COSC 4111/5111 —Winter 2013

Posted: March 17, 2013 Due: April 8, 2013

Problem Set No. 3

Ś ERRATUM.

Ś The Problem #(2) in Assignment #3 reads as follows:

(2) Is the "proof" given below for the above question correct? If not, where exactly does it go wrong?

Proof. Let $y = f(\vec{x}_n)$ be r.e. Then $y = f(\vec{x}_n) \equiv \psi(y, \vec{x}_n) = 0$ for some $\psi \in \mathcal{P}$. Thus $g = \lambda \vec{x}_n . (\mu y) \psi(y, \vec{x}_n)$ is in \mathcal{P} . But g = f, since the unbounded search finds the y that makes $y = f(\vec{x}_n)$ true, if $f(\vec{x}_n) \downarrow$. Thus, $f \in \mathcal{P}$. \Box

Replace the part "above question" with "the theorem, proved in class/text, if $y = f(\vec{x})$ is semi-recursive, then $f \in \mathcal{P}^{"}$

COSC 4111/5111. George Tourlakis. Winter 2013