COSC 4111 3.0/5111 3.0—Winter 2006

Posted: March 19, 2006 **Due: April 6, 2006**

Problem Set No. 3

Remark. Due to other commitments, I will post solutions for this problem set on April 11, 2006. Each problem (e.g., 1, 2a, 2b, 5-1, 5-23, etc.) is worth 5 points.

(1) (Grad) " W_i " is the symbol Rogers uses for "the *i*-th semi-recursive set", that is,

 $x \in W_i \equiv (\exists z) T(i, x, z)$

Question: Is there a partial recursive function $\lambda x.f(x)$ such that for all *i*

 $W_i \neq \emptyset \Rightarrow f(i) \downarrow \land f(i) = \min\{y : y \in W_i\}$

If you think that "yes", then you **must** give a proof.

If you think that "no", then you **must** give a definitive counterexample.

- (2) Without using Rice's theorem, prove that
 - (a) the set $A = \{x : ran(\phi_x) \text{ has exactly five distinct elements} \}$ is not recursive. (I.e., " $x \in A$ is unsolvable").
 - (b) the set $D = \{x : \phi_x \text{ is the characteristic function of some set}\}$ is not r.e.
 - (c) the set $E = \{x : ran(\phi_x) \text{ contains only prime numbers}\}$ is not r.e.
- (3) Is the "proof" given below for the question "Prove that if $y = f(\vec{x}_n)$ is r.e., then $f \in \mathcal{P}$ " correct? If not, where exactly does it go wrong?

Proof. Let $y = f(\vec{x}_n)$ be r.e. Then $y = f(\vec{x}_n) \equiv \psi(y, \vec{x}_n) = 0$ for some $\psi \in \mathcal{P}$. Thus $g = \lambda \vec{x}_n . (\mu y) \psi(y, \vec{x}_n)$ is in \mathcal{P} . But g = f, since the unbounded search finds the y that makes $y = f(\vec{x}_n)$ true, if $f(\vec{x}_n) \downarrow$. Thus, $f \in \mathcal{P}$. \Box

- (4) (Grad) Ch.7. #3 parts (1) and (2) only.
- (5) Chapter 13 problems 1, 23, 26, 27, (Grad, 30), (Grad, 45).
- (6) Prove that $T \in \mathcal{E}^3_*$.

Hint. Systematically scan the proof that $T \in \mathcal{PR}_*$ contained in the Kleene Notes and modify it to obtain this sharper result.

COSC 4111/5111. George Tourlakis. Winter 2006