Implementation of a stack with a singly linked list without dummy nodes

Variables

size: integer
stack: singly linked list, each node of which contains an element of the stack

O —E—— ) —

top: pointer to node
inwariant. the nodes nq, ..., ny, of stack contain the elements of the stack listed from top to bottom. size
is the size of the stack. top points to n; if this nodes exists, and points to nothing otherwise.

Initialization

size <~ 0
stack < empty linked list
top points to nothing

Algorithms

size():
output: size of stack
return size

isEmpty():
output: stack is empty?
return (size = 0)

top():
precondition: stack is nonempty

output: top element of stack
return element of the first node of stack

push(element):
postcondition: element has been added onto top of stack
input: element to be added to stack
node < new node containing element
if stack is empty then
stack < list consisting of node
else
add node at the beginning of stack
top points to node
size ¢ size + 1

pop():
precondition: stack is nonempty
postcondition: top element has been removed from stack
output: top element of stack
temp < element of first node of stack
remove first node from stack
if stack is empty then
top points to nothing
else
top points to first node of stack
size ¢ size — 1
return temp



Implementation of a queue with a singly linked list without dummy nodes

Variables

size: integer
queue: singly linked list, each node of which contains an element of the queue

O —E—— ) —

head: pointer to node

tail: pointer to node

inwariant:. the nodes ny, ..., n., of queue contain the elements of the queue listed from front to rear. size
is the size of the queue. head points to n; and tail points to n,, if these nodes exist, and point to nothing
otherwise.

Initialization

size < 0

queue < empty linked list
head points to nothing
tail points to nothing

Algorithms

size():
output: size of queue
return size

isEmpty():
output: queue is empty?
return (size = 0)

front():
precondition: queue is nonempty
output: front element of stack

return element of the first node of queue

enqueue(element):
postcondition: element has been added to rear of queue
input: element to be added to queue
node < new node containing element
if queue is empty then
queue < list consisting of node
head and tail point to node
else
add node at the end of queue
tail points to node
size « size + 1

dequeue():
precondition: queue is nonempty
postcondition: front element has been removed from queue
output: front element of queue
temp < element of first node of queue
remove first node from gqueue
if queue is empty then
head and tail point to nothing



else

head points to first node of queue
size < size — 1
return temp

Implementation of a queue with a singly linked list with dummy nodes

Variables

size: integer
queue: singly linked list with all nodes, except for the first and the last one, containing an element of the
queue

B ) o)

head: pointer to node

tail: pointer to node

inwariant: the nodes ny, ..., n,, of queue contain the elements of the queue listed from front to rear. size is
the size of the queue. head points to ng and tail points to 7,,11.

Initialization

size + 0

queue 4@

head points to ng
tasl points to nq

Algorithms

size():
output: size of queue
return size

isEmpty():
output: queue is empty?
return (size = 0)

front():
precondition: queue is nonempty
output: front element of stack
return element of the second node of queue

enqueue(element):
postcondition: element has been added to rear of queue
input: element to be added to queue

store element in the last node of queue

add a new dummy node to the end of queue

tail points to new node

size ¢ size + 1

dequeue():
precondition: queue is nonempty
postcondition: front element has been removed from queue
output: front element of queue

temp < element of second node of queue

remove second node from queue

size ¢ size — 1

return temp



