COSC 4111/5111 3.0—Fall 2004

Date: Nov 6, 2004 Due: TBA in class and Web page. (Approx. shelf life=3 weeks)

Problem Set No. 2

Most problems are from "Computability", Chapters 3, 7, 8. All relate to material in said chapters.

- (1) **Ch.3.** Nos. 6, 26, 29, and 30.
- (2) Prove that if f is total and $\lambda \vec{x}y \cdot y = f(\vec{x})$ is in \mathfrak{R}_* , then $f \in \mathcal{R}$.
- (3) Prove that there exists a partial recursive h that satisfies

$$h(y,x) = \begin{cases} y & \text{if } x = y + 1\\ h(y+1,x) & \text{otherwise} \end{cases}$$

Which function is $\lambda x.h(0, x)$?

(4) Given $\lambda y \vec{x} \cdot f(y, \vec{x}) \in \mathfrak{P}$. Prove that there exists a partial recursive g that satisfies

$$g(y, \vec{x}) = \begin{cases} y & \text{if } f(y, \vec{x}) = 0\\ g(y+1, x) & \text{otherwise} \end{cases}$$

How can you express $\lambda x.g(0,x)$ in terms of f?

(5) (Grad) Express the projections K and L of J(x, y) = (x + y)² + x in closed form—that is, without using (µy)_{<z} or bounded quantification.
(Hint. Solve for x and x the Displanting equation x = (x + x)² + x. The

(*Hint.* Solve for x and y the *Diophantine equation* $z = (x + y)^2 + x$. The term $\lfloor \sqrt{z} \rfloor$ is involved in the solution.)

- (6) Ch.7. Nos. 5, 6 (Do not use Rice theorems).
- (7) (**Grad**) Prove that a recursively enumerable set of sentences \mathcal{T} over a finitely generated language (e.g., like that of arithmetic) admits a recursive set of axioms, i.e., for some recursive Γ , $\mathcal{T} = \mathbf{Thm}_{\Gamma}$.

(*Hint.* Note that for any $\mathcal{A} \in \mathcal{T}$, any two sentences in the sequence

$$\mathcal{A}, \mathcal{A} \land \mathcal{A}, \mathcal{A} \land \mathcal{A} \land \mathcal{A}, \ldots$$

are logically equivalent. Now see if Theorem 1 and its corollaries (section 8.2 in "Computability") can be of any help.)

COSC 4111/5111. George Tourlakis. Fall 2004