
The Big O Notation

Franck van Breugel

July 30, 2007

We use IN to denote the set {0, 1, 2, . . .} of natural numbers. Let f : IN → IN be a function
from natural numbers to natural numbers. We will associate such a function to a piece of Java
code. This function will capture the answer to the question “How many elementary operations are
at most performed when executing the Java code for input of a given size?”

Consider the following method.

1 /**
2 Returns the factorial of the given number.
3

4 @param n a number.
5 @pre. n > 0
6 @return the factorial of the given number.
7 */
8 public static int factorial(int n)
9 {

10 long factorial = 1;
11 int i = 2;
12 while (i <= n)
13 {
14 factorial *= i;
15 i++;
16 }
17 return factorial;
18 }

Let us first estimate how many elementary operations are performed at each line of the above
method.

line number
10 2
11 2
12 4
14 4
15 3
17 2

We will come back to the fact that these are just estimates. The total number of elementary
operations depends on the value of n. Hence, the total number can be captured by a function

1

f : IN → IN defined by
f(n) = 11n + 10,

where n represents the value of n.
The actual number of elementary operations that are performed depends on many factors. For

example, some computers can assign a value to a variable of type long in a single operation whereas
other computers may need two. Hence, estimates like

f1(n) = 14n + 12

and
f2(n) = 17n + 14

may be reasonable as well. The big O notation provides us with an abstraction that can capture
all these estimates. The functions f , f1 and f2 are all elements of O(n), where we use n to denote
the identity function, that is, the function that assigns to n the value n.

Why are f , f1 and f2 elements of O(n)? For that we need the formal definition of the big O
notation. Let f : IN → IN and g : IN → IN be functions. Then g ∈ O(f) if

∃M ∈ IN ∃F ∈ IN ∀n ≥ M g(n) ≤ F · f(n),

that is, we can find a “minimal size” M and a “factor” F such that for all inputs of size n that are
greater than or equal to the “minimal size,” g(n) ≤ F · f(n).

To prove that f ∈ O(n) we need to pick M and F . Let us pick M = 10 and F = 12. Then it
remains to show that

∀n ≥ 10 11n + 10 ≤ 12n,

that is, 11n + 10 ≤ 12n for all n ≥ 10. Let n ≥ 10. Then 11n + 10 ≤ 11n + n = 12n. Hence, the
above is true. Similarly, we can prove that f1 ∈ O(n). This time we pick M = 12 and F = 15. It
remains to prove that

∀n ≥ 12 14n + 12 ≤ 15n,

which is trivially true. To prove that f2 ∈ O(n), we pick M = 14 and F = 18. In this case, it
remains to prove that

∀n ≥ 14 17n + 14 ≤ 18n,

which is obviously true.
Let us consider another Java snippet.

1 /**
2 Sorts the given array.
3

4 @param a an array of integers.
5 @pre. a != null
6 */
7 public static void sort(int[] a)
8 {
9 for (int i = 0; i < a.length - 1; i++)

10 {
11 int min = i;

2

12 for (int j = i + 1; j < a.length; j++)
13 {
14 if (a[j] < a[min])
15 {
16 min = j;
17 }
18 }
19 int temp = a[i];
20 a[i] = a[min];
21 a[min] = temp;
22 }
23 }

Again, let us first estimate how many elementary operations are performed at each line of the above
method.

line number
9 10
11 2
12 10
14 8
16 2
19 4
20 6
21 4

Note that we do not know how often line 16 is executed. However, we do know that line 16 is
executed at most

(n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2
times, where n is the length of the array. An upperbound of the total number of elementary
operations that is performed can be captured by a function f : IN → IN defined by

f(n) = 10n2 + 16n− 26,

where n represents the length of the array.
To show that f ∈ O(n2), we pick M = 16 and F = 11. It remains to prove that

∀n ≥ 16 10n2 + 16n− 26 ≤ 11n2.

Let n ≥ 16. Then 10n2 + 16n− 26 ≤ 10n2 + 16n ≤ 10n2 + n2 = 11n2. That concludes the proof.
For more details on the big O notation, we refer the reader to, for example, [1].

References

[1] Kenneth Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, sixth edition, 2007.

3

