Implementation of a simple graph with an adjacency matrix

Variables

num Vertices: integer

numFdges: integer

vertex: array of vertices

edge: two dimensional array of edges

For each vertex, we keep track of the element associated with the vertex and the degree, the in-degree and
the out-degree of the vertex, and its index, that is, a 5-tuple [element, degree, in-degree, out-degree, index).
For each edge, we keep track of the element associated with the edge, whether the edge is directed and the
end vertices of the edge, that is, a 4-tuple [element, directed?, vertex;, vertez] where verter; is the origin of
the edge and wvertexs is the destination if the edge is directed.

invariant: for i = 0,..., num Vertices — 1, vertex]i] contains the vertex with index 4; for i = 0,..., num Vertices
— 1,5 = 0,..., numVertices — 1 edge[i, j] contains edge edge iff edge is an edge between the vertices with
indices ¢ and j

Initialization

num Vertices < 0
numEdges <+ 0

Algorithms

elements():
output: collection of elements stored in positions of graph
col + empty collection
for i = 0,..., numVertices — 1 do
add element of vertex vertex[i] to col
for i = 0,..., numVertices — 1 do
for j =0,...,i—1do
if edge[i, j] contains an edge then
add element of edge edgeli, j] to col
if edge[j,i] contains a directed edge then
add element of edge edgel[j,] to col
return col

positions():
output: collection of positions of graph
col + empty collection
for i = 0,..., numVertices — 1 do
add vertex vertex]i] to col
for i = 0,..., numVertices — 1 do
for j =0,...,i—1do
if edge[i, j] contains an edge then
add edge edyge[i, j] to col
if edge[j,i] contains a directed edge then
add edge edgelj,i] to col
return col

numVertices():
output: number of vertices of the graph
return num Vertices

numEdges():
output: number of edges of the graph
return numFEdges

vertices():
output: collection of the vertices of the graph
col < empty collection
for i =0, ..., numVertices — 1 do
add vertex]i] to col
return col

edges():
output: collection of the edges of the graph
col + empty collection
for i = 0,..., numVertices — 1 do
for j =0,...,i—1do
if edge[i, j] contains an edge then
add edge edge[i, j] to col
if edge[j,i] contains a directed edge then
add edge edge[j,i] to col
return col

aVertex():
precondition: the graph is nonempty
output: a vertex of the graph
return vertez]0]

adjacentVertices(vertex):
input: vertex the adjacent vertices of which are returned
output: collection of vertices adjacent to verter col < empty collection
i < index of vertex
for j = 0,..., numVertices — 1 do
if edge[i, j] contains an edge then
add wvertex]j] to col
for j = 0,..., numVertices — 1 do
if edge[j, i] contains a directed edge then
add wvertez]j] to col
return col

incidentEdges(vertex):
input: vertex whose incident edges are returned
output: collection of edges incident on vertex
1 + index of vertex
col + empty collection
for 57 = 0,..., numVertices — 1 do
if edgeli, j] contains an edge then
add edge]i, j] to col
if edge[j,i] contains a directed edge then
add edgelj,] to col

return col

areAdjacent(first, second):
input: vertices
output: first and second are adjacent?
i <+ index of first
j ¢+ index of second
return edgeli, j] contains an edge or edge[j,i] contains an edge

removeVertex(vertex):
input: vertex to be removed
postcondition: verter and edges incident on verter have been removed from graph

i < index of vertex
for j = 0,..., numVertices — 1 do
if edges[i, j] contains an edge then
updateDegrees(edges[i, j])
edges[i, j] «+ edges[num Vertices — 1, j]
for j = 0,..., numVertices — 1 do
if edges[j, 1] contains a directed edge then
updateDegrees(edges[j, i])
edges[j, i] « edges[j, num Vertices — 1]
vertez[i] « vertex[num Vertices — 1]
set index of vertex[i] to 4
num Vertices < numVertices — 1

updateDegrees(edge):
input: edge
postcondition: degrees of the end vertices of edge have been updated
(first, second) < end vertices of edge
degree of first < degree of first — 1
degree of second + degree of second — 1
if edge is directed then
outdegree of first + outdegree of first — 1
indegree of second + indegree of second — 1

