Ş

COSC 4111/5111 —Winter 2014

Posted: March 16, 2014 **Due: April 7, 2014**

Problem Set No. 3

- This is not a course on *formal* recursion theory. Your proofs should be informal (but \neq sloppy), correct, and informative (and if possible short). Please do not trade length for correctness or readability.
 - (1) Without using Rice's theorem or lemma, explore/prove
 - (a) the set A = {x : ran(φ_x) has exactly five distinct elements} is not recursive. (I.e., "x ∈ A is unsolvable"). Is it r.e.? Why? Hint. Use as the "top" case function rem(y, 5) which has a range of 5 elements.
 - (b) the set $D = \{x : \phi_x \text{ is the characteristic function of some set}\}$ is not recursive. Is it r.e.? Why?. *Hint.* $D = \{x : \operatorname{ran}(\phi_x) \subseteq \{0, 1\}\}$. Hmmm. Can you reuse the work we did with $\{x : \phi_x \text{ is a constant}\}$?
 - (c) the set $E = \{x : ran(\phi_x) \text{ contains only odd numbers}\}$ is not recursive. Is it r.e.? Why?
 - (2) Prove that there is a function $f \in \mathcal{P}$ such that $W_x \neq \emptyset$ implies $f(x) \downarrow$ and $f(x) \in W_x$.

Hint. To define f(x) you want, given the verifier x (for W_x), to dovetail its computation as follows: consider systematically all pairs $\langle y, z \rangle$ until T(x, y, z) holds. If so, set f(x) = y (if not, go happily forever; this is the case $W_x = \emptyset$). Make this mathematically precise!

- (3) Do Exercise 5.2.0.32, p.359.
- (4) From Section 5.3 do Problem 23.

COSC 4111/5111. George Tourlakis. Winter 2014