COSC 4111 3.0/5111 3.0—Fall 2004

Posted: Nov. 19, 2004 Due: End of term [Exact date TBA]

Problem Set No. 3

(1) " W_i " is the symbol Rogers uses for "the *i*-th semi-recursive set", that is,

 $x \in W_i \equiv (\exists z)T(i, x, z)$

Question: Is there a partial recursive function $\lambda x.f(x)$ such that for all *i*

$$W_i \neq \emptyset \Rightarrow f(i) \downarrow \land f(i) = \min\{y : y \in W_i\}$$

If you think that "yes", then you **must** give a proof.

If you think that "no", then you **must** give a definitive counterexample.

(2) Without using Rice's theorem, prove that

- (a) the set $A = \{x : ran(\phi_x) \text{ has exactly five distinct elements} \}$ is not recursive. (I.e., " $x \in A$ is unsolvable").
- (b) the set $B = \{x : \phi \text{ is } 1\text{-}1\}$ is not recursive. (I.e., " $x \in B$ is unsolvable").
- (c) the set $C = \{x : \phi_x \text{ is onto}\}$ is not recursive. (I.e., " $x \in C$ is unsolvable").
- (d) the set $D = \{x : \phi_x \text{ is the characteristic function of some set}\}$ is not r.e.
- (e) the set $\mathbb{N} D$ (i.e., \overline{D}) is not r.e. either.
- (f) the set $E = \{x : ran(\phi_x) \text{ contains only prime numbers}\}$ is not r.e.
- (3) (a) (Eaaasyyy!) Give a **careful and complete** proof (no hand-waiving!) that if $\lambda y \vec{x}_n \cdot y = f(\vec{x}_n)$ is in \mathcal{P}_* then $f \in \mathcal{P}$
 - (b) (A bit tricky) Is the "proof" given below for the above question correct? If not, where exactly does it go wrong? **Proof.** Let y = f(x_n) be r.e. Then y = f(x_n) ≡ ψ(y, x_n) = 0 for some ψ ∈ P. Thus g = λx_n.(μy)ψ(y, x_n) is in P. But g = f, since the unbounded search finds the y that makes y = f(x_n) true, if f(x_n) ↓. Thus, f ∈ P. □

COSC 4111/5111. George Tourlakis. Fall 2004