Implementation of a priority queue with an unsorted sequence

Variables

sequence: sequence, the elements of which are items (pairs of keys and elements)
invariant: the elements of sequence are the items of the priority queue

Initialization

sequence < empty sequence

Algorithms

size():
output: size of priority queue
return size of sequence

isEmpty():
output: priority queue is empty?
return sequence is empty?

insertltem(key, element):
postcondition: item (key, element) has been inserted in the priority queue
input: item to be inserted

insert (key, element) into sequence (at the end)

minPosition():
precondition: sequence is nonempty
output: position of sequence with minimal key
position < first position of sequence
minimum < first position of sequence
while position # last position of sequence do
loop-invariant: minimum is the position with minimal key from the first position of sequence upto (and
excluding) position
position < position after position in sequence
if key of position < key of minimum then
minimum <— position
return minimum

minElement():

precondition: priority queue is nonempty

output: element with smallest key in priority queue
minimal < minPosition()
return element stored in minimal

minKey():
precondition: priority queue is nonempty
output: smallest key in priority queue
minimal < minPosition()
return key stored in minimal

removeMinElement():
precondition: priority queue is nonempty
postcondition: item of returned element has been removed from the priority queue
output: element with smallest key in priority queue

minimal < minPosition()

element < element stored in minimal

remove minimal from sequence

return element



Implementation of a priority queue with a sorted sequence

Variables

sequence: sequence, the elements of which are items (pairs of keys and elements)
inwariant: the elements of sequence are the items of the priority queue and sequence is sorted by key from
biggest to smallest

Initialization

sequence < empty sequence

Algorithms

size():
output: size of priority queue
return size of sequence

isEmpty():
output: priority queue is empty?
return sequence is empty?

insertltem(key, element):
postcondition: item (key, element) has been inserted in the priority queue
input: item to be inserted
if sequence is empty then
insert (key, element) into sequence
else if key of last position of sequence > key then
insert item (key, element) as last element of sequence
else
position < first position of sequence
while key of position > key do
loop-invariant: the first position of sequence upto (and excluding) position contain bigger keys than
key
position < position after position in sequence
insert item (key, element) before position in sequence

minElement():

precondition: priority queue is nonempty

output: element with smallest key in priority queue
return element stored in last position of sequence

minKey():
precondition: priority queue is nonempty
output: smallest key in priority queue
return key stored in last position of sequence

removeMinElement():
precondition: priority queue is nonempty
postcondition: item with returned element has been removed from the priority queue
output: element with smallest key in priority queue

return element stored in last position of sequence

remove last position from sequence



