COSC 4111/5111 —Winter 2014

Posted: March 16, 2014
Due: April 7, 2014

Problem Set No. 3

This is not a course on formal recursion theory. Your proofs should be informal (but \neq sloppy), correct, and informative (and if possible short). Please do not trade length for correctness or readability.
(1) Without using Rice's theorem or lemma, explore/prove
(a) the set $A=\left\{x: \operatorname{ran}\left(\phi_{x}\right)\right.$ has exactly five distinct elements $\}$ is not recursive. (I.e., " $x \in A$ is unsolvable"). Is it r.e.? Why?
Hint. Use as the "top" case function $\operatorname{rem}(y, 5)$ which has a range of 5 elements.
(b) the set $D=\left\{x: \phi_{x}\right.$ is the characteristic function of some set $\}$ is not recursive. Is it r.e.? Why?.
Hint. $D=\left\{x: \operatorname{ran}\left(\phi_{x}\right) \subseteq\{0,1\}\right\}$. Hmmm. Can you reuse the work we did with $\left\{x: \phi_{x}\right.$ is a constant $\}$?
(c) the set $E=\left\{x: \operatorname{ran}\left(\phi_{x}\right)\right.$ contains only odd numbers $\}$ is not recursive. Is it r.e.? Why?
(2) Prove that there is a function $f \in \mathcal{P}$ such that $W_{x} \neq \emptyset$ implies $f(x) \downarrow$ and $f(x) \in W_{x}$.
Hint. To define $f(x)$ you want, given the verifier x (for W_{x}), to dovetail its computation as follows: consider systematically all pairs $\langle y, z\rangle$ until $T(x, y, z)$ holds. If so, set $f(x)=y$ (if not, go happily forever; this is the case $\left.W_{x}=\emptyset\right)$. Make this mathematically precise!
(3) Do Exercise 5.2.0.32, p. 359.
(4) From Section 5.3 do Problem 23.

