Graph traversals

Depth-first search

DFS(vertez):
precondition: vertex is coloured white; if a vertex is coloured black then it is reachable from wverter; an
edge between black vertices is either black or grey; an edge between white vertices is white
postcondition: if a vertex is reachable from vertex, then it is coloured black, otherwise is it coloured white;
an edge between black vertices is either black or grey; an edge between white vertices is white
input: source vertex of an undirected simple graph
colour vertex vertex gray
for each edge incident on verter do
if edge is white then
other < other endpoint of edge
if vertex other is white then
colour edge black
DFS(other)
else
colour edge gray
colour vertex black

Breadth-first search

BFS(verter):
precondition: ...
postcondition: ...
input: source vertex
colour vertex gray
queue < empty queue
enqueue vertex in queue
while gueue is nonempty do
node < front of queue
for each edge incident on node do
if edge is white then
other < other endpoint of edge
if vertex other is white then
colour edge black
colour other grey
enqueue vertex other in queue
else
colour edge gray
dequeue vertex node from queue
colour vertex node black

Cycle detection

hasCycles(vertices, edges):
input: undirected simple graph
output: graph (vertices, edges) has cycles?
for each vertex in vertices do
colour vertex white
for each edge in edges do
colour edge white
for each vertex verter do
if verter is white then



DFS(vertex)
return hasGreyEdge(edges)

hasGreyEdge(edges):
input: edges of a undirected simple graph
output: edges contains a grey edge?
found «+ false
for each edge in edges do
found + found or (edge is grey?)
return found

Shortest path

shortestpath(first, second):
input: two vertices of the graph
output: a shortest path between first and second
BFS’(first)
sequence < empty sequence
node < second
add node to end of sequence
while node # first do
add edge between node and parent of node to beginning of sequence
add parent of node to beginning of sequence
node < parent of node
return sequence

BFS’(vertex):
precondition: ...
postcondition: ...
input: source vertex
colour vertez gray
queue < empty queue
enqueue vertez in queue
while queue is nonempty do
node < front of queue
for each edge incident on node do
if edge is white then
other + other endpoint of edge
if vertex other is white then
colour edge black
colour other grey
set other’s parent to be node
enqueue vertex other in queue
else
colour edge gray
dequeue vertex node from queue
colour vertex node black



