COSC 4111/5111 3.0-Winter 2006

Date: Posted Feb. 26, 2006
Due: TBA (Approximate shelf life $=3$ weeks)

Problem Set No. 2

Most problems are from "Computability", Chapters 3, 7, 8. All relate to material in said chapters.
(1) Ch.3. Nos. 6, 22, 23, 26, 29, and 30.
(2) (Grad) Express the projections K and L of $J(x, y)=(x+y)^{2}+x$ in closed form-that is, without using $(\mu y)_{<z}$ or bounded quantification.
(Hint. Solve for x and y the Diophantine equation $z=(x+y)^{2}+x$. The term $\lfloor\sqrt{z}\rfloor$ is involved in the solution.)
(3) Ch.7. Nos. 5, 6, 7, 8 (Do not use the "Rice theorems" for r.e. or recursive sets in these exercises!).
(4) (Grad) Prove that a recursively enumerable set of sentences \mathcal{T} over a finitely generated language (e.g., like that of arithmetic) admits a recursive set of axioms, i.e., for some recursive $\Gamma, \mathcal{T}=\mathbf{T h m}_{\Gamma}$.
(Hint. Note that for any $\mathcal{A} \in \mathcal{T}$, any two sentences in the sequence

$$
\mathcal{A}, \mathcal{A} \wedge \mathcal{A}, \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}, \ldots
$$

are logically equivalent. Now see if Theorem 1 and its corollaries (section 8.2 in "Computability") can be of any help.)
(5) Prove that $\lambda x . A_{x}(2) \notin \mathcal{P} \mathcal{R}$, where $\lambda n x . A_{n}(x)$ is our version of the Ackermann function. Your proof must follow this path:
(a) Prove that $A_{n}(x)<A_{x}(2)$ a.e. with respect to x.
(b) Using the previous result, prove that if $\lambda x . f(x) \in \mathcal{P} \mathcal{R}$, then $f(x)<$ $A_{x}(2)$ a.e.
(c) Conclude the argument.
(6) Prove that if $\lambda \vec{y} . f(\vec{y}) \in \mathcal{P}$ and $Q(\vec{x}, z) \in \mathcal{P}_{*}$, then $Q(\vec{x}, f(\vec{y})) \in \mathcal{P}_{*}$. Keep in mind the definition ("1-point-rule")

$$
Q(\vec{x}, f(\vec{y})) \stackrel{\text { Def }}{\equiv}(\exists z)(z=f(\vec{y}) \wedge Q(\vec{x}, z))
$$

COSC 4111/5111. George Tourlakis. Winter 2006
(7) Prove with the techniques of the Appendix to Ch. 3 (the web notes) that the graph of f is r.e. iff $f \in \mathcal{P}$.
(8) Using the above and closure properties of \mathcal{P}_{*} (cf. posted Appendix) prove that \mathcal{P} is closed under definition by so-called "positive cases" (these are r.e. cases). That is, if all the f_{i} are in \mathcal{P}, all the Q_{i} are in \mathcal{P}_{*} and g below is a function, then $g \in \mathcal{P}$.

$$
g(\vec{x})= \begin{cases}f_{1}(\vec{x}) & \text { if } Q_{1}(\vec{x}) \\ f_{2}(\vec{x}) & \text { if } Q_{2}(\vec{x}) \\ \vdots & \vdots \\ f_{k}(\vec{x}) & \text { if } Q_{k}(\vec{x}) \\ \uparrow & \text { otherwise }\end{cases}
$$

Hint. Use the previous exercise and work with the graph of g.
(9) (Grad) In problem 5 presumably you concluded that $\left\{x: \phi_{x} \in \mathcal{P} \mathcal{R}\right\}$ is not r.e., that is, you cannot computably enumerate all the ϕ-indices that happen to describe just the primitive recursive functions.

Show here that you can do the 2nd best: You can enumerate a a proper subset of the set of all the ϕ-indices, and this subset happens to define all the primitive recursive functions.
That is, prove that there is a $F \in \mathcal{R}$ such that
(a) If $\lambda \vec{x} \cdot g(\vec{x}) \in \mathcal{P} \mathcal{R}$, then for some $e, F(e,\langle\vec{x}\rangle)=g(\vec{x})$ for all \vec{x}.
(b) For all $e, \lambda z \cdot F(e, z) \in \mathcal{P} \mathcal{R}$.
(Hint. Use off the shelf our arithmetisation tools from the Appendix, but see what happens if you drop all the codes e with $(e)_{0}=3$ (and correspondingly drop the predicate " $U(u)$ " from the definition of $\operatorname{Tree}(u)$ and $T^{(n)}$.)
(10) (For all) In problem (9) I said about F, "prove that there is a $F \in \mathcal{R}$ ".

Take (9) as proved. Now prove that given F 's properties (a) and (b), " $F \in$ $\mathcal{R} "$ is as much as we can say: That is, $\lambda e z . F(e, z) \notin \mathcal{P} \mathcal{R}$.

COSC 4111/5111. George Tourlakis. Winter 2006

