COSC 4111/5111 —Winter 2013

Posted: March 17, 2013
Due: April 8, 2013

Problem Set No. 3

(2) This is not a course on formal recursion theory. Your proofs should be informal (but \neq sloppy), correct, and informative (and if possible short). Please do not trade length for correctness or readability.
(1) Without using Rice's theorem or lemma, explore/prove
(a) the set $A=\left\{x: \operatorname{ran}\left(\phi_{x}\right)\right.$ has exactly five distinct elements $\}$ is not recursive. (I.e., " $x \in A$ is unsolvable"). Is it r.e.? Why?
(b) the set $D=\left\{x: \phi_{x}\right.$ is the characteristic function of some set $\}$ is not recursive. Is it r.e.? Why?.
(c) the set $E=\left\{x: \operatorname{ran}\left(\phi_{x}\right)\right.$ contains only odd numbers $\}$ is not recursive. Is it r.e.? Why?
(2) Is the "proof" given below for the above question correct? If not, where exactly does it go wrong?
Proof. Let $y=f\left(\vec{x}_{n}\right)$ be r.e. Then $y=f\left(\vec{x}_{n}\right) \equiv \psi\left(y, \vec{x}_{n}\right)=0$ for some $\psi \in \mathcal{P}$. Thus $g=\lambda \vec{x}_{n}$. $(\mu y) \psi\left(y, \vec{x}_{n}\right)$ is in \mathcal{P}. But $g=f$, since the unbounded search finds the y that makes $y=f\left(\vec{x}_{n}\right)$ true, if $f\left(\vec{x}_{n}\right) \downarrow$. Thus, $f \in \mathcal{P}$.
(3) Let

$$
f=\lambda x \text {.if } f_{R}(x)=0 \text { then } g(x) \text { else if } f_{Q}(x)=0 \text { then } h(x) \text { else } \uparrow
$$

where R, Q are r.e. (and mutually exclusive), and g, h, f_{R}, f_{Q} are partial recursive, and $R(x) \equiv f_{R}(x)=0$ and $Q(x) \equiv f_{Q}(x)=0$.
Is f partial recursive? Why?
Is f^{\prime} below the same as f ? Why?

$$
f^{\prime}(x)= \begin{cases}g(x) & \text { if } R(x) \\ h(x) & \text { if } Q(x) \\ \uparrow & \text { otherwise }\end{cases}
$$

If you answered no, is f^{\prime} partial recursive? Why?
(4) Do Exercise 5.2.0.32, p. 358.
(5) From Section 5.3 do Problems 1, 2 and 24.

COSC 4111/5111. George Tourlakis. Winter 2013

