COSC 4111/5111 3.0—Fall 2004

Posted: Sep 26, 2004 Due: End of October [Exact date TBA]

Problem Set No. 1

NOTE: This is the *full problem set* (originally I thought I would be bringing it out in two parts). Problems marked "**Grad**" are only required by students who enrolled in the 5111 version of the course.

- (1) "Dress" the primitive recursion of Example 13, p. 38, in the rigid notation. After that (and mindful of the rigid definitions of "add" and "multiply") write down a shortest derivation for $\lambda xy.x^y$.
- (2) Prove that Euler's function $\lambda x.\phi(x)$ that returns the *number of terms* in the sequence $0, 1, 2, \ldots, x 1$ that are relatively prime^{*} to x is in \mathcal{PR} .
- (3) (**Grad**) Prove that $\phi(p^a) = p^a p^{a-1}$ if p is prime.
- (4) Prove Lemma 1 on p.47.
- (5) Page 81, do problems 18, 22.
- (6) (Grad) Regarding the function λix.g_i(x) of Theorem 3 (p. 78–79 of text): It is proved there that 1 - g_x(x) = 0 is not in PR_{*}. How about 1 + g_x(x) = 0? Why?
- (7) Write a "nice clean" loop program which computes $\lambda x.\lfloor x/5 \rfloor$. The program must only allow instruction-types X = 0, X = X + 1, X = Y and **Loop** $X \dots$ end. It must *not* nest the Loop-end instruction! It is required that you give a convincing general argument (*not* a "trace") as to why your program works as specified.
- (8) (This is very easy) Prove that the predicate Q(z) that is true iff $z = 2^x + 2^y$ where $x^3 > y^5 > 0$ for appropriate x and y is in \mathcal{PR}_* .
- (9) (**Grad**. This requires some research; the reference is given in the problem, p.82. Your answer must be thorough and complete, not just a sketch) Do problem 25, p.82.
- (10) Do problem 34, p.83.

a and b are relatively prime means that their greatest common divisor is 1.