that we established al-
ready (cf. 7.2.8 2.). �

Proof. Since c.e. = semi-recursive, we will prove instead that A is not
c.e.

If not, note first that A ̸= ∅ —e.g., Z ∈ R and thus all ϕ-indices of
Z are in A.

Thus, theorem 8.1.2 applies and there is an f ∈ R that enumer-
ates A:

y ∈ A ≡ (∃x)f(x) = y

In words, a ϕ-index y is in A iff it has the form f(x) for some x.

Define

d = λx.1 + ϕf(x)(x) (1)

Seeing that ϕf(x)(x) = h(f(x), x) —you remember the universal h?—
we obtain d ∈ P and, by totalness, d ∈ R.

Also,

d = ϕf(i), for some i (2)
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Let us compute d(i): d(i) = 1 + ϕf(i)(i) by (1).

Also, d(i) = ϕf(i)(i) by (2),

thus
1 + ϕf(i)(i) = ϕf(i)(i)

which is a contradiction since both sides of “=” are defined. □

� One can take as d different functions, for example, either of d = λx.42+
ϕf(x)(x) or d = λx.1 .− ϕf(x)(x) works. And infinitely many other
choices do! �
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8.2. Some closure properties of decidable and semi-decidable
relations

We already know that

8.2.1 Theorem. R∗ is closed under all Boolean operations,

¬,∧,∨,→,≡

as well as under (∃y)<z and (∀y)<z.

How about closure properties of P∗?
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8.2.2 Theorem. P∗ is closed under ∧ and ∨. It is also closed under
(∃y), or, as we say, “under projection”.

Moreover it is closed under (∃y)<z and (∀y)<z.
It is not closed under negation (complement), nor under (∀y).

Proof.

1. Let Q(x⃗n) be semi-decided by a URM M , and S(y⃗m) be semi-
decided by a URM N .

Here is how to semi-decide Q(x⃗n) ∨ S(y⃗m):

Given input x⃗n, y⃗m, we call machine M with input x⃗n, and ma-
chine N with input y⃗m and let them crank simultaneously (as “co-
routines”).

If either one halts, then halt everything! This is the case of “yes”
(input verified).

2. For ∧ it is almost the same, but our halting criterion is different:

Here is how to semi-decide Q(x⃗n) ∧ S(y⃗m):

Given input x⃗n, y⃗m, we call machine M with input x⃗n, and ma-
chine N with input y⃗m and let them crank simultaneously (“co-
routines”).

If both halt, then halt everything!
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3. The (∃y) is very interesting as it relies on the Projection
Theorem:

Let Q(y, x⃗n) be semi-decidable. Then, by Projection Theorem, a
decidable P (z, y, x⃗n) exists such that

Q(y, x⃗n) ≡ (∃z)P (z, y, x⃗n) (1)

It follows that

(∃y)Q(y, x⃗n) ≡ (∃y)(∃z)P (z, y, x⃗n) (2)

This does not settle the story, as I cannot readily conclude that
(∃y)(∃z)P (z, y, x⃗n) is semi-decidable because the Projection The-
orem requires a single (∃y) in front of a decidable predicate!

What do I do? Coding to the rescue!

Well, instead of saying that there are two values z and y that ver-
ify (along with x⃗n) the predicate P (z, y, x⃗n), I can say there is a
PAIR of values (z, y).

In fact I can CODE the pair as w = ⟨z, y⟩ = 2z+13y+1 —remember
coding?— and say there is ONE value, w:

(∃w)P (
z︷︸︸︷

(w)0,

y︷︸︸︷
(w)1, x⃗n)

and thus I have —by (2) and the above—

(∃y)Q(y, x⃗n) ≡ (∃w)P ((w)0, (w)1, x⃗n) (3)

But since P ((w)0, (w)1, x⃗n) is recursive by the decidability of P
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andGrz-Ops, we end up in (3) quantifying the decidable P ((w)0, (w)1, x⃗n)
with just one (∃w). The Projection Theorem now applies!

4. For (∃y)<zQ(y, x⃗), where Q(y, x⃗) is semi-recursive, we first note
that

(∃y)<zQ(y, x⃗) ≡ (∃y)
(
y < z ∧Q(y, x⃗)

)
(∗)

By PR∗ ⊆ R∗ ⊆ P∗, y < z is semi-recursive. By closure properties
established SO FAR in this proof, the rhs of ≡ in (∗) is semi-
recursive, thus so is the lhs.
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5. For (∀y)<zQ(y, x⃗), where Q(y, x⃗) is semi-recursive, we first note
that (by Strong Projection) a decidable P exists such that

Q(y, x⃗) ≡ (∃w)P (w, y, x⃗)

By the above equivalence, we need to prove that

(∀y)<z(∃w)P (w, y, x⃗) is semi-recursive (∗∗)

(∗∗) says that

for each y = 0, 1, 2, . . . , z − 1 there is a w-value wy so that
P (wy, y, x⃗) holds

Since all those wy are finitely many (z many!) there is a value u
as big asANY of them (for example, take u = max(w0, . . . , wz−1)).

Thus (∗∗) says (i.e., is equivalent to)

(∃u)(∀y)<z(∃w)≤uP (w, y, x⃗)

The blue part of the above is decidable (by closure properties of
R∗, since P ∈ R∗—you may peek at 8.2.1). We are done by strong
projection.
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6. Why is P∗ not closed under negation (complement)?

Because we know that K ∈ P∗, but K /∈ P∗.

7. Why is P∗ not closed under (∀y)?

Well,
x ∈ K ≡ (∃y)Q(y, x) (1)

for some recursive Q (Projection Theorem) and by the known fact
(quoted again above) that K ∈ P∗.

(1) is equivalent to

x ∈ K ≡ ¬(∃y)Q(y, x)

which in turn is equivalent to

x ∈ K ≡ (∀y)¬Q(y, x) (2)

Now, by closure properties of R∗ See 8.2.1), ¬Q(y, x) is recursive,
hence also is in P∗ since R∗ ⊆ P∗.

Therefore, if P∗ were closed under (∀y), then the above (∀y)¬Q(y, x)
would be semi-recursive.

But that is x ∈ K ! □
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8.3. Computable functions and their graphs

Nov. 9, 2022

We prove a fundamental result here, that

8.3.1 Theorem. λx⃗.f(x⃗) ∈ P iff the graph y = f(x⃗) is in P∗.

Proof.

• (→, that is, the Only if) Let λx⃗.f(x⃗) ∈ P . By an easy adaptation
of the proof in Example 7.3.2 it follows that y = f(x⃗) is semi-
computable.

• (←, that is, the If) Let y = f(x⃗) be semi-computable.

Here is an obvious idea: Let M be a verifier for y = f(x⃗). Pro-
gram as follows:

1. for z = 0, 1, 2, . . . do:

2. if M verified z = f(x⃗) then return (z)

� Let us emphasise: The verifier M does not compute f(x⃗) but
rather verifies when a pair z, x⃗ belongs to the graph of f . If we
knew a priori how to compute f(x⃗) we would not need to deal
with the graph and its verifier at all! �

Alas, the above idea does not work! For any z-value that is < f(x⃗)
in the above search for the “correct” z† the verifier says “no” by
looping forever! We will never reach the correct z, if there is one.‡

We must be more sophisticated in what and how we are searching
for:

†That is, such that z = f(x⃗).
‡It may well be that f(x⃗) ↑ for the given x⃗.
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By (strong projection theorem)

y = f(x⃗) ≡ (∃z)Q(z, y, x⃗) (1)

for some decidable Q. The idea of how to find the correct y, if
any, once we are given an x⃗, is to search (simultaneously!) for
a z and y that “work” —i.e., they satisfy Q(z, y, x⃗) for the given
x⃗.† So, informally, we search the sequence

w = 0, 1, 2, 3, . . .

and stop as soon as we note that Q((w)0, (w)1, x⃗) is true —if this
ever happens!

As (w)0 plays the role of z and (w)1 plays the role of y, we obviously
report (w)1 as our answer, if and when we stop the search.

Mathematically,

f(x⃗) =
(
(µw)cQ((w)0, (w)1, x⃗)

)
1

f is in P by closure properties. □

We can now settle

8.3.2 Theorem. If A = ran(f) and f ∈ P, then A ∈ P∗.

Proof. By 8.3.1 y = f(x) is semi-recursive. By closure properties of
P∗, so is (∃x)y = f(x). But (∃x)y = f(x) ≡ y ∈ ran(f), that is,
(∃x)y = f(x) ≡ y ∈ A since ran(f) = A. Done. □

†We saw this idea in the proof of Theorem 8.1.2 at the beginning of this note.
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8.4. More Unsolvability; Some tricky reductions

This section highlights a more sophisticated reduction scheme that
improves our ability to effect reductions of the type K ≤ A.

8.4.1 Example. Prove that A = {x : ϕx is a constant} is not semi-
recursive. This is not amenable to the technique of saying “OK, if
A is semi-recursive, then it is r.e. Let me show that it is not so by
diagonalisation”.

This worked for B = {x : ϕx is total} but no obvious diagonalisation
comes to mind for A.

Nor can we simplistically say, OK, start by defining

g(x, y) =

{
0 if x ∈ K
↑ othw

The problem is that if we plan next to say “by CT g is partial recur-
sive hence by S-m-n, etc.”, then the underlined part is wrong.

g /∈ P , provably! For if it is computable, then so is λx.g(x, x) by
Grz-Ops. But

g(x, x) ↓ iff we have the top case, iff x ∈ K

Thus
x ∈ K ≡ g(x, x) ↓

which proves that K ∈ P∗ using the verifier for “g(x, x) ↓”. Contra-
diction! □
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8.4.2 Example. (8.4.1 continued) Now, “Plan B” is to “approximate”
the top condition ϕx(x) ↑ (same as x ∈ K).

The idea is that, “practically”, if the computation ϕx(x) after a
“huge” number of steps y has still not hit stop, this situation approx-
imates —let me say once more— “practically”, the situation ϕx(x) ↑.

This fuzzy thinking suggests that we try next

f(x, y) =

{
0 if the computation ϕx(x) has not reached stop after y steps

↑ othw

The “othw” says, of course, that the computation of the call ϕx(x)
—or h(x, x), where h is the universal function— did halt in ≤ y steps.

Next task is to enable the S-m-n theorem application, so we must
show that f defined above is computable. Well here is an informal
algorithm:

(0) proc f(x, y)
(1) Call h(x, x), that is, ϕx(x), and keep count

of its computation steps
(2) Return 0 if ϕx(x) did not hit stop in y steps
(3) Loop forever if ϕx(x) halted in ≤ y steps

Of course, the “command” Loop forever means

“transfer to the subprogram” while 1=1 do { }

By CT, the pseudo algorithm (0)–(3) is implementable as a URM.
That is, f ∈ P .
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By S-m-n applied to f there is a recursive k such that

ϕk(x)(y) =

{
0 if ϕx(x) is still not at stop after y steps

↑ othw
(1)

Analysis of (1) in terms of the “key” conditions ϕx(x) ↑ and
ϕx(x) ↓:
(A) Case where ϕx(x) ↑.

Then, ϕx(x) did not halt in y steps, for any y!

Thus, by (1), we have ϕk(x)(y) = 0, for all y, that is,

ϕx(x) ↑ =⇒ ϕk(x) = λy.0 (2)

(B) Case where ϕx(x) ↓. Let m = smallest y such that the call ϕx(x)
—i.e., h(x, x)— ended in m steps. Therefore,

• for step counts y = 0, 1, 2, . . . ,m−1 the computation of h(x, x)
has not yet hit stop, so the top case of definition (1) holds.
We get

for y =0, 1, . . . , m− 1
ϕk(x)(y)=0, 0, . . . , 0

• for step counts y = m,m + 1,m + 2, . . . the computation of
h(x, x) has already halted (it hit stop), so the bottom case
of definition (1) holds. We get

for y =m, m+ 1, m+ 2, . . .
ϕk(x)(y)=↑, ↑, ↑, . . .

In short:

ϕx(x) ↓ =⇒ ϕk(x) =

length m︷ ︸︸ ︷
(0, 0, . . . , 0) (3)
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In

ϕk(x) =

length m︷ ︸︸ ︷
(0, 0, . . . , 0)

we depict the function ϕk(x) as an array of m output values.

� Two things: One, in English, when ϕx(x) ↓, the function ϕk(x)
is NOT a constant! Not even total!

Two,m depends on x, of course, when said x brings us to case (B).
Regardless, the non-constant / non total nature of ϕk(x) is still a

fact; just the length m of the finite array

length m︷ ︸︸ ︷
(0, 0, . . . , 0) changes. �

Our analysis yielded:

ϕk(x) =

{
λy.0 if ϕx(x) ↑
not a constant function if ϕx(x) ↓

(4)

We conclude now as follows for A = {x : ϕx is a constant}:

k(x) ∈ A iff ϕk(x) is a constant iff the top case of (4) applies iff ϕx(x) ↑

That is, x ∈ K ≡ k(x) ∈ A, hence K ≤ A. □
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8.4.3 Example. Prove (again) that B = {x : ϕx ∈ R} = {x :
ϕx is total} is not semi-recursive.

We piggy back on the previous example and the same f through
which we found a k ∈ R such that

ϕk(x) =


λy.0 if ϕx(x) ↑

length m︷ ︸︸ ︷
(0, 0, . . . , 0) if ϕx(x) ↓

(5)

The above is (4) of the previous example, but we will use different
words now for the bottom case, which we displayed explicitly in (5).

Note that

length m︷ ︸︸ ︷
(0, 0, . . . , 0) is a non-recursive (nontotal) function listed as

a finite array of outputs. Thus we have

ϕk(x) =

{
λy.0 if ϕx(x) ↑
nontotal function if ϕx(x) ↓

(6)

and therefore

k(x) ∈ B iff ϕk(x) is total iff the top case of (6) applies iff ϕx(x) ↑

That is, x ∈ K ≡ k(x) ∈ B, hence K ≤ B. □
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8.4.4 Example. An earlier Exercise asks you to prove that D = {x :
ran(ϕx) is infinite} is not recursive.

Actually, D is not semi-recursive either, a fact that furnishes an
example of a set that neither it, nor its complement are semi-recursive!

We (heavily) piggy back on Example 8.4.2 above. We want to find
j ∈ R such that

ϕj(x) =

{
inf. range if ϕx(x) ↑
finite range if ϕx(x) ↓

(∗)

OK, define ψ (almost) like f of Example 8.4.2 by

ψ(x, y) =

{
y if the computation ϕx(x) has still not hit stop after y steps

↑ othw

other than the trivial difference (function name) the important differ-
ence is that we force infinite range in the top case by outputting the
input y.

The argument that ψ ∈ P goes as the one for f in Example 8.4.2.
The only difference is that in the algorithm (0)–(3) we change “Return
0” to “Return y”.

The question ψ ∈ P settled, by S-m-n there is a j ∈ R such that

ϕj(x)(y) =

{
y if the computation ϕx(x) has not hit stop after y steps

↑ othw

(†)
Analysis of (†) in terms of the “key” conditions ϕx(x) ↑ and
ϕx(x) ↓:

(I) Case where ϕx(x) ↑.
Then, for all input values y, ϕx(x) is still not at stop after y
steps. Thus by (†), we have ϕj(x)(y) = y, for all y, that is,

ϕx(x) ↑ =⇒ ϕj(x) = λy.y (1)

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



236 8. Uncomputability; Part III

(II) Case where ϕx(x) ↓. Let m = smallest y such that the call
ϕx(x) —i.e., h(x, x)— ended in m steps. Therefore, as before
we find that for y = 0, 1, . . . ,m − 1 we have ϕj(x)(y) = y, that
is,

for y =0, 1, . . . , m− 1
ϕj(x)(y)=0, 1, . . . , m− 1

and as before,

for y =m, m+ 1, m+ 2, . . .
ϕj(x)(y)=↑, ↑, ↑, . . .

that is,

ϕx(x) ↓ =⇒ ϕj(x) = (0, 1, . . . ,m− 1) —finite range (2)

(1) and (2) say that we got (∗) —p.235— above. Thus

j(x) ∈ D iff ran(ϕj(x)) is infinite, iff we have the top case, iff ϕx(x) ↑

Thus K ≤ D via j. □
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8.5. An application of the GraphTheorem

A definition like

f(x, y) =

{
0 if x ∈ K
↑ othw

(1)

is a special case of a so-called “Definition by Positive Cases”. That is

• The cases listed explicitly (here x ∈ K) are semi-recursive, but
the “othw” is not semi-recursive (here x ∈ K). Therefore, as the
latter cannot be verified, we let the function output be undefined
in this case.

� In any definition by cases

g(x⃗) =


...

...

gi(x⃗) if Ri(x⃗)
...

...

we have

If Ri(x⃗) then gi(x⃗)

that is, we only need verify Ri(x⃗) —even if it is (primitive)recursive—
to select the answer gi(x⃗). However, in the (primitive)recursive
case the “othw” is the negation of R1(x⃗) ∨ R2(x⃗) ∨ . . . ∨ Rm(x⃗),
where Rm(x⃗) is the last explicit condition/case. By closure prop-
erties of R∗, the “othw” case is recursive as well. �

• In a Definition by Positive Cases the gi are partial recursive.
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The general form of Definition by Positive Cases is

g(x⃗) =



...
...

gi(x⃗) if Ri(x⃗)
...

...

gk(x⃗) if Rk(x⃗)

↑ othw

(2)

where the gi are in P and the Ri are in P∗.
� Note that P∗ is not closed under negation, thus the “othw” in (2) is

not in general semi-recursive. This is so in the case of (1) where the
“othw” is x ∈ K. �

Does a definition like (2) yield a partial recursive g?

Yes:

8.5.1 Theorem. g in (2), under the stated conditions, is partial re-
cursive.

Proof. We use the graph theorem, so it suffices to prove

y = g(x⃗) is semi-recursive (3)

Now, (3) is true precisely when g(x⃗) ↓ and the output is the number
y. For this to happen, some explicit condition Ri(x⃗) was true and
y = gi(x⃗) was also true. In short, y = gi(x⃗)∧Ri(x⃗) was true. Thus we
prove (3) by noting

y = g(x⃗) ≡ y = g1(x⃗)∧R1(x⃗)∨y = g2(x⃗)∧R2(x⃗)∨. . .∨y = gk(x⃗)∧Rk(x⃗)

The rhs of ≡ is semi-recursive since each Ri(x⃗) is (given) and each
y = gi(x⃗) is (gi ∈ P and 8.3.1) at which point we invoke closure
properties of P∗ (8.2.2). □

The immediate import of 8.5.1 is that, for example, we can prove
without using CT that functions given as in (1), p.237, are in P .
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Chapter 9

The Recursion Theorem and the
Theorem of Rice

Nov. 14, 2022

This chapter concludes our computability material with two impor-
tant results named in the chapter title.

The recursion theorem is actually the “2nd recursion theorem” (there
is also a “1st recursion theorem” that we will not get into). Both re-
cursion theorems are due to Kleene but the version of the 2nd given
here (and its proof) is due to Rogers.
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9.0.1 Theorem. (The 2nd Recursion Theorem) Given a recursive
unary function f , there is a number e such that ϕe = ϕf(e).

� Note that the theorem does NOT say that f(e) = e. Rather it says
that the two addresses e and f(e) have programs that compute the
same function ϕe. �

Proof. Define ψ by

ψ(x, y) =

{
ϕf(ϕx(x))(y) if ϕx(x) ↓
↑ othw

(1)

By the universal function (h) theorem and Grz Ops, λxy.ϕf(ϕx(x))(y) =
λxy.h(f(ϕx(x)), y) ∈ P .

So (1) is in P and thus (1) is a definition by semi-recursive or “pos-
itive” cases. As such, ψ ∈ P .

By S-m-n, let g ∈ R be such that ψ(x, y) = ϕg(x)(y), for all y, or,
equivalently

ϕg(x) =

{
ϕf(ϕx(x)) if ϕx(x) ↓
∅ othw

(2)

Let a be a program (address) for g and take e = ϕa(a). Of course,
ϕa(a) ↓. Thus

ϕe = ϕϕa(a) = ϕg(a)
top of (2) by ϕa(a)↓

= ϕf(ϕa(a)) = ϕf(e)

□

9.0.2 Corollary. (Kleene’s Original Version) If λxy.ψ(x, y) ∈ P,
then there is an e ∈ N such that ψ(e, y) = ϕe(y), for all y.

Proof. By S-m-n, let g ∈ R such that ψ(x, y) = ϕg(x)(y), for all x, y.
By 9.0.1 just pick e so that ϕg(e) = ϕe. □
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A major application of the recursion theorem (there are many other
major applications that are beyond the scope of these Notes) is to
provide an easy and short proof of Rice’s theorem that states “Every
nontrivial complete index set is undecidable (not recursive)”.

Rice defined a complete index set A = {x : ϕx ∈ C} to be trivial iff
A is one of ∅ or N. Else he called it nontrivial —i.e., when ∅ ≠ A ̸= N.

In popular language, and viewing (as it is normal practice) a set A
as a “property” of its members, Rice’s theorem below says that

a property of programs is decidable iff all programs have it or no
program has it.

The following proof of Rice’s theorem is attributed by Rogers ([Rog67])
to Wolpin.
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9.0.3 Theorem. (Rice) The complete index set A = {x : ϕx ∈ C} is
recursive iff it is trivial.

Proof. IF. So let A be trivial. Done since both ∅ and its complement
N are recursive (indeed primitive recursive).

ONLY IF Let A be recursive. We will argue that it must be trivial
by contradiction, so let instead A be nontrivial.

∅ ≠ A ̸= N (1)

By (1) let a ∈ A and b ∈ N− A. Define a function f by

For all x, f(x) =

{
b if x ∈ A
a othw

(2)

Since, by assumption on A, (2) is a definition by recursive cases,
f ∈ P . Being total I have

f ∈ R (3)

By construction of f I have,

For all x, x ∈ A iff f(x) /∈ A (4)

By 9.0.1 let e ∈ N be such that

ϕe = ϕf(e) (5)

Thus

e ∈ A iff ϕe ∈ C
(5)

iff ϕf(e) ∈ C iff f(e) ∈ A
We obtained e ∈ A ≡ f(e) ∈ A which contradicts (4). □
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Chapter 10

A Subset of the URM Language;
FA and NFA

This Note turns to a special case of the URM programming language
that we call Finite Automata, in short FA.

This part presents (almost) a balance of How To and Limitations of Computing
topics.

Main feature of the latter will be the so-called “Pumping Lemma”.
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10.1. The FA

The FA (programming language)† is introduced informally as a modified
and restricted URM.

“FA” is an acronym for “Finite Automaton” (plural “finite au-
tomata”).

This new URM model will have explicit “read” instructions.∗

Secondly, any specific URM under this model will ONLY have
ONE variable that we may call generically “x”.

This variable will always be of type single-digit; it cannot hold arbi-
trary integers, rather it can only hold single digits as values.

†Note that some texts look at it as a “machine”, hence the terminology “automaton”.
∗In Notes #2 we explained why explicit read instructions are theoretically as redundant as explicit write instruc-

tions are.
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The FA has no instructions other than
1) “read” —unlike the FULL URM— and
2) a simplified if-goto instruction.

� In the absence of a stop instruction, how does a computation halt?

We postulate that our modified URMs halt simply by reading some-
thing that does not belong , that is, it saw in the input stream an object
that is not a member of the input alphabet of permissible digits.

Such an “illegal” symbol serves as an end-marker of the useful
stream digits that constitute the input string over the given alpha-
bet. As such it is often called an “end-of-file” marker, in short, eof.

This eof -marker is any “illegal” symbol, that is, a symbol not in the
particular FA’s INPUT ALPHABET. �

Thus the modified URM halts if IFF it runs out of input, as this
is signaled by it reading something NOT in its input alphabet.

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



246 10. A Subset of the URM Language; FA and NFA

� Our insistence on a URM-like model for the automaton will be confined
in this brief motivational introduction and is only meant to illustrate
the indebtedness of the finite automata model to the general URM
model. �
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As it is with the URM, all FA instructions are labelled.

The FA has, for each label L, a group of instructions as follows.

The typical group-instruction of an automaton.

L :



read Comment Get the next, unread, symbol; assign to x

if x = a then goto M

if x = a′ then goto M ′

...

if x = a(n) then goto M (n)

if x = eof then halt

where L and M,M ′, . . . ,M (n) are labels —not necessarily distinct—
and a, a′, . . . , a(n) are all the possible digit values in the context of a
specific FA (program), that is, {a, a′, . . . , a(n)} IS the input alphabet .

� The empty string, λ, will NEVER be part of a FA’s input alphabet. �
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For any particular FA (program) —a particular FA, as we say (omit-
ting “program”)— its labels, in practice, are not restricted to be nu-
merical nor even to be consecutive (if numerical).

▶ However, one instruction’s placement is significant.

It is often identified by a label such as “0”, or “q0”, or some such
symbol and is placed at the very beginning of the program.

This instruction’s label is called the initial state of the specific au-
tomaton. Indeed, all labels in an automaton are called states in the
literature.

ONE STARTS an FA computation with the instruction pointed
at by the initial state.

Pause. A finite automaton does not care about the order of its
other instructions, since they will be reachable by the goto-structure
as needed wherever they are.◀

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



10.1. The FA 249

The semantics of the “typical” instruction above is:

• Read into the variable x the first unread digit-value from some
“external (to the FA) input stream” that is waiting to be read.

• Then move to the next instruction as is determined by the a(i)s (or
the eof ) in the if-cases above (p.247).
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In order to have the FA make a decision about the input string that
it just read, we (this is part of the design of the particular FA pro-
gram) partition the instruction-labels of any given FA into two types:
accepting and rejecting.

Their role is as follows: Such an FA, when it has halted,

Pause. When or if ?◀

will have finished scanning a sequence of digits —a string over its al-
phabet.

This string is accepted if the program halted while in an ac-
cepting state, otherwise the input is rejected.

10.1.1 Definition. (The Language of an FA; Regular Sets)
The language decided by a FA M is called in the literature “the

Language accepted by M”. It is, of course,

L(M)
Def
= {x : x is accepted by automaton M}

The accepted language we also call it a “Regular Set”. □
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� Since an FA cannot “write”, i.e., cannot change the contents of x —
because it does not have any of the instructions x ← c, x ← x + 1,
x ← x .− 1— we need the type of state the FA is in at the end of
scanning to “code” the yes/no (accept/reject) answer. �
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10.2. Deterministic Finite Automata and their Languages

10.2.1 Example. Consider the FA below that operates over the input
alphabet {0, 1}

0 :


read

if x = 0 then goto 0

if x = 1 then goto 1

if x = eof then halt

1 :


read

if x = 0 then goto 1

if x = 1 then goto 0

if x = eof then halt

What does this program do? Once we have the graph model, we will
elaborate on what the above automaton actually does. LATER!

In particular we will look into two cases:

• When only state 0 is accepting.

• When only state 1 is accepting.

□
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10.2.1. FA as Flow-Diagrams

Moving away from the URM-like programming language for automata,
we next consider a “flow chart” or “flow diagram” formalisation.† This
is achieved by first abstracting an instruction

L : read; if x = a then goto M (1)

as the configuration below:

L
a

Figure capturing (1) above

Thus the “read” part is implicit, while the labeled arrow that con-
nects the states L and M denotes exactly the semantics of (1). What
is just read —a— is the arrow label.

†Defining the FA form as a flow chart.
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� Therefore, an entire automaton can be viewed as a directed graph —
that is, a finite set of (possibly) labeled circles, the states, and a finite
set of arrows, the transitions, the latter labeled by members of the
automaton’s input alphabet. �
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An arrow label a in the figure above represents “if x = a then goto
M”. The arrows or edges interconnect the states. If L = M , then we
have the configuration

a

L = M

where the optional label could be L, or M , or L = M (as above), or
nothing.

In the Flow Chart Model we depict the partition of states into ac-
cepting and rejecting by using two concentric circles for each accepting
state as below.

The special start state is denoted by drawing an arrow, that comes from nowhere,
pointing to the state.
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To summarise and firm up:

10.2.2 Definition. (FA as Flow Diagrams) A finite automaton, in
short, FA, over the FINITE input alphabet Σ is a finite directed
graph of circular nodes —the states— and interconnecting edges
—the transitions— the latter being labeled by members of Σ.

We impose a restriction to the automaton’s structure:

▶ For every state L and every a ∈ Σ, there will be precisely one
edge, labeled a, leaving L and pointing to some state M (possibly,
L =M).

We say the automaton is fully specified (corresponding to the italics
in the part “For every state L and every a ∈ Σ, there will be . . . ”) and
deterministic (corresponding to the italics in the part “there will be
precisely one edge, . . . ”).

This graph depiction of a FA is called its flow diagram and is akin
to a programming “flow chart”. □
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10.2.3� Remark. (1) Thus, full specification makes the transition func-
tion total —that is, for any state-input pair (L, a) as argument, it will
yield some state as “output”.

On the other hand, determinism ensures that the transition function
is indeed a function (single-valued).

(2) On Digits. Each “legal” input symbol is a member of the
alphabet Σ, and vice versa. In the preamble of this chapter we re-
ferred to such legal symbols as “digits” in the interest of preserving
the inheritance from the URM, the latter being a number-theoretic
programming language.

But what is a “digit”? In binary notation it is one of 0 or 1. In
decimal notation we have the digits 0, 1, . . . , 9. In hexadecimal nota-
tion† we add the “digits” a, b, c, d, e, f that have “values”, in that order,
10, 11, 12, 13, 14, 15.

The objective is to have single-symbol, atomic, digits to avoid am-
biguities in string notation.

Thus, a “digit” is an atomic symbol (unlike “10” or “11”).
We will drop the terminology “digit” from now on.

Thus our automata alphabets are finite sets of symbols —any length-
ONE symbols, period. □ �

†Base 16 notation.
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10.2.4 Example. Thus, if our alphabet is A = {0, 1}, then we cannot
have the following configurations be part of a FA.

Nontotal Transition Function

0

Non-determinism

0

0

□

10.2.5 Example. The FA of the example of 10.2.1, in flow diagram
form but with no decision on which state(s) is/are accepting is given
below:

0 0

1

1

We wrote q0 and q1 for the states “0” and “1” of 10.2.1. □

Another way to define a FA without the help of flow diagrams is as
follows:
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10.2.6 Alternative Definition. (FA —Algebraically) A finite au-
tomaton, FA, is a toolbox M = (Q,A, q0, δ, F ),

‡ where

(1) Q is a finite set of states.

(2) A is a finite set of symbols; the input alphabet.

(3) q0 ∈ Q is the distinguished start state.

(4) δ : Q× A→ Q is a total function, called the transition function.

(5) F ⊆ Q is the set of accepting states; Q− F is the set of rejecting
states. □

‡“M” is generic; for “machine”.
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10.2.7� Remark. Let us compare Definitions 10.2.2 and 10.2.6.

(1) The set of states corresponds with the nodes of the graph (flow
diagram) model. It is convenient —but not theoretically necessary
in general— to actually name (label) the nodes with names from
Q.

(2) The A in the flow diagram model is not announced separately, but
can be extracted as the set of all edge labels.

(3) q0 —the start state by any name; q0 being generic— in the graph
model is recognised/indicated as the node pointed at by an arrow
that emanates from no node.

(4) δ : Q×A→ Q in the graph model is given by the arrow structure:
Referring to the figure at the beginning of 10.2.1, we have δ(L, a) =
M . □ �
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How does a FA compute? From the URM analogy, we understand
the computation of a FA consisting of successive

• read moves

• attendant changes of state based on current state-symbol pair.

• until the program halts (by reading the eof ).

• At that point we proclaim that the string formed by the stream of
symbols read is accepted or rejected according as the halted machine
is in an accepting or rejecting state.
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To formalise/mathematise FA computations as described above, we
use snapshots or Instantaneous Descriptions (of a computation), in
short IDs.

The IDs of the FA are very simple, since the machine (program) is
incapable of altering the input stream.

You do not need to keep track of how the contents of variables change.
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10.2.8� Remark. (Digression into the Prerequisite!) We recall from
discrete mathematics, that a binary relation R is a set of ordered pairs
and we prefer to write aRb instead of (a, b) ∈ R or R(a, b). For exam-
ple, we write a ≤ b if R is ≤.

We also recall that the so-called transitive closure of a relation R,
denoted R+, is defined by

aR+b
Def
≡ aRa1Ra2 . . .

a “step′′︷ ︸︸ ︷
aiRai+1 . . . am−1Rb, for some ai, i = 0, . . . ,m− 1

where we think of a as a0 and b as am.
In other words,

aR+b is true iff a can reach b in a finite number of one or more
consecutive steps of the type “aiRai+1”, for i = 0, . . . ,m − 1 as
above.

We note that

for all i, aiRai+1Rai+2 is short for aiRai+1 and ai+1Rai+2

just as a ≤ b ≤ c means a ≤ b and b ≤ c.

The reflexive transitive closure of R is denoted by R∗ and is defined
by

aR∗b
Def
≡ a = b ∨ aR+b

The following notations also are useful:

aRmb
Def
≡ aRa1Ra2Ra3Ra4 . . . am−2Ram−1Rb

that is, exactly m copies of R occur in the R-chain —or just “chain”
if R is understood—

aRa1Ra2Ra3Ra4 . . . am−2Ram−1Rb

Finally, “aR<mb” means “aRnb and n < m”. □ �
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Nov. 16, 2022

10.2.9 Definition. (FA Computations; Acceptance)

LetM = (Q,A, q0, δ, F ) be a FA, and x be an input string —that is,
a string over A that is presented as a stream of (atomic) input symbols
from A.

AnM -ID or simply ID related to x is a string of the form tqu, where
q ∈ Q is the state in the snapshot, and x = tu.

Intuitively, the expression tqu means that the computing agent, the
FA, is in state q and that the next input to process is the first symbol
of u.

processed︷︸︸︷
t q u︸︷︷︸

to be processed

If u = λ —and hence the ID is simplified to tq— then M has halted
(has read eof; no more input).

Formally, an ID of the form tq has no next ID. We call it a terminal
ID.

However, an ID of form tqau′, where a ∈ A, has a unique next ID;
this one: taq̃u′, just in case δ(q, a) = q̃.

Comment on full specification here!
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We write
tqau′ ⊢M taq̃u′

or, simply (if M is understood)

tqau′ ⊢ taq̃u′

and pronounce it “(ID) tqau′ yields (ID) taq̃u′”.

We say that M accepts the string x iff, for some q ∈ F , we have
q0x ⊢∗M xq —or, in words, ID q0x reaches the terminal accepting ID xq
in a finite number of zero or more steps.

Pause. Zero steps? Yes! If x = λ, then it is accepted without taking
any step since

initial︷︸︸︷
q0x¶ =

terminal & accepting︷︸︸︷
xq0¶

where I added “eof” as “¶” for emphasis.

The language accepted by the FA M is denoted generically by L(M)
and is the subset of A∗ —this is notation for the set of all strings over
the alphabet A§— given by L(M) = {x : (∃q ∈ F )q0x ⊢∗M xq}.

An ID of the form q0x is called a start-ID. □

§A+, by definition, is A∗ − {λ}.
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10.2.10� Remark.

(I) Of course, ⊢∗M is the reflexive transitive closure of ⊢M and there-
fore I ⊢∗M J —where I (not necessarily a start-ID) and J (not
necessarily terminal) are IDs— means that I = J or, for some
IDs Im, m = 1, . . . , n− 1, we have an ⊢M -chain

I ⊢M I1 ⊢M I2 ⊢M I3 ⊢M . . . ⊢M In−1 ⊢M J (1)

We say that we have an M -computation from I to J iff we
have I ⊢∗M J . We say simply computation if the “M -” part is
understood.
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(II) Is the Graph Model just a static way to depict a FA? No, it is
MUCH more!

There is a tight relationship between computations and paths in
a FA depicted as a graph. Compare Figure 10.1 and Display (1)
below. They both say the same thing regarding part of the
computation of some FA on the segment of the input from a1 to
an.

Indeed consider (1) below —viewed within the Algebraic model,
say, of some FA M .

We have δ(pi, ai) = pi+1, for i = 1, 2, . . . , n which tracks precisely
the FA moves depicted graphically in the segment of the flow
diagram representation of the same FA shown in Figure 10.1.

....

Figure 10.1: FA Computation Path

t︷︸︸︷. . .

p1
↓
a1

p2
↓
a2

p3
↓
a3 . . .

pi
↓
ai . . .

pn
↓
an

u︷︸︸︷. . . (1)

Thus, the concatenation of the labels ai of the path in Figure
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10.1 denote the string “ consumed” when starting at a1 on state
p1.

If now p1 is the start state and pn+1 is accepting, and moreover
if t = u = λ —and hence (1) above records that

↓
p1 a1a2 . . . an ⊢∗ a1a2 . . . an pn+1

— we then have the important remark below:

A string x = a1a2 . . . an over the input alphabet belongs to
L(M) —the Language Accepted (Decided) by the FA M ; cf.
10.1.1— iff it is formed by concatenating the labels of a path
such as the one in Fig. 10.1, where p1 = q0 (start state) and
pn+1 is accepting.
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We see that the flowchart model of a FA is more than a static
depiction of an automaton’s “vital” parameters, Q, A, q0, δ, F .

Rather, all computations, including accepting computations,
are also encoded within the model as certain paths.

□ �
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The last few paragraphs were important. Let as summarise:

10.2.11 Definition. (Graph acceptance) Let M be a FA of start-
state “p1” over the alphabet Σ.

Let x = a1a2 . . . an be a string over Σ.
Then x is accepted by M —equivalently x ∈ L(M) (cf. 10.1.1)—

iff x is the label of a computation path in the graph version of M
in the sense that x is obtained by concatenating the names a1, a2, . . .,
an OF THE EDGES of said computation path (cf. Fig. 10.1) that starts
at p1 and ends at an accepting state pn+1. The latter state has just
scanned eof thus it caused M to halt. □
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Armed with Definition 10.2.11, let us consider an example and shed
more light on what exactly is eof.

10.2.12 Example.
Compilers, that is, Systems Programs that read programs written

in a high level programming language like C and translate them into
assembly language have several subtasks.

One of them is delegated to the so-called “scanner” or “token scanner”
of the compiler and is the task of picking up variables (also special sym-
bols like “++”, “begin”, “end”) from the program source.

To “pick up” a variable, the scanner has to “recognise” that it saw
one! Well, an automaton can do that!

Assume (as typically is the case) that the syntax of a variable is a
string that

• begins with a letter

and

• continues with letters or digits.
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To simplify the example and not get lost in details, we denote the
input alphabet of the automaton that we will build here Σ = {L,D}
where the symbol L stands for any letter (in real life, one uses the
members of the set {A, B, C, . . . , Z; a, b,. . . , z}, sometimes augmented
by some special symbols like $ and underscore).

Similarly the symbol D in our alphabet stands for digit (in real life,
one has here the set of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}).
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Using the characterisation of acceptance in 10.2.11, here is our de-
sign:

0

1

T

L

D

L, D

L, D

The only paths to state “1” (accepting) are labelled with L, followed by
zero or more L and/orD in any order. That’s the right syntax we want!

What is the role of state “T”?

T for trap! We do not want the first symbol of a variable to be other
than L AND we want the FA to be fully specified (total δ). So, if it is
D what we have picked up at state 0, then we go to trap, never to exit
from it (inputs L orD keep you in T, which is NOT an accepting state!)

▶ What if input is λ? We do not want that to be accepted either!

We are good since “0” —the start state— is NOT accepting. If
λ was the string provided as input (not something starting with D),
then immediately 0 “sees” eof and halts. “0” being not accepting, λ is
rejected!
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Finally, let us familiarise a bit more with eof.

This is not a unique end marker but is context dependent. In the
context of variable names, in something like

LLLDDD ++

(in C++) the first + is eof as it is not in the alphabet of our scanner
FA! Ditto if we had

LDDD := (LDLDDD + LLL)

in, say, Pascal. The first variable “LDDD” has “:” as eof. The second
one “LDLDDD” has “+” as eof. The third one “LLL” has “)” as eof.

□
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10.2.13 Proposition. If M is a FA, then λ ∈ L(M) iff q0 —the start
state— is an accepting state.

Proof. First, say λ ∈ L(M).

By 10.2.11, we have a path labeled λ from q0 to some accepting p.

Since there are no symbols in λ to consume the only application of
“read” gave us eof and we are still at q0. Thus q0 = p must be accept-
ing.

Conversely, let q0 is accepting.

The input stream looks like λ¶, where I generically indicated eof
by “¶” for emphasis/visibility. This ¶ is scanned by q0 and halts the
machine right away.

But q0 is accepting and λ is what was consumed before hitting eof.
Thus λ is accepted: λ ∈ L(M). □
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10.2.14 Example.
Here is another example that we promised. Refer to Example 10.2.5.

Consider the case where q0 is accepting. Then the only possible ac-
ceptable strings x will have an even number of 1s —even parity— since
to go from q0 back to q0 we need to consume a 1 going and a 1 coming.

But do we get an arbitrary string otherwise? Yes, since between any
two consecutive 1s —and before the first 1 and after the last 1 we can
consume any number of 0s.

Clearly, if q1 was the accepting state instead, then we have an odd
number of 1s in the accepting path since to end on q1 as accepting
state we need one 1, or three, or five, . . . . We add two 1s every time
to leave q1 and to go back. □

10.2.15� Remark. BTW, for any M , the set L(M) —considered as a
set of numbers since the symbols in the alphabet are essentially dig-
its— is decidable!

The question x ∈ L(M) is decided by the FA M itself: x ∈ L(M)
iff we have an accepting computation of M with input x. Cf. 10.2.11.

Wait! Is not decidability defined in terms of URMs? Yes, but an
FA is a special case of a URM! □ �
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Chapter 11

FA and NFA; Part II

11.0.1 Definition. If M is a FA, then its L(M) is called the reg-
ular set associated with M , or even the regular language recog-
nised/accepted (decided, actually) by M . □

This chapter continues from where Chapter 10 left but we will
present first a few more simple examples of automata∗ that decide/accept
some given set of strings over some alphabet.

∗Plural of automaton.
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11.1. Examples

11.1.1 Example. We want to specify (to “program”!) an automaton
M over Σ = {0, 1}, such that L(M) = {0n1 : n ≥ 0}.

We recall that, for any string x, x0
Def
= λ, while

xn+1 Def
= xn ∗ x induction!

=
n+1 copies of x︷ ︸︸ ︷
x ∗ x ∗ . . . ∗ x

where I denoted concatenation by ∗. Thus the strings in {0n1 : n ≥ 0}
are

1, 01, 001, 0001, 00001, . . . (1)

We readily see that the following automaton’s only accepting paths
will follow zero or more times the “loop” labeled 0 (attached to the
start state), and then follow the edge labeled 1 to end up with an
accepting state.

0

1

0 1

0, 1
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The state at the very bottom is a trap state. What is the need for it?

Well, the FA must be fully specified, so I am obliged to say what
the accepting state does when it sees one or the other legal input.

� And remember: Accepting states do NOT stop the machine! Any
state stops the machine IFF it has just scanned eof. �

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



280 11. FA and NFA; Part II

� A new thing we learnt in the above example is that in depicting an
automaton as a graph we do not necessarily need to name the states! �

Of course, as in all mathematical arguments, we will of course as-
sign names to objects (in particular to states) if we need to re-
fer to them in the course of the argument —it is convenient to
refer to them by name!

� The reader should also note the use of two shorthand notations in
labeling: �

One, we used two labels on the vertical down-pointing edge.

This abbreviates the use of two edges going from the accepting to
the trap state, one labeled 0, the other 1.

We could also have used the label “0, 1” both at the left or right of
the arrow, “,” serving as a separator. This latter notational convention
was used in labeling the loop attached to the trap state. □
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11.1.2 Example. The two FAs below, each over the input alphabet
{0, 1}, accept the languages ∅ (the top one) and {0, 1}∗ (the bottom
one).

0, 1

0, 1

□
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11.1.3 Example. The FA below over the input alphabet {0, 1} ac-
cepts the language {λ}.

0, 1

0, 1

Indeed, we saw in Chapter 10 that making the start (initial) state also
accepting we do accept λ. Moreover, the FA above accepts nothing
else since any input symbol leads to the rejecting trap state. □
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11.2. Some Closure Properties of Regular Languages

11.2.1 Theorem. The set of all regular languages over an alphabet Σ
is closed under complement. That is, if L ⊆ Σ∗ is regular, then so is

L
Def
= Σ∗ − L.

Proof. Let L = L(M) for some FA M over input alphabet Σ and
state alphabet Q. Moreover, let F ⊆ Q be the set of accepting states of M .

We need a FA that recognises/decides L.

Trivially, we want to swap the “yes” (accepting state) and “no” (re-
jecting state) behaviour of M , changing nothing else.

Thus, L = L(M̃), where the FA M̃ is the same as M , except that

M̃ ’s set of accepting states is Q− F . □

� What makes the above proof tick is that FA are “total”: Every input
string will be scanned all the way to its eof. Only the yes/no decision
changes. �

What does “total” have to do with this? On the blackboard!
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11.2.2 Example. The automaton that accepts the complement of the
language in Example 11.1.1 is found without comment below, just
following the construction of the L(M) complement for some FA M ,
given above.

0

1

0 1

0, 1

□
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11.2.3 Theorem. The set of all regular languages over an alphabet Σ
is closed under union. That is, if L ⊆ Σ∗ and L′ ⊆ Σ∗ are regular,
then so is L ∪ L′.

Proof. This proof will wait until after the introduction of NFA which
make the proof much easier! □

11.2.4 Corollary. The set of all regular languages over an alphabet
Σ is closed under intersection. That is, if L ⊆ Σ∗ and L′ ⊆ Σ∗ are
regular, then so is L ∩ L′.

Proof. L ∩ L′ = L ∪ L′. □
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11.3. Proving Negative Results for FA; Pumping Lemma

Nov. 21, 2022

Is there a FA M such that L(M) = {0n1n : n ≥ 0}?

How can we tell?

Surely, not by trying each FA (infinitely many) out there as a pos-
sible fit for this language!

The following theorem, known as the pumping lemma can be used
to prove “negative” results such as: There is no FAM such as L(M) =
{0n1n : n ≥ 0}. In short, the language {0n1n : n ≥ 0} is not regular.
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11.3.1 Theorem. (Pumping Lemma) If the language S is regular,
i.e., S = L(M) for some FA M , then there is a constant C that we
will refer to as A pumping constant such that for any string x ∈ S, if
|x| ≥ C, then we can decompose it as x = uvw so that

(1) v ̸= λ

(2) uviw ∈ S, for all i ≥ 0 —by definition, v0 = λ

and

(3) |uv| ≤ C.

� A pumping constant is not uniquely determined by S. �

Proof. So, let S = L(M) for some FA M of n states. We will show
that if we take C = n† this will work.

Let then x = a1a2 · · · an · · · am be a string of S. As chosen, it satis-
fies |x| ≥ C. An accepting computation path of M with input x looks
like this:

.....

Say repeats as

.....

where p1, p2, . . . denotes a (notationally) convenient renaming‡ of the
states visited after q0 in the computation.

†You see why C is not unique, since for any S that is an L(M) we can have infinitely many different M that
accept S. Can we not?

‡Why rename? What is wrong with q1, q2, . . .? Well, the set Q is given as something like {q0, q1, q2, q3, . . .} using
some arbitrary fixed enumeration order without repetition for its members. Now, it would be wrong to expect that
the arbitrary input x caused the FA to walk precisely along q1, q2, q3, etc., after it saw the first symbol of x.
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In the sequence

q0, p1, p2, . . . , pn

we have named n+1 states, while we only have n states in the FA’s “Q”.

Thus, at least two names “pi and pj” OR “q0 and pj” refer to the
same state “qr” —as we say, two states repeat.

We may redraw the computation above as follows taking without
loss of generality that pi = pj indicating the repeating state pi = pj:

... ......

...

We can now partition x into u, v and w parts from the picture above:
We set

u = a1a2 . . . ai

v = ai+1ai+2 . . . aj

and

w = aj+1aj+2 . . . am

Note that

(1) v ̸= λ, since there is at least one edge (labelled ai+1) emanating
from pi on the sub-path that connects this state to the (identical)
state pj. In short ai+1 is part of v.
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(2) We may utilize the loop v zero or times (along with u in the front
and w at the tail) to always obtain a NEW accepting path. Thus,
all of uviw belong to L(M) —i.e., S.

(3) Since |uv| = j ≤ n, we have also verified that |uv| ≤ C. □

� The repeating pair pi, pj may occur anywhere between q0 and pn. A
different “graphical proof” is common in the literature.

Let x = a1a2 . . . am as above.

Below we show the original x as an input stream array

x = a1 . . . ai+1 . . . ajaj+1 . . . an . . . am

where the repeating pi = pj is shown.

x =

u︷ ︸︸ ︷
a1 a2 . . . ai

pi
↓
ai+1 . . . aj︸ ︷︷ ︸

v

w︷ ︸︸ ︷
aj+1

↑
pj

. . . an an+1 . . . am

Observe:

1. By determinism, the subcomputation that starts at symbol aj+1

(blue) —while in state pj ( = pi)— will end at the eof after con-
suming the string w and will be uniquely at (accepting) state pm.

2. After consuming the prefix a1 . . . ai of x the FA is uniquely at state
pi.

3. By determinism, the subcomputation that starts at symbol ai+1

(red) in state pi, will consume v and end at pj —uniquely, today,
tomorrow and in 10350000 years from now— ready to process aj+1

(blue).

Thus, all of uv, uvvw, uvvvw, . . . , uvnw, . . . are in L(M). Of course, so
is x = uvw (given). �
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11.3.2 Example. The language over {0, 1} given as L = {0n1n : n ≥
0} is not regular.

Suppose it is. Then the pumping lemma holds for L, so let C be
an appropriate pumping constant and consider the string x = 0C1C of
L. We can then decompose x as uvw with |uv| ≤ C so that we can
“pump” v ̸= λ as much as we like and the obtained uviw will all be in L.

We will prove the statement in red false, so we cannot pump; but
then L cannot be regular! §

“The red statement” is false due to the observations:

1. By |uv| ≤ C, uv (and hence v) lie entirely in the 0C-part of the
chosen x = 0C1C .

2. So, if we pump down —or above with i ≥ 2 (i.e., use v0 or vi, i ≥ 2)
we obtain uw ∈ L or uviw ∈ L, i ≥ 2.

But uw = 0K1C where K < C since |v| ≥ 1. However such
unbalanced 0-1 strings cannot be in L, by specification, so we con-
tradicted the pumping lemma. □

§All sufficiently long strings of regular languages can be pumped by 11.3.1 and stay in L.
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� All proofs by Pumping Lemma 11.3.1 are by contradiction and they
prove non acceptability by any FA (or, equivalently, NFA to be intro-
duced in Section 11.4.1). �
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11.3.3 Example. We introduced FA as special URMs that cannot write.

Is it then an immediate conclusion that they cannot compute func-
tions?

Not at all! Such a general conclusion is false!

For example, we can agree that by “compute f(x)” we mean “ de-
cide the graph y = f (x)”.

For example, we can “compute” λx.3 by accepting all strings, but
no others, of the form 0n1000 over the alphabet {0, 1}.

That is, we use 1 as a separator between input n ≥ 0 (depicted as
0n) and output 3 (depicted as 000), then the following FA decides
(accepts/recognises) the language L = {0n1000 : n ≥ 0}.

0

1 0

0

0

0, 1

1

0, 1

1

1T

□
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11.3.4 Example. FA cannot compute λx.x+ 1.

“Surely”, you say, “how can they add 1 if they cannot do arithmetic
or write anything at all?”

Wrong reason!

Again, how about deciding the “graph”-language over A = {0, 1},
given by T = {0n10n+1 : n ≥ 0}?

Here “0n” represents input n, “0n+1” represents output n+ 1 and 1
is a separator as in the previous example.

▶ Alas, no FA can do this.

Say T is FA-decidable, and let C be an appropriate pumping con-
stant. Choose x = 0C10C+1. Splitting x as uvw with |uv| ≤ C we see
that 1 is to the right of v.
v is all zeros.
Thus, uw (using v0) is not in T since the “n/n+1 relation” between

the 0s to the left and those to the right of 1 is destroyed —we have
0K10C+1 with K < C in the language by the PL! This contradicts the
assumption that T is FA-decidable. □

11.3.5� Exercise. Indeed FA cannot even compute the identity func-
tion, λx.x, as it should be clear from the proof in 11.3.2. Adapt that
proof to show the graph language for λx.x, namely, {0n10n : n ≥ 0} is
not regular. □ �
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11.3.6 Example. The set over the alphabet {0} given by P = {0q : q
is a prime number} is not FA-decidable.

A string of 0s is in language P iff it has prime length: Note
∣∣0Q∣∣ =

Q.

Assume the contrary, and let C be an appropriate pumping con-
stant. Let Q ≥ C be prime.

We show that considering the string x = 0Q will lead us to a con-
tradiction. Well, as x is longer than C, let us write —according to
11.3.1— x = uvw.

Note that |x| = |uvw| = |u|+ |v|+ |w|.

By PL, we must have that all numbers |u|+ i|v|+ |w|, for i ≥ 0 are
prime. These numbers have the form

ai+ b (1)

where a = |v| ≥ 1 and b = |u|+|w|. Can REALLY ALL these numbers
in (1) (for all i) be prime?

Here is WHY NOT, and hence our contradiction. We consider cases:

• Case where b = 0. This is impossible, since the numbers in (1)
now have the form ai. But, e.g., a4 is not prime.

• Case where b > 0. We have Subcases!

– Subcase b > 1. Then taking i = b, one of the numbers of the
form (1) is (a + 1)b. But (a + 1)b is not prime (recall that
a+ 1 ≥ 2 since a ≥ 1).

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



11.3. Proving Negative Results for FA; Pumping Lemma 295

– Subcase b = 1. Then take i = 2 + a to obtain the number (of
type (1)) a(2 + a) + 1 = a2 + 2a + 1 = (a + 1)2. But this is
not prime! □
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� The preceding shows that we can have a set that is sufficiently complex
and thus fails to be FA-decidable even over a single-symbol alphabet.

Here is another such case. �

11.3.7 Example. Consider Q = {0n2

: n ≥ 0} over the alphabet
A = {0}. It will not come as a surprise that Q is not FA-decidable.

For suppose it is. Then, if C is an appropriate pumping constant,

consider x = 0C
2

.

• Clearly, x ∈ Q and is long enough.

So, split it as x = uvw with |uv| ≤ C and v ̸= λ.

Now, by 11.3.1,
uvvw ∈ Q (1)

But

C2 = |uvw|
|v|≥1
< |uvvw| ≤ |uvw|+ |uv| ≤ C2 + C

by +1
< C2 + 2C + 1 = (C + 1)2

Thus, the number |uvvw| is NOT a perfect square being between two
successive ones.

But this will not do, because by (1), for some n, we must have
uvvw = 0n

2

and thus |uvvw| = n2 —a perfect square after all! □
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11.4. Nondeterministic Finite Automata

The FA formalism provides us with tools to finitely define certain lan-
guages:

Such a language —defined as an L(M) over some alphabet A, for
some FAM— contains a string x iff there is an accepting path —within
the FA— whose labels from left to right form x.

q
0

q...

The computation above, that is, the path labeled x within the FA, is
uniquely determined by x since the automaton is deterministic.

Much is to be gained in theoretical and practical flexibility if we
relax both “deterministic” requirements NFA 1) and NFA 2) below

NFA 1) Every state is defined on all inputs from the input alphabet
(totaleness)

NFA 2) No state has two different responses (i.e., does not send the
process to either of two different states) for the same input.
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AND moreover we profit —theoretically and practically— from
ADDING the feature

NFA 3) The automaton can have empty-moves, that is, λ-moves,mean-
ing it can go from state q to state pWITHOUT CONSUMING
ANY INPUT.

An empty move from q to p is depicted in the flow diagram as:

q
λ−→ p

11.4.1 Definition. (NFA) A so relaxed FA —that is also augmented
by the feature “NFA 3)” above— is called Non Deterministic Finite
Automaton, in short, NFA.

An NFA M accepts a string x iff there is a path from its start state
(generically depicted as) “q0” to some accepting state p whose edge-labels
concatenated from q0 toward p in order form the string x.

Of course empty moves do not contribute to the path name!

IMPORTANT! Every FA is also an NFA —but NOT vice versa—
since the enhancements inNFA 1) – NFA 3) above are NOT compulsory!

□
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11.4.2 Example. The displayed flow diagram below, over the alpha-
bet {0, 1}, incorporates all the liberties in notation and conventions
introduced in Definition 11.4.1 and the items NFA 1) – NFA 3) pre-
ceding the definition.

We have two λ moves, and the string “1” can be accepted in two dis-
tinct ways: One is to follow the top λ move, and then go once around
the loop, consuming input 1. The other is to follow the bottom λmove,
and then follow the transition labeled 1 to the accepting state at the
bottom (reading 1 in the process).

Folklore jargon—not based on science or theory— will have us speak
of guessing when we describe what the diagram does with an input.

For example, to accept the input 00 one would say that the NFA
guesses that it should follow the upper λ, and then it would go twice
around the top loop, on input 0 in each case.

0, 1

1

1

This diagram is an example of a nondeterministic finite automaton, or
NFA;

• it has λ moves,

• its transition relation —as depicted by the arrows— is not a func-
tion (e.g., the top accepting state has two distinct responses on
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input 1),

• nor is it total.

For example, the bottom accepting state is not defined on any input;
nor is the start state: λ is not an input! □

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



11.4. Nondeterministic Finite Automata 301

� Returning to the issue of guessing, we emphasize that this use of this
term is an unfortunate habit in the literature.

Nobody and Nothing guesses Anything!

A NFA simply provides the mathematical framework within which we
can formulate and verify an existential MATHEMATICAL statement
of the type

for a given input x, an accepting path exists (1)

Given an acceptable input, the NFA does NOT actually guess “cor-
rect” moves (from among a set of choices), either in a hidden manner
(consulting the Oracle in Delphi, for example!), or in an explicit com-
putational manner (e.g., parallelism, backtracking) toward finding an
accepting path for said x.

� Simply, the NFA formalism allows us to state —and provides tools so
that we can verify— the statement (1) above by verifying an accepting
path exists! (11.4.1) �

This is analogous with the fact that the language of logic allows us
to state statements such as (∃y)F (y, x), and offers tools to us to
prove them.
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In the case of NFA, an independent agent, which could be ourselves
or a FA —YES, we will see that every NFA can be simulated by some
FA!— can effect the verification that indeed an accepting path labeled
x exists. �
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Nov. 23, 2022

11.4.3 Example. The following is a NFA but not a FA (why? Com-
pare with 11.1.1), which accepts the language {0n1 : n ≥ 0}.

0

1

□

11.4.4 Example. NFA are much easier to construct than FA, partly
because of the convenience of the λ moves, and the ability to “guess”
(cf. earlier discussion about “guessing”).

Also, partly due to lack of concern for totalness: we do not have to
worry about “installing” a trap state.

For example, the following NFA over A = {0, 1} decides/recognises
just its alphabet A and nothing else as we can trivially see that there
are just two accepting paths: one named “0” and one named “1”.

0

1
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□

11.5. From FA to NFA and Back

We noted earlier that any FA is a NFA (Def. 11.4.1), thus the NFA are
at least as powerful as the FA.

They can do all that the deterministic model can do.

It is a bit of a surprise that the opposite is also true: For every NFA
M we can construct a FA N , such that L(M) = L(N).

Thus, in the case of these very simple machines, nondeterminism
(“guessing”) buys ONLY convenience, but not real power.
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How does one simulate a NFA on an input x?

The most straightforward idea is to trace ALL possible paths labeled
x (due to nondeterminism they may be more than one —or none at
all) in parallel and accept iff one (or more) of those is accepting.

The principle of this idea is illustrated below.

a

a

a

b

b
b

Say, the input to the NFA M is x = ab . . . Suppose that a leads the
start state —which is at “level 0”— to three states; we draw all three.
These are at level 1.

We repeat for each state at level 1 on input b:

Say, for the sake of discussion, that, of the three states at level 1,
the first leads to one state on input b, the second leads to two and the
third leads to none.

We draw these three states obtained on input b; they are at level 2.
Etc.
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An FA can keep track of all the states at the various levels since
at ANY level, they can be no more than the totality of states
of the NFA M !

Thus, the amount of information at each level is independent of the
input size —i.e., it is a constant— and moreover can be coded as a
single FA-state (depicted in the figure by an ellipse) that uses a “com-
pound” name, consisting of all the NFA state names at that level.

This has led to the idea that the simulating FA must have as states
nodes whose names are sets of state names of the original NFA.

Clearly, for this construction, state names are important, through
which we can keep track of and describe what we are doing.

Here are the details:
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11.5.1 Definition. (a-successors) Let M be a NFA over an input
alphabet Σ, q be a state, and a ∈ Σ.

A state p is AN a-successor of q iff there is an edge from q to p,
labeled a. □

� In a NFA a-successors need not be unique, nor need to exist —for all
pairs (q, a).

On the other hand, in a FA they exist and are unique. �

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



308 11. FA and NFA; Part II

11.5.2 Definition. (λ-closure) Let M be a NFA with state-set Q
and let S ⊆ Q. The λ-closure of S, denoted by λ(S), is defined to
be the smallest set that includes S but also includes all q ∈ Q, such
that there is a path, named λ —we call such a path a “λ-path”— from
some p ∈ S to q.

When we speak of the λ-closure of ONE state q, we mean that of the
set {q} and write λ(q) rather than λ({q}). □
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� Note that a path named λ will have all its edges named λ since the
concatenation of a sequence of strings is λ iff each string in the sequence
is. �

11.5.3 Example. Consider the NFA below.

0

1

a

b c

d e

 

We compute some λ-closures: λ(a) = {a, b, d}; λ(c) = {c, a, b, d}. □
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11.5.4 Theorem. Let M be a NFA with state set Q and input alpha-
bet Σ. Then there is a FA N that has as state set a subset of P(Q)
—the power set of Q— and the same input alphabet as that of M .

N satisfies L(M) = L(N).

� We say that two automata M and N (whether both are FA or both
are NFA, or we have one of each kind) are equivalent iff L(M) = L(N).

Thus, the above says that for any NFA there is an equivalent FA.

In fact, this can be strengthened as the proof shows: We can con-
struct the equivalent FA.

We show how in the definition below, BEFORE we start the proof
proper. �
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11.5.5 Definition. (NFA to FA Construction)

• The start state of N is λ(q0), where q0 is the start state of NFA
M .

• A state of the FA N is accepting iff its name contains at least one
accepting state name of the NFA M .

• Let S be a state of N and let a ∈ Σ. The unique a-successor of S
in N is constructed as follows:

(1) Construct the set of all a-successors in M of all component-
names of S. Call T this set of a-successors.

(2) Construct λ(T ); this is the a-successor of state S in N . □
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� As an illustration, we compute some 0-successors in the FA constructed
as above if the given NFA is that of Example 11.5.3, reproduced also
below:

0

1

a

b c

d e

 

(I) For state {a, b, d} step (1) yields {c}. Step (2) yields the λ-closure
of {c}: The state {c, a, b, d} is the 0-successor. This state is accepting
in the FA since the NFA has c as accepting.

(II) For state {c, a, b, d} step (1) yields {c}. Step (2) yields the
λ-closure of {c}: The state {c, a, b, d} is the 0-successor; that is, the
0-edge loops back to where it started: at state {c, a, b, d}.

We do NOT draw a new copy of {c, a, b, d}! �
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Proof. Of 11.5.4.
With the FA N constructed as in 11.5.5 from the NFA M , we need

to prove two things:

Direction 1. L(M) ⊆ L(N).

Direction 2. L(N) ⊆ L(M).

• L(M) ⊆ L(N) direction:

Let
x = a1a2 · · · an ∈ L(M) (1)

Prove that x ∈ L(N) (2)

Without loss of generality, we have an accepting path in M that
is labeled as follows:

x = λj1a1λ
j2a2λ

j3a3 · · ·λjnanλjn+1 (3)

where each λji depicts ji ≥ 0 consecutive path edges, each labeled
λ, where ji = 0 in this context means that the ji group has no
λ-moves —that is, there is NO “λji” between ai−1 and ai.

� An accepting path for the exact string —λ and all— in (3) is the
zig-zag path depicted in Fig. 11.2 below. �

To prove (2) we need a path in FA N the edges of which are labeled
by the ai in x = a1a2 . . . an in the indicated order, while the nodes
are states of N with the first node being the initial one, and that
last one is an accepting state.
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Here is how to do this:

▶ It suffices to show that for each level i = 0, 1, 2, . . ., the N -path
of N-states and labelled edges, consists of the indicated ellipses in
Fig. 11.2 —and partially shown in Fig. 11.1— which contain in their name
the enclosed “horizontal” M -nodes shown. Why “suffices”? Read
on!

...

... p

q

r

level i

level i+1

Figure 11.1: Idea for L(M) ⊆ L(N) proof

▶ Regarding the above Figure, if we assume that at level i the
elliptical N -node indeed includes all the indicated M -nodes in its
name (these are M-nodes from the M-computation!), then so does
the N -node at level i + 1 —that is, the ai+1-successor of the N-
node at level i.

This is so by Def. 11.5.5 since at level i+ 1 we have the λ-closure
of all ai+1-successors —in M . But r is ONE such successor and
thus all horizontal nodes will be in the name too! ◀
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Now, clearly, λ(q0), THE start state of N —depicted by the level-0
ellipse in Fig. 11.2— will contain all horizontal nodes shown.

...

...

...

...

...

...

...

p

q

r

r' p'

q' level 0

level 1

level i

level i+1

level n

Figure 11.2: Equivalence of NFA and FA

Then —by (1) and (3) on p.313— the next ellipse (N -state) at
level 1must contain r′ (by Def. 11.5.5) and hence also all horizontal
nodes (as sub-names) shown at level 1.

By the “Induction step” in the ▶ ◀-passage on p.314 all depicted
elliptical nodes of N in Fig. 11.2 contain the nodes fromM shown.
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Clearly Fig. 11.2 depicts and FA N -computation that consumes
x = a1a2 . . . an and ends with an accepting N -state. It is AC-
CEPTING because it contains in its name an accepting M-state.

All in all: x ∈ L(N). We proved (2) (p.313).

• L(N) ⊆ L(M) direction:

So let x = a1a2 . . . an ∈ L(N) this time. (†)

We will argue that also
x ∈ L(M) (‡)

We will reuse Fig. 11.2.

Observe that by (†) we have a path in N from the elliptical start-state
to some accepting elliptical N-state.
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We will construct an accepting path for x in the NFA M .

In our construction we start from the end (accepting N -state) and
proceed BACKWARDS towards the N start state.

All the work is shown in Fig. 11.2 where now we retrace the M -
path backwards.

OK. The accepting N state must have an accepting NFA state
in its name.

▶ How did this get there?

– Either as an an-successor in NFA M of some name found in the
elliptical state immediately above,

or, more generally,

– It is at the end of a λ-path starting at an an-successor in NFA
M —here named “s”— found in the last ellipse. This general
case is depicted in Fig. 11.2.

To understand how the construction propagates UPWARDS (BACK-
WARDS) imagine that an = ai+2.

Then the question is “whose ai+2-successor (in M) is s? Well, we
named it p in Fig. 11.2.

The next question is: “How did p get in the name of the ellipse at
level n− 1 = i+ 1?”

Well, as above,

– Either as an ai+1-successor in NFA M of some name found in
the elliptical state immediately above —at level n− 2 = i,
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or, more generally,

– p is at the end of a λ-path starting at an ai+1-successor r in
NFA M found in the last ellipse. This general case is depicted
in Fig. 11.2.

Continuing the construction like this we find that the presence of q′

in the start state of N is either that it is the same as the state “q0”
of the NFA M , OR q′ is connected to q0 by a backwards λ-path,
in general, as depicted in Fig. 11.2.

We have just constructed a path labelled

λj1a1λ
j2a2λ

j3a3 · · ·λjnanλjn+1 = a1a2a3 · · · an

in the NFA M from its q0 to some accepting state!

Thus x ∈ L(M). □
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� In theory, to construct a FA for a given NFA we draw all the states
of the latter —named by ALL subsets of the state-set Q of the NFA—
and then determine the interconnections via edges, for each state-pair
of the FA and each member of the input alphabet Σ.

In practice we may achieve significant economy of effort if we start
building the FA “from the start state down”: That is, starting with the
start state (level 0) we determine all its (elliptical) a-successors, for
each a ∈ Σ.

At the end of this step we will have drawn all states at “level 1”.

In the next step for each state at level 1, draw its a-successors, for
each a ∈ Σ. And so on.

This sequence of steps terminates since there are only a finite num-
ber of states in the FA and we cannot keep writing new ones

Sooner or later we will stop introducing new states: edges will point
“back” to existing states.

See the following example. �
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11.5.6 Example. We convert the NFA of 11.5.3 to a FA. See below,
and review the above comment and the proof of 11.5.4, in particular the
three bullets on p.311, to verify that the given is correct, and follows
procedure.

Nov. 28, 2022

You will notice the aforementioned economy of effort achieved by
our process. We have only three states in the FA as opposed to the
predicted 32 ( = 25) of the proof of Theorem 11.5.4. But what hap-
pened to the other states? Why are they not listed by our procedure?

Because OUR procedure only constructs FA states that are accessi-
ble FROM the start state via a computation path.

These are the only ones that can possibly participate in an accepting
path. The others —the non-accessible ones— are irrelevant to accepting
computations —indeed to any computations that start with the start
state— and can be omitted without affecting the set decided by the
FA. □
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11.5.7� Example. Suppose that we have converted a NFA M into a
FA N .

Let a be in the input alphabet.

What is the a-successor of the state named ∅ in N?

Well, there are no states in ∅ to start the deterministic a-successor process
of Def. 11.5.5!

So the set of successor states we get is empty; we are back to ∅.

Thus, the set of a-successors (in M) of states from ∅ is itself the
empty set. In other words, the a-successor of ∅ in N is ∅. The edge
labeled a loops back to it.

Therefore, in the context of the NFA-to-FA conversion, ∅ is a trap
state in N . □ �
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Chapter 12

Regular Expressions

The FA and NFA of the previous Notes provide finite descriptions of
regular languages, since an FA/NFA M is finite (a graph, say) and a
regular language is an L(M) for some M .

The next section proposes another type of finite description of reg-
ular languages.

12.1. Regular Expressions

Regular expressions are familiar to users of the UNIX operating sys-
tem.

They are names for regular sets as we will see.

• Do they name ALL regular sets, i.e., all sets of the type L(M)
where M is a FA (or NFA, equivalently)?

• Do they name any NON regular sets?
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We will see that we must answer YES, NO.

Regular Expressions are more than “just names” as they embody enough
information —as we will see— to be mechanically transformable into
an NFA (and thus to a FA as well).
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12.1.1 Definition. (Regular expressions over Σ) Given the finite
alphabet of atomic symbols Σ, we form the extended alphabet

Σ ∪ {∅,+, ·, ∗, (, )} (1)

where the symbols ∅,+, ·, ∗, (, ) (not including the comma separators)
are all abstract or formal∗ —are just names— and do not occur in Σ.

In particular, “∅” in this alphabet is just a symbol —do NOT inter-
pret it! (Yet!)

So are “+”, “·”, “∗” and the brackets. All these symbols will be
interpreted shortly.

The set of regular expressions over Σ is a set of strings over the
augmented alphabet above, given inductively by

Regular expressions are specific names, formed as strings
over the alphabet (1) as follows :

(1) Every member of Σ ∪ {∅} is a regular expression.

Examples for case (1): If Σ = {0, 1} then 0, 1, and ∅, all viewed as
abstract symbols with no interpretation are each a regular expres-
sion.

(2) If α and β are (names of) regular expressions, then so is the string
(α + β)

(3) If α and β are (names of) regular expressions, then so is the string
(α · β)

(4) If α is a (name of) regular expression, then so is the string (α∗)

∗Employed to define form or structure.
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The letters α, β, γ are used as metavariables (syntactic variables) in
this definition. They will stand for arbitrary regular expressions (we
may add primes or subscripts to increase the number of our metavari-
ables). □
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12.1.2� Remark.

(i) We emphasize that regular expressions are built starting from the
objects contained in Σ ∪ {∅}.

We also emphasize that we have NOT talked about semantics
yet, that is, we did NOT say YET what sets these expressions
will name, nor, what “+, “·” and “∗” mean.

(ii) We will often omit the “dot” in (α · β) and write simply (αβ).

(iii) We will also omit the outermost brackets so (α · β) is simply αβ.

(iv) We assign the highest priority to ∗, the next lower to · and the
lowest to +.

We will let α ◦ α′ ◦ α′′ ◦ α′′′ group (“associate”) from right to left,
for any ◦ ∈ {+, ·,∗ }.

Given these priorities, we may omit some brackets, as is usual.

Thus, α + βγ∗ means
(
α +

(
β(γ∗)

))
and αβγ means (α(βγ)). □ �
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We next define what sets these expressions name (semantics).

12.1.3 Definition. (Regular expression semantics)
We define the semantics of any regular expression over Σ by recur-

sion on the Definition 12.1.1.

We use the notation L(α) to indicate the set named by α.

(1) L(∅) = ∅, where the left “∅” is the symbol in the augmented al-
phabet (1) above, while the right “∅” is the name of the empty set
in ordinary MATH.

(2) L(a) = {a}, for each a ∈ Σ

(3) L(α + β) = L(α) ∪ L(β)

(4) L(α ·β) = L(α)L(β) —where for two languages (sets of strings!) L
and L′, LL′—the concatenation of the SETS in this order— stands
for {xy : x ∈ L ∧ y ∈ L′}.

(5) L(α∗) =
(
L(α)

)∗
† —where for any set S —finite or not— S∗ de-

notes the set of all strings

x1x2 . . . xn, for n ≥ 0, and where all (strings) xi ∈ S

where n = 0 means that x1x2 . . . xn = λ.

Thus, in particular, we have always λ ∈ S∗.
□

†The ∗ in S∗ is called the Kleene closure. So S∗ is the Kleene closure of S.
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12.1.4 Example. Let Σ = {0, 1}. Then L
(
(0 + 1)∗

)
= Σ∗. Indeed,

this is because L
(
0+ 1

)
= L(0)∪L(1) = {0}∪ {1} = {0, 1} = Σ. □

12.1.5 Example. We note that L(∅∗) =
(
L(∅)

)∗
= ∅∗ = {λ}.

Why so?

Because Σ∗ is λ along with the set of all strings formed using sym-
bols from Σ.

∅ has no symbols to form strings with. So all we got is λ.

See last “red” comment in Def. 12.1.3.

Because of the above, we add “λ” as a DEFINED NAME —not in
the original alphabet— for the set {λ}. □
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Of course, two regular expressions α and β over the same alphabet
Σ are equal, written α = β, iff they are so as strings.

We also have another, semantic, concept of regular expression “equal-
ity”:

12.1.6 Definition. (Regular expression equivalence) We say that
two regular expressions α and β over the same alphabet Σ are equiv-
alent, written α ∼ β, iff they name the same set/language, that is, iff
L(α) = L(β). □
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12.1.7 Example. Let Σ = {0, 1}. Then (0 + 1)∗ ∼
(
0∗1∗

)∗
.

Indeed, L
(
(0 + 1)∗

)
= Σ∗, by 12.1.4.

So, if anything, we do have

L
(
(0 + 1)∗

)
⊇ L

(
(0∗1∗)∗

)
Now —for L

(
(0 + 1)∗

)
⊆ L

(
(0∗1∗)∗

)
— the set

L
(
(0∗1∗︸︷︷︸

A

)∗
)

is A∗ where

A = L(0∗1∗) = {0n1m : n ≥ 0 ∧m ≥ 0}

because
L(0∗) = L(0)∗ = {0}∗ = {0n : n ≥ 0}

and similarly for

L(1∗) = L(1)∗ = {1}∗ = {1m : m ≥ 0}

� It should be clear that any string of 0s and 1s can be built using as
building blocks 0n1m judiciously choosing n and m values. �

E.g., 0110011 can be thought of as

0110 00110 01110

More generally, to show that an arbitrary string over Σ,

. . . 0k . . . 1r . . . (1)

is in A∗ view (1) as
. . . 0k10 . . . 001r . . .

But then the statement between the � signs simply says that Σ∗ ⊆
L
(
(0∗1∗)∗

)
. Done. □
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� By the above example, α ∼ β does NOT imply α = β. �
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12.2. From a Regular Expression to NFA and Back

There is a mechanical procedure (algorithm), which from a given reg-
ular expression α constructs a NFA M so that L(α) = L(M), and
conversely:

Given a NFA M constructs a regular expression α so that L(α) =
L(M).

We split the procedure into two directions. First, we go from regular
expression to a NFA.
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12.2.1 Theorem. (Kleene) For any regular expression α over an al-
phabet Σ we can construct a NFA M with input alphabet Σ so that
L(α) = L(M).

Proof. Induction over the Inductive of Definition 12.1.1 —that is, on
the formation of a regular expression α according to the said definition.
For the basis we consider the cases

• α = ∅; the NFA below works

• α = a, where a ∈ Σ; the NFA below works

a

Both of the above NFA have EXACTLY ONE accepting state. Our
construction maintains this property throughout.

That is, all the NFA we construct in this proof will have that
form, namely
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Assume now (the I.H. on regular expressions!) that we have built
NFA for α and β —M and N— so that L(α) = L(M) and L(β) =
L(N). Moreover, these M and N have the form above. For the induc-
tion step we have three cases:

• To build a NFA for α + β, that is, one that accepts the language
L(M) ∪ L(N). The NFA below works since the accepting paths
are precisely those from M and those from N .

M

N

q

q'

However, to maintain the single accepting state form, we modify
it as the NFA below.

M

N

q

q'

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



336 12. Regular Expressions

• To build a NFA for αβ, that is, one that accepts the language
L(M)L(N).

The NFA below works —since the accepting paths are precisely
those formed by concatenating an accepting path of M (labeled by
some x ∈ L(M)) with an λ-move and then with an accepting path
of N (labeled by some y ∈ L(N));

in that left to right order.

The λ that connects M and N will not affect the path name:
xλy = xy.

M

N
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• To build a NFA for α∗, that is, one that accepts the language
L(M)∗. The NFA below, that we call P , works. That is, L(P ) =
L(M)∗.

M

□
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12.2.2 Theorem. (Kleene) For any FA or NFAM with input alpha-
bet Σ we can construct a regular expression α over Σ so that L(α) =
L(M).

Proof. Given a FA M (if an NFA is given, then we convert it to a FA
first).

We will construct an α with the required properties. The idea is
to express L(M) in terms of simple to describe (indeed, regular them-
selves) sets of strings over Σ by repeatedly using the operations ·, ∪ and
Kleene star, a finite number of times.

� These regular sets —NAMEABLE by RegEXs— are called by Kleene
“Rk

ij”, where k ≤ n and where the state set of the FA is

q1, q2, . . . , qn —the same “n” as above

It turns out that “
⋃
j

Rn
1j” is the set of all FA-acceptable strings, the

union taken over all accepting qj. �

We will see that a simple regular EXPRESSION can name the
above mentioned finite union of regular sets.
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So let Q = {q1, q2, . . . , qn} be the set of states of M , where q1 is the
start state.† We will refer to the set of M ’s accepting states as F .

We next define several SETS of strings (over Σ) —denoted by Rk
ij,

for k = 0, 1, . . . , n and each i and j ranging from 1 to n.

Rk
ij = {x ∈ Σ∗ : x labels a path from qi to qj

and every qm in this path, other than the

endpoints qi and qj, satisfies m ≤ k}
(1)

� A superscript of k = n removes the restriction on the path x,

qi
x
⌢qj (2)

since every state qm satisfies m ≤ n anyway!

Thus Rn
ij contains ALL strings that name FA-paths from qi to qj

—no restriction on where these paths pass through. �

†We start numbering states from 1 rather than 0 for technical convenience; see the blue sentence at the top of
next page.
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So if we manage to get regular expression names αk
ij, for each Rk

ij,
then the set of strings L(M) accepted by the given FA is

L(M) =
⋃
qj∈F

Rn
1j

and we can name it as finite sum of αn
1j’s. Why “finite”?

How do we prove that each Rk
ij is nameable by a regular expression?

By induction (on k) along the inductive definition of these sets!

See below Kleene’s formulation of the inductive definition of the Rk
ij

and of their names.

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



12.2. From a Regular Expression to NFA and Back 341

We first note that for k = 0 we get very small finite sets.

Indeed, since state numbering starts at 1, the condition m ≤ 0 is
false and therefore in R0

ij we have the cases:

• if we have i ̸= j, then the condition (2) on p.339 can hold precisely
when x = a ∈ Σ for some a —since there can be no nodes in the
interior of x.

That is, we have precisely the case:

qi
a→ qj (†)

• The case i = j also adds λ in the set, since, when we have ONE
state:

qi = qj (‡)

“I can go from qi to qj DETERMINISTICALLY without consum-
ing ANY input” —algebraically, think of qiλ ⊢∗ λqi.

To summarize, for all i and j we have

R0
ij =

{
{a ∈ Σ : Case (†)} if i ̸= j

{λ} ∪ {a ∈ Σ : Case (†)} if i = j
(3)
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Since every finite set of strings can be named by a regular expression
(Exercise!),

there are RegEx: α0
ij such that L(α0

ij) = R0
ij, for all i, j (4)

For example, say A = {3, 5, 8, λ}. This is a finite set. It is NOT an
alphabet (contains λ).

Then the RegEX 3 + 5 + 8 + λ = 3 + 5 + 8 + ∅∗ NAMES A.

Why? Because A = {3} ∪ {5} ∪ {8} ∪ {λ}.
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Next note that theRk
ij can be COMPUTED recursively/inductively

using k as the recursion/induction variable and i, j as parameters,
and taking (3) on page 341 as the basis of the recursion.

To see this, consider a string x ∈ Σ∗ placed in Rk
ij, where k > 0.

By Definition (1), p.339,

This x labels a path from qi to qj whose internal nodes qm satisfy
m ≤ k.

We explore the structure of this path below.

It is possible that all qm (other than qi and qj) that occur in the
path x have m < k.

In such case, this x also belongs to (is placed in) Rk−1
ij .

If on the other hand we DO have qk’s appear in the interior of the
path labeled x, one or more times, then we have the picture below.

...

where the qk occurrences start immediately after the path named z0
and are connected by paths named zi, for i = 1, . . . , t. Thus, x =
z0z1z2 . . . ztzt+1. Noting that z0 ∈ Rk−1

ik , zi ∈ Rk−1
kk —for i = 1, . . . , t—

and zt+1 ∈ Rk−1
kj , we have that x ∈ Rk−1

ik ·
(
Rk−1

kk

)∗ · Rk−1
kj . We have
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established, for all k ≥ 1 and all i, j, that

Rk
ij = Rk−1

ij ∪Rk−1
ik ·

(
Rk−1

kk

)∗ ·Rk−1
kj (4)

� Explanation. Noting that(
Rk−1

kk

)∗
= {λ}∪Rk−1

kk ∪
Rk−1

kk Rk−1
kk ∪R

k−1
kk Rk−1

kk Rk−1
kk ∪R

k−1
kk Rk−1

kk Rk−1
kk Rk−1

kk ∪ . . .
the set of paths, from qi to qj depicted in the following part of (4):

Rk−1
ik ·

(
Rk−1

kk

)∗ ·Rk−1
kj

may contain

one interior qk case corresponds to λ
two interior qk case corresponds to Rk−1

kk

three interior qk case corresponds to Rk−1
kk Rk−1

kk

four interior qk case corresponds to Rk−1
kk Rk−1

kk Rk−1
kk

five interior qk case corresponds to Rk−1
kk Rk−1

kk Rk−1
kk Rk−1

kk

etc.

�

Now take the I.H. that for k− 1 ≥ 0 (fixed!) and all values of i and

j we have regular expressions αk−1
ij such that L(αk−1

ij ) = Rk−1
ij —that

is, αk−1
ij NAMES the set Rk−1

ij .

The above is true for k − 1 = 0, i.e., k = 1.

We see that we can construct —from the αk−1
ij — regular expressions

for the Rk
ij that we will name them with the short name αk

ij.

Notes on the Theory of Computation (EECS2001B)© G. Tourlakis



12.2. From a Regular Expression to NFA and Back 345

Indeed, using the I.H. and (4), we have that the RegEX αkij ,
for all i, j and the fixed k, is a SHORT NAME for the rhs
in (5)

αk
ij = αk−1

ij + αk−1
ik

(
αk−1
kk

)∗
αk−1
kj (5)

WHY? Because said rhs NAMES the set Rk
ij due to the I.H. as we

argued above.

Along with the basis (3) that the R0
ij sets CAN be named (being

finite), this induction proves that all the Rk
ij can be named by regular

expressions, which we may construct, from the basis up.
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Finally, the set L(M) can be so named. Indeed,

L(M) =
⋃
qj∈F

Rn
1j

Therefore, as a RegEX:

∑
qj∈F

αn
1j =

finitely many terms︷ ︸︸ ︷
αn
1j1

+ αn
1j2

+ . . .+ αn
1jm

The above is a finite union (F is finite!) of sets named by αn
1j with

qj ∈ F . Thus we may construct its name as the “sum” (using “+”,
that is) of the names αn

1j with qj ∈ F . □
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12.2.3 Example. Consider the FA below.

0 0

1

1

1

2

We will compute regular expressions for:

• all sets R0
ij

• all sets R1
ij

• all sets R2
ij

Recall the definition of the Rk
ij, here for k = 0, 1, 2 and i, j ranging in

{1, 2} (cf. proof of 12.2.2):

{x : qi
x
⌢ qj , where no state in this computation x,

other than possibly the end-points qi and qj, that has index higher than k}

This leads —as we saw— to the recurrence:

Rk
ij = Rk−1

ij ∪Rk−1
ik (Rk−1

kk )∗Rk−1
kj

Below I employ the abbreviated (regular expression) name “λ” for ∅∗.
SET RegEx

R0
11 λ+ 0

R0
12 1

R0
21 1

R0
22 λ+ 0
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Superscript 1 now:

SET RegEx: By Direct Substitution

R1
11 = R0

11 ∪R0
11(R

0
11)
∗R0

11 λ+ 0 + (λ+ 0)(λ+ 0)∗(λ+ 0)

R1
12 = R0

12 ∪R0
11(R

0
11)
∗R0

12 1 + (λ+ 0)(λ+ 0)∗1

R1
21 = R0

21 ∪R0
21(R

0
11)
∗R0

11 1 + 1(λ+ 0)∗(λ+ 0)

R1
22 = R0

22 ∪R0
21(R

0
11)
∗R0

12 λ+ 0 + 1(λ+ 0)∗1

Using the previous table, the reader will have no difficulty to fill in
the regular expressions under the heading “RegEx: By Direct Substi-
tution” in the next table.

To make things easier it is best to simplify the regular expressions
of the previous table, meaning, finding simpler, equivalent ones. For
example, L

(
λ+0+(λ+0)(λ+0)∗(λ+0)

)
= {λ, 0}∪{λ, 0}{λ, 0}∗{λ, 0} =

{λ, 0} ∪ {λ, 0}{λ, 0, 00, 000, . . .}︸ ︷︷ ︸
{0}∗

{λ, 0}

︸ ︷︷ ︸
{0}∗

= {0}∗, thus

λ+ 0 + (λ+ 0)(λ+ 0)∗(λ+ 0) ∼ 0∗

Superscript 2:

SET RegEx: By Direct Substitution

R2
11 = R1

11 ∪R1
12(R

1
22)
∗R1

21 Exercise

R2
12 = R1

12 ∪R1
12(R

1
22)
∗R1

22 Exercise

R2
21 = R0

21 ∪R0
22(R

1
22)
∗R1

21 Exercise

R2
22 = R1

22 ∪R1
22(R

1
22)
∗R1

22 Exercise

□
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12.3. Another Example

12.3.1 Example. Let us show another NFA to FA conversion.
OK, given the following NFA which clearly decides the language over

Σ = {0, 1} given by the RegEx

(0 + 1)∗00

that is, the language containing ALL strings that end in two 0s.

a b

c

0, 1

0

0

The DETERMINISTIC FA equivalent to the above is the following:

a

a   b

0
1

0

1

a   b    c

1

0

□
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12.4. A RegEX⇒ NFA⇒ FA Example

Consider again the RegEX over Σ = {0, 1} below

α = (0∗1∗)∗ (1)

We will first build an NFA from it using a shortcut of Kleene’s
construction, and then we will apply our NFA ⇒ FA process to build
an equivalent FA.

If we follow Kleene’s proof/construction verbatim, then the first step
would be to build an NFA for 0,

0 : → 0−→

then build the Kleene closure of (2) as

0∗ :

0

One then builds identically the NFA for 1∗ in two steps (only the
label 0 changes to label 1) and continues with the NFA for the con-
catenation the NFA for 0∗ —above— with the NFA for 1∗ (not shown)
and finally builds the NFA for (1) in the way the proof of Kleene’s
theorem goes.
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In this simple case we proceed guided by the definition of string ac-
ceptance in our shortcut construction.

First, the following is clearly an NFA that accepts all strings de-
scribed by 0∗1∗. These are all strings of the form

{0n1m : n ≥ 0 ∧m ≥ 0} (2)

We see by inspection that the NFA below accepts precisely the strings
in (2) since the only possible accepting-path labels —0n1m— that we
can get in the design below, and, indeed, we get all of them, for al
n ≥ 0,m ≥ 0.

0 1

According to the proof of Kleene’s theorem we get the NFA for the
RegEX (1) as follows from the NFA above:

0
1

q p p'

r
(2)

where we added state names for the next step, NFA=⇒FA.
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The FA is the following.

q  r  p  p'

0 1

(2)

Note that q is the start state but all of p, r and p′ are in λ(q). More-
over, see how the 0-successor of the FA state “q, r, p, p′” is computed:
We find that only p from the NFA above has a 0 successor, and that is p.

But you can easily compute that λ(p) = {q, r, p, p′}. So on input 0
the FA goes back to {q, r, p, p′}.

Similarly exactly, the 1-successor of {q, r, p, p′} in the FA is {q, r, p, p′}.

Incidentally, the FA above proves again in a different way that the
language of the RegEX (0 + 1)∗, which the FA trivially decides is the
same as the language of the RegEX (0∗1∗)∗.
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