
A Programming Formalism for PR∗

A brief note that assumes access to [Tou12].

George Tourlakis

February 5, 2018

1 Syntax and Semantics of Loop Programs
Loop programs were introduced by D. Ritchie and A. Meyer ([MR67]) as program-theoretic
counterpart to the number theoretic introduction of the set of primitive recursive functions
PR. This programming formalism among other things connected the definitional (or struc-
tural) complexity of primitive recursive functions with their (run time) computational com-
plexity.

Loop programs are very similar to programs written in FORTRAN, but have a number
of simplifications, notably they lack an unrestricted do-while instruction (equivalently, goto
instruction). What they do have is

(1) Each program references (uses) a finite number of variables that we denote metamath-
ematically by single letter names (upper or lower case is all right) with or without sub-
scripts or primes.1

(2) Instructions are of the following types (X,Y could be any variables below, including the
case of two identical variables):

(i) X ← 0

(ii) X ← Y

(iii) X ← X + 1

(iv) Loop X . . . end, where “. . .” represents a sequence of syntactically valid instruc-
tions (which in 1.1 will be called a “loop program”). The Loop part is matched or
balanced by the end part as it will become evident by the inductive definition below
(1.1).

Informally, the structure of loop programs can be defined by induction:

Definition 1.1 Every instruction of type (i)–(iii) standing by itself is a loop program. If we
already have two loop programs P and Q, then so are
∗Supplementary lecture notes for CS4111/5111; Winter 2018
1The precise syntax of variables will be given shortly, but even after this fact we will continue using signs such

as X , A, Z′, Y ′′34 for variables—i.e., we will continue using metanotation.

1

• P;Q, built by superposition (concatenation) and normally denoted vertically, without
the separator “;”, like this:

P

Q

and, for any variable X (that may or may not be in P),

• Loop X; P ; end, called loop closure (of P), and normally written vertically without
separators “;” like this:

Loop X

P

end

�

Definition 1.2 The set of all loop programs will be denoted by L. �

The informal semantics of loop programs are precisely those given in [Tou12] (and in
class) and will not be repeated here. Similarly, the symbol P

~Xn

Y is as for the URMs: It is the
function computed by loop program P if we use ~Xn = X1, X2, . . . , Xn as the input and Y
as the output variables. Of course, we know from [Tou12], and from class, that all such P

~Xn

Y

are total. Quite a few examples are given in loc. cit.
We defined the set of loop programmable functions, L :

Definition 1.3 The symbol L stands for {P ~Xn

Y : P ∈ L}. �

2 PR vs. L

Theorem 2.1 PR ⊆ L .

Proof By induction over PR and brute-force programming:

Basis: λx.x+ 1 is PX
X where P is X ← X + 1. Similarly, λ~xn.xi is P

~Xn

Xi
where P is

X1 ← X1;X2 ← X2; . . . ;Xn ← Xn

The case of λx.0 is as easy.
How does one compute λx.f(g(x)) if g is GX

X and f is FX
X ? One uses(

G′

F

)X

X

where G′ is G modified to avoid side-effects: One must ensure that all the variables of F
other than X —which were referenced in G— are set to 0 upon exit from G because F
expects all these variables to be 0 in order to compute f correctly. G′ does that, if necessary,
by us placing at the end of G several statements of the type Y ← 0.

2

The general case λ~xm.f
(
g1(~xm), . . . , gn(~xm)

)
is programmed similarly.

Finally, we indicate in pseudo-code how to compute f(x, ~yn) where

f(0, ~yn) = h(~yn)

f(x+ 1, ~yn) = g(x, ~yn, f(x, ~yn))

assuming we have loop programs H and G for h and g respectively. The pseudo-code is

z← h(~yn)

i← 0

Loop x
z ← g(i, ~yn, z)

i← i+ 1

end

The pseudo-code above means —for example, by “z ← h(~yn)”— that we rather have placed
the program H in the place of that pseudo-instruction, with input variables ~yn and output
variable z. Similar comment for G.

Once again one has to eliminate side-effects. For example, neither H nor G are allowed
to change ~yn. G must not change i either.2 Any non input variables of G must be explicitly
set to 0 (W ← 0) at the end of G —by a modified G if the original was not doing this— so
that G correctly computes “according to its spec” every time we enter this sub program while
we are looping around the loop x times. Indeed, any non input variables of G that occur in
H must also be set explicitly to 0 at the end of H so that G computes correctly the first time
we enter the loop. �

To handle the converse of the preceding theorem we define

Definition 2.2 For any P ∈ L and any variable Y in P , the symbol PY is an abbreviation of
P

~Xn

Y , where ~Xn are all the variables that occur in P . �

Theorem 2.3 L ⊆PR.

Proof The plan is to use induction over the definition of L (1.1) and prove that for every
P ∈ L and any Y in P , PY ∈PR.

Why is the above plan sufficient, for what we want, which is
to show (1) below?

For all P ∈ L, and any input set ~Xn and output variable Y , all in P , that P
~Xn

Y ∈PR (1)

2To make any variable “read only”, for example i, it is very easy: Change all occurrences of i in G to a new
variable i′. Add the instruction i′ ← i at the very beginning of the so modified G.

3

Because, say we picked a P ∈ L and a Y in P as output variable. Say ~Xn, ~Wm is the set
of all variables of P . But then, if our plan succeeds we have that

PY = P
~Xn, ~Wm

Y ∈PR

If we now set PY = λ ~Xn
~Wm.f(~Xn, ~Wm), we have f ∈ PR, and —by Grzegorczyk

substitution— that also
λ ~Xn.f(~Xn, 0, . . . , 0︸ ︷︷ ︸

m zeros

) ∈PR

But
λ ~Xn.f(~Xn, 0, . . . , 0︸ ︷︷ ︸

m zeros

) = P
~Xn

Y

On to our plan then!

For the basis, we have cases:

• P is X ← 0. Then PX = λx.0 ∈PR.

• P is X ← Y . Then PX = λxy.y ∈PR, while PY = λxy.y ∈PR.

• P is X ← X + 1. Then PX = λx.x+ 1 ∈PR

Let next do the induction step:

(A) P is Q;R.

(i) Case where no variables are common between Q and R. Let the Q variables be
~zk and the R variables be ~um.

• What can we say about
(
Q;R

)
zi

?

If we let λ~zk.f(~zk) stand for Qzi , then f ∈ PR by the I.H. But then, so is
λ~zk~um.f(~zk) by Grzegorczyk Ops. But this is

(
Q;R

)
zi

.

• Similarly we argue for
(
Q;R

)
uj

.

(ii) Case where ~yn are common between Q and R. ~z and ~u are the NON-common
variables.

I Thus the set of variables of
(
Q;R

)
is ~yn~zk~um

Now, pick an output variable wi.

• If wi is among the zj , then we are back to the first bullet of case (i).
• So let the wi be a component of the vector ~yn~um instead. This case is fully

captured by the figure below.

4

inputs

outputs

inputs

outputs

Q

R

(B) P is Loop x;Q; end.

There are two subcases: x in Q, or not.

(a) x not in Q:
So, let ~yn be all the variables of Q; x is not being one of them. Let

λx~yn.f0(x, ~yn) denote Px (5)

and, for i = 1, . . . , n,
λx~yn.fi(x, ~yn) denote Pyi

(6)

Moreover, let
λ~yn.gi(~yn) denote Qyi

(7)

By the I.H., the gi are in PR for i = 1, 2, . . . , n.

We want to prove that the functions in (5) and (6) are also in PR. Since f0 =
λx~yn.x (Why?), we only deal with the fi for i > 0.

5

The plan is to set up a simultaneous recursion that produces the fi from the gi.

Now imagine the computation of P with input x, y1, . . . , yn. We have two sub-
subcases:
• x = 0. In this sub-subcase, the loop is skipped and no variables are changed

by the program. In terms of (5) and (6), what I just said translates into

f0(0, ~yn) = 0 (8)

and
fi(0, ~yn) = yi, for i = 1, . . . , n (9)

• x = k + 1, i.e., positive. The effect of P is

k copies



Q
Q
Q
...
Q

Q

(10)

What is f(k + 1, ~yn)? Well, consult the picture below:

inputs

outputs

inputs

outputs

We now have a simultaneous primitive recursion that yields the fi from the gi. The
latter being in PR by the I.H. on Q, so are the former.

6

(b) x in Q:
So, let x, ~yn be all the variables of Q. Let

λx~yn.f0(x, ~yn) denote Px (11)

and, for i = 1, . . . , n,
λx~yn.fi(x, ~yn) denote Pyi (12)

Moreover, let
λx~yn.g0(x, ~yn) denote Qx (13)

λx~yn.gi(x, ~yn) denote Qyi
(14)

By the I.H., the gi are in PR for i = 1, 2, . . . , n.

We want to prove that the functions in (11) and (12) are also in PR by employing
an appropriate simultaneous recursion. The basis equations are the same as (8) and
(9).

For x = k+1 we simply consult the figure below, to yield the recurrence equations

inputs

outputs

inputs

outputs

fj(k + 1, ~yn) = gj(f0(k, ~yn), f1(k, ~yn), . . . , fn(k, ~yn)), j = 0, . . . , n

As the gj are in PR, so are the fj . �

7

All in all, we have that
PR = L

3 Incompleteness of PR
We can now see that PR cannot possibly contain all the intuitively computable total func-
tions. We see this as follows:

(A) Since the language L is context free, we can decide (algorithmically, intuitively speak-
ing) for any string α whether it belongs to L (is a well-formed program) or not.

(B) We can algorithmically build the list, List1, of all strings over Σ: List by length; in each
length group lexicographically.3

(C) Simultaneously to building List1 build List2 as follows: For every string α generated
in List1, copy it into List2 iff α ∈ L (which we can test by (A)).

(D) Simultaneously to building List2 build List3: For every P (program) copied in List2
copy all the finitely many strings PX

Y (for all choices of X and Y in P) alphabetically
(think of the string as “P ;X;Y ”).

At the end of all this we have an algorithmic list of all the functions λx.f(x) of PR, listed
by their aliases, the PX

Y . Let us call this list

f0, f1, f2, . . . , fx, . . .

By Cantor’s “diagonalization method” we define a new function d for all x as follows:

d(x) = fx(x) + 1 (1)

Two observations:

1. d is total (obvious, since each fx is) and intuitively computable. Indeed, to com-
pute d(a) generate the lists long enough until you have the a-th item (counting as
in 0, 1, 2, . . . , a) in List3. This item has the format PX

Y . I.e., we have a loop program
and designated input (one) and output variables. Start this program with input the value
a (in X). On termination add 1 to what Y holds and return. This is d(a).

2. d is not in the list! For otherwise, d = fi for some i ≥ 0. We get a contradiction:

fi(i)
by d=fi

= d(i)
by (1) above

= fi(i) + 1

References
[MR67] A. R. Meyer and D. M. Ritchie, Computational complexity and program structure,

Technical Report RC-1817, IBM, 1967.

[Tou12] G. Tourlakis, Theory of Computation, John Wiley & Sons, Hoboken, NJ, 2012.

3Fix the ordering of Σ as listed in (1) on p.??.

8

	Syntax and Semantics of Loop Programs
	PR vs. L
	Incompleteness of PR

